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Abstract:
There are numerous approaches to visually represent flow patterns, whether they involve laminar or turbulent flows. A highly compelling method to illustrate these distinctions involves observing the disturbances occurring on the surface of a water stream emerging from a cylindrical tube. Captured through flash photography, these images vividly showcase the characteristics of water flow within pipes. They effectively highlight the disparity between turbulent and laminar flow, providing an accessible means to collect data for the analysis of conditions that give rise to both types of flow.
While there exist research articles centered around turbulence measurements that utilize advanced equipment, they do not employ the perturbations occurring on the free surface of the flowing liquid as a means to demonstrate or quantify turbulence.

7.1 Introduction
 A conduit has a closed boundary where the flow is confined to be wholly internal.  It is in this sense, the conduit flow is also referred as a confined flow or internal flow.  Though a conduit may be of any shape, circular shapes are common and equations are primarily stated for circular cross sections.
     Computation of fluid flow in conduits was one of the earliest problems of engineers and in modern technology it is encountered in many branches of engineering. Civil. Mechanical. Aeronautical, chemical. etc.  Consequently considerable advances. Both in the theoretical and in the experimental, work have been made.
     Any attempt in understanding conduit flow shall have to be towards the aim of computing the pressure losses in the flow.  Field problems like pipeline systems, ventilating and air conditioning systems, chemical plant systems require the pressure drop characteristics for their designs.  The importance of accurate knowledge of pressure losses is enhanced because of large, sophisticated modern conduit systems.  Even marginal reductions in pressure losses in such cases are known to yield enormous savings,
7.2   Reynolds Experiment
Two states of flow have been introduced under Sec.5.4. the orderly laminar flow and the complex turbulent flow.  These two states of flow are distinctly different warranting independent analysis.  Qualitative description of the state of flow are then not sufficient. But one needs to understand deeper to know when a flow would remain laminar or turbulent.
     Osborne Reynolds. An English scientist in 1883. Was interested in obtaining a quantitative criterion to determine whether a flow in a pipe is laminar or turbulent.  He constructed a simple equipment shown schematically in Fig. 7.1 and performed experiments under well controlled conditions.  He arranged to introduce a fine thread of coloured dye into water flowing from a large tank into a fairly long glass tube,  The velocity of water is controlled by throttling the valve at the end of the glass tube.  At small velocities he found that the dye


 Figure 7.1 Reynolds apparatus.
Filament remained a thin, straight streak parallel to the direction of flow indicating that the water particles moved in streamlines or in laminas.  There was no mixing with the adjacent laminas, thus it demonstrates clearly the laminar state of flow.  When the velocity of flow was increased gradually, the dye filament began to waver at some stage (see Fig. 7.2).  When the velocity was further increased the dye streak broke and diffused to spread across the entire cross section of the tube in a disorderly fashion.  This indicates a chaotic motion of the fluid particles mixing crosswise which establishes turbulent flow.


 Figure 7.2
     Reynolds intuitively thought that the stability of the flowing particles should be influenced by the physical quantities, velocity, diameter, density and viscosity.  The first three he argued to have like tendency because increasing values of velocity, diameter and density would help to bring in instability.  On the contrary, increasing viscosity would only try to damp out any disturbances that are introduced.  Accordingly he thought that a quantity
   =  
Might be a criterion.  He further observed that this group is a mere dimension-less number which again guided his thinking that all natural phenomena should be influenced only by the nature of physical quantities and not by their magnitudes.  Hence natural phenomena must be functions of dimensionless group of physical quantities.  This dimensionless number, subsequently named after Reynolds, has been found to acquire an important status in the analysis of fluid flow. Being dimensionless, it must be valid for any fluid, liquid or gas.
     It was physically interpreted later that the Reynolds number is a simple ratio of inertia forces to the viscous forces.  That is


Reynolds Number (Re)
It is defined as the ratio of the inertia force to the viscous force.
Inertia force  = mass acceleration
			= ρ Volume 
			= ρ      Velocity
		           = ρ   AV  V     
	                       = ρ AV2
Viscous force (Fv) = shear stress area = τ A
			=   A
			= μ   A                                                                 
  Reynolds number, Re =  =   =  
  i.e.                                Re =   =  = 	                                      
 For pipe flow (where the linear dimension is taken as diameter, d),
			   Re =  =     ------------------(7.1)

     For flow through circular pipes, it has generally been accepted now that if RN is less than 2000 laminar flow is sustained.  Low values of RN indicate the relative influence of viscous forces over the inertia forces; the inertial tendencies of the disturbing forces are suppressed by the viscous shear to establish a laminar flow field.  When RN is greater than 4000 the flow becomes fully turbulent where viscous forces are no longer capable of damping out the increased inertial strength of the disturbances.  Between Reynolds number of 2000 and 4000 a region of uncertain behavior called transition  prevails.  As changes cannot be abrupt in nature the transition from one type of flow to another alternates back and forth between laminar and turbulent.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            
Critical reynolds number


7.3 laminar flow or viscous fluid flow
7.3.1 Flow of Viscous Fluid in Circular pipes – Hagen Poiseuille Law			
Hagen- poiseuille theory is based on the following assumptions:
1. The fluid follows Newton’s law of viscosity.
2. There is no slip of fluid particles at the boundary (I.e.i the fluid particles adjacent to the pipe will have zero velocity).
     Fig. 7.3 shows a horizontal circular pipe of radius R, having laminar flow of fluid through it.  Consider a small concentric cylinder (fluid element)of radius r and length dx as a free body.

							   

Fig. 7.3 Viscous/laminar flow through a circular pipe.

If τ  is the shear stress, the shear force F is given by
F = τ × 2πr × dx
Let P be the intensity of pressure at left end and the intensity of pressure at the right end be
[P +  .dx]
Thus the forces acting on the fluid element are:
1. The shear force,  τ × 2πr × dx on the surface of fluid element.
2. The pressure force, P The shear force,  P × 2πr2 on the left end.
3. The pressure force, [P +  .dx] πr2 on the right end.
For steady flow, the net force on the cylinder must be zero.
∴           [P × πr2  - [P +  . dx] - π r2] - τ × 2πr × dx = 0
                             Or,       . dx × π r2 - τ × 2πr × dx = 0
                             Or,    τ = - ,  .        --------------(7.2)
· Eqn. (7.2) shows that flow will occur only if pressure gradient exists in the direction of flow The negative sign shows that pressure decreases in the direction of flow.
· Eqn. (7.2) indicates that the shear stress distribution across a section is linear as shown in fig 7.4 (a).
·  Its value is zero at the centre of pipe (r = 0) and maximum at the pipe wall . 


Fig. 7.4 Shear stress and velocity distribution across a section.

(i) Velocity distribution.: To obtain the velocity distribution across a section,the value of shear stress   τ = μ .  is substituted in equation (7.2)

In this equation, the distance y is measured from the boundary.  The radial distance r is related to distance y by the relation
Y =R – r  or  dy = - dr

∴  τ = μ    = - μ .    …..(7.3)    


Comparing two values of τ from eqns. (7.2) and (7.3) we have
 
- μ   = - ,  .
Or,                                                          du =  [] r .dr
                Integrating the  above equation w.r.t ‘r’ we get
                                                          u =  .   r2 + C
Where C is the constant of integration and its value is obtained from the boundary condition
r = R, u =0
0 =  .   R2 + C     or,     C = -  .  .  R2
Substituting this value of C in eqn. (7.2), we get
u =  .   r2 -  .  .  R2
   u = -  .  . ( R2 – r2)  ………..(7.4)
Eq (7.4) shows that the velocity distribution is a parabola as shown in fig 7.4.The maximum velocity occurs at the centre of i.e at r = 0 and is given by
umax=  -  .  .R2          -------(7.5)
From eqns. (7.4) and (7.5), we have
 u= umax [1 - ]    ------(7.6)
     Eqn. (7.6) is the most commonly used equation for the velocity distribution for laminar flow through pipes.  This equation can be used to calculate the discharge as follows:
dQ = u × 2πr × dr
 = umax [1 - ]2πr . dr
Total discharge,          Q  =  ʃ dQ
= max [1 - ]2πr . dr
= 2πr . dr  r -  ] dr 
= 2π. umax[ - ] =2π. umax [ - ]
Average velocity of flow,  =   =   =       --------------(7.7)
Eqn. (7.7) shows that the average velocity is one-half the maximum velocity.
Substituting the value of umax from eqn. (7.6), we have
 = - ,  .  R2
Or,                                                                       𝜕p =   . 𝜕x
     The pressure difference between two section 1 and 2 at distance x1 and x2 (see Fig. 7.5)




Fig 7.5.
 is given by
·   =   .
Or,                                                       (P1 - P2) =   (x2 - x1) =   {  x2 - x1=L from fig 7.5}
                                                                                                   =  {   R=D/2}
Or,                                                         (P1 - P2)   =     , where P1- P2 is the drop of pressure.     
                                           ∴ Loss of pressure head =
        ∴    =hf=       …..(7.8)
Where, D is the diameter of the pipe, and L is the length
Eqn. (7.8) is known as the Hagen-poiseuille equation.
problems
Problem  7.1 A crude oil of viscosity 0.9 poise and relative density 0.8 is flowing through a horizontal circular pipe of diameter 80 mm and of length 15m. Calculate the difference of pressure at the two ends of  the  pipe, if 50 kg of the oil is collected in a tank in 15 seconds.
Solution.  Given  :	 0.9 poise Ns/
Relative density                   0.8 
 , or density , 	 0.8
Dia . of pipe,                    mm  m                                                                                                                            
                                            m
Mass of oil collected,      kg 
In time,                                seconds
Calculate  difference of pressure or ().
The difference of pressure () for viscous or laminar flow is given by
                                 , where  average velocity 
Now, mass of oil/sec             kg/s
	                                                                      ()
∴                                         
∴                                          /s
∴                                          m/s.
For laminar or viscous flow, the Reynolds number  () is less than 2000. Let us calculate the Reynolds number for this problem.
Reynolds number,            
where     m, 
∴                                          
As Reynolds number is less than 2000, the flow is laminar.
∴	    N/
                                                        559 N/0.5595 N/.  Ans. 
Problem 7.2  Laminar flow is observed within a pipe with a 100 mm diameter, exhibiting a maximum velocity of 2 m/s. Determine the mean velocity, along with the corresponding radius. Additionally, compute the velocity at a distance of 3 cm from the pipe's wall. 
Solution.   Given   :  Dia.  Of pipe,   
		2 m/s
Find (i) Mean velocity , 
(ii) Radius at which occurs 
(iii) Velocity at 4 cm from the wall.
(i) Mean velocity, 
Ratio of 	      or       ∴   m/s. Ans.
(ii) Radius at which  occurs
The velocity, , at any radius ‘ r ’ is given by (7.4)
		 []  
But from equation (7.5)    is given by
	            ∴     
Now the radius r at which  1 m/s
∴		 1 
                                                    
∴		 
∴	     1
∴	           
∴	 	  r = 0.05 m
                                                       mm. Ans.


(iii) Velocity at 3 cm from the wall

		  
Fig 7.6
r cm  m   
∴              The velocity at a radius m
or     3 cm from pipe wall is given by equation (1)
			
			      
  	 m/s.  Ans.

Problem 7.3    A fluid of viscosity 0.5  s/ and specific gravity 1.2 is flowing through a circular pipe of diameter 100 . The maximum shear stress at the pipe wall is given as 147.15 /, find (a) the pressure gradient (b)the average velocity and (c) Reynold number of the flow.
Solution.  Given   :                           
                                                   Sp. gr. 
∴      Density 	 kg/
Dia. of pipe,                                     mm  m
Shear stress,                                  147.15 /
Find      (i)  Pressure gradient,  
             (ii) Average velocity, 
            (iii) Reynold number , 
(i)  Pressure gradient, 
The maximum shear stress     ()  or 147.15  
∴                                                       =  per m
∴                        Pressure Gradient per m.  Ans.
(ii) Average velocity ,
                                                                                   
	 
	                                
	m/s
(iii) Reynold number, 
	
	  	Ans.

7.3.2 Flow of Viscous Fluid Between Two Parallel Plates
    Case-1 : One plate Moving and Other at Rest ---Couette Flow
     Let us consider laminar flow between two parallel flat plates located at a distance b apart such that the lower plate is at rest and the upper plate moves uniformly with a constant velocity U as shown in Fig. 7.7. A small rectangular element of fluid of length dx thickness dy and unit width is considered as a free body (see Fig. 7.7).  The forces acting on the fluid element are:


Fig. 7.7 Couette Flow
1. The pressure force, p .dy × 1 on the left end,
2. The pressure force, [P +  .dx] dy × 1on the right end,
3. The shear force, τ.dx × 1 on the lower surface, and 
4. The shear force, [ τ +  .dy] dx × 1 on the upper surface.
     For steady and uniform flow, there is no acceleration and hence the resultant force in the direction of flow is zero.
∴                             p .dy -  [P +  .dx] dy – τ dx + [ τ +  .dy] dx = 0
Or,                      -   .dx .dy +   .dy . dx = 0
Dividing by the volume of  the element dx.dy, we get
  =                    …….(7.9)
     Eqn. (7.9) shows the interdependence of shear and pressure gradients and is applicable for laminaras well as turbulent flow. According the pressure gradient, in the direction of flow, is equal to the shear gradient across the flow.
     According to Newton’s law of viscosity for laminar flow the shear stress, τ = μ - . Substituting for τ in eqn. (7.9), we get
 = μ.  
     Since  is independent of y, integrating the above equation twice w.r.t. y gives
u =    .   y 2+ C1 y + C2   --------(7.10)
     Where, C1 and C2 are the constants of integration to be evaluated from the known boundary conditions.  In the present case the boundary conditions are: 
At                                              y = 0, u = 0, and at y = b, u = U
∴                                                   C2 = 0,     and     C1 =    -   ( ) b
     Hence, substituting the values of C1 and C2 in eqn. (7.10), it yields the following equation for the Velocity distribution for generalized coquette flow,
u =    y  -  .     (by – y2)     ---------(7.11)
The eqn. (7.11) indicates that the velocity distribution in Couette flow depends on both U and 
( ) , However, the pressure gradient ( )  in this case may be either positive or negative.  In a particular case when ( )  equals zero, there is no pressure gradient in the direction of flow, then, we have  u = U.   which indicates that the velocity distribution is linear.  This particular case is known as simple (or plain) Couette flow or simple shear flow. 
The discharge per unit width (q) may be obtained as follows:
q =  . dy = [ y -    .     (by – y2)]dy
=U .    -  .       ------------(7.12) 
     The distribution of shear stress across any section may be determined by using Newton’s law of viscosity.  Thus,
 τ = μ.    = μ [ -   .     (b –2y)]
            =μ.  -   .     (b –2y)     --------(7.13)
     The type of flow discussed above (i.e flow of viscous fluid between two plates-one stationary and the other moving) is known as generalized Couette flow.

Case-2. Both Plates at Rest
    In this scenario as well, one needs to compute the shear stress distribution, velocity distribution     

 across a specific section, the ratio of maximum velocity to average velocity, and the disparity in pressure head for a given length of parallel plates.				
Fig. 7.8 Flow between stationary plates
Consider two parallel fixed plates kept at a distance ‘b’ apart as shown in Fig. 7.8. A viscous fluid is flowing between these two plates from left to right. Consider a fluid element of length ∆x and thickness ∆y at a distance y from the lower fixed plate.  If p is the intensity of pressure on the face AB of the fluid element then intensity of pressure on the face CD will be . Let τ is the shear stress acting on the face BC then the shear stress on the face AD will be . If the width of the element in the direction perpendicular to the paper is unity then the force acting on the fluid element are:
1. The pressure force, p×∆y×1 on face AB.
2. The pressure force, ∆y×1 on face CD.
3. The shear force, τ ×∆x×1 on face BC.
4. The shear force,  on face AD.
For steady and uniform flow, there is no acceleration and hence the resultant force in the direction flow is zero.
 ∴	
Or	 
Dividing by ∆x∆y, we get          ------------(7.14)
(i) Velocity Distribution. To obtain the velocity distribution across a section, the value of shear stress τ from Newton’s law of viscosity for laminar flow is substituted in equation (9.6).
 ∴		
 ∴		
Integrating the above equation w.r.t. y, we get
						
Integrating again u = 				… (7.15)
Where  and  are constants of integrations. Their values are obtained from the two boundary conditions that is (i) at y=0, u=0 (ii) y=b, u=0.
The substitution of at 		y = 0, u = 0 in equation (7.15) gives
				0 = 0 +  × 0 +  = 0
The substitution of at 		y = b, u=0 in equation (7.15) gives
				0 = 
 ∴			             
Substituting the values  and  in equation (7.15)
				u =  
or 				u = 				… (7.16)
In the given formula, μ, ∂p/∂x, and b remain unchanged. This implies that u changes proportionally to the square of y. As a result, equation (7.16) represents the form of a parabola. Consequently, the velocity distribution across a segment of the parallel plate takes on a parabolic shape. You can observe this velocity distribution illustrated in Figure 7.9 (a).			


Figure 7.9 illustrates the distribution of velocity and shear stress across a segment of parallel plates.
(ii)         Relationship between Maximum Velocity and Average Velocity. The highest velocity occurs at y =        
                   b/2. When we substitute this value into equation (7.16), we obtain:

           		… (7.17)
The average velocity, , is obtained by dividing the discharge (Q) across the section by the area of the section (b×1). And the discharge Q is obtained by considering the rate of fluid through the strip of thickness dy and integrating it. The rate of flow through strip is
		          	    dQ = Velocity at a distance y × Area of strip
			          = 	 
 ∴			     Q = 
			= 	
			= 
 ∴		            	   ---------------(7.18)
Dividing equation (7.17) by equation (7.18), we get
		                                     ----------(7.19)
(ii)              Pressure Head Reduction for a Given Length. Utilizing equation (7.18), we can derive:


                            	  
			Fig 7.10
By performing integration with respect to x on this equation, we obtain:		 		
		
Or 		
Or 						
If  is the drop of pressure head, then
							… (7.20)
(iii) Distribution of Shear Stress. This is achieved by inserting the value of u from equation (7.16) into:
 τ = μ
 ∴ 			τ = μ 
			τ = 				… (7.21)

Problem 7.4    Calculate :  (a) the pressure gradient along flow,  (b) the average velocity, and (c) the discharge for an oil of viscosity 1.962 s/  flowing between two stationary parallel plates 1 m wide maintained 80 mm apart.  The velocity midway between the plates is 1.5 m/s.

Solution.   Given  :
Viscosity,	 1.962 s/  
Width, 	m
Distance between plates,         80  mm  m
Velocity midway between the plates,   m/s.
(i)  Pressure gradient  
Using equation (7.17) ,              or         1.5 
∴	  s/   per m.   Ans.
(ii) Average velocity   ()
Using eqaution     (7.19),              ∴      	 m/s.   Ans.
(iii) Discharge (Q) 	             Area of flow  / sec.   Ans.   

Problem  7.5    There is a horizontal crack 50 mm wide and 3 mm deep in a wall of  thickness  150 mm.  Water leaks through the crack.  Find the rate of leakage of water through the crack if the difference of pressure between the two ends of the crack is 245.25 s/  . Take the viscosity of water equal to 0.01 poise.
Solution.   Given  :  
Width of crack, 	    mm  m
Depth of crack, 	    mm  m
Length of crack,                      mm m
                                     s/
                                                  poise 
Find rate of leakage 
() is given by eqaution  (7.20) as
                	  or  245.25 
∴		 m/s

∴                    Rate of leakage   area of cross –section of crack
                                                    
                                                     /s  /s
                                                     litre/s  litre/s.  Ans.
7.4 Factors for Correcting Kinetic Energy and Momentum
The kinetic energy correction factor is established as the ratio between the kinetic energy of the flow per second, computed using the actual velocity across a section, and the kinetic energy of the flow per second, computed using the average velocity across the same section. This factor is represented as α. Therefore, in mathematical terms:
			α =  			… (7.22)
Momentum Correction Factor. It is characterized by the ratio of the flow's momentum per second, calculated using the actual velocity, to the flow's momentum per second, calculated using the average velocity across a specific section. This factor is denoted as β. Thus, in mathematical expression:	
		β =   	… (7.23)
Problem 7.6 Demonstrate that the momentum correction factor and energy correction factor for laminar flow within a circular pipe are 4/3 and 2.0, respectively.
Solution. (i) Momentum Correction Factor or 𝛃
The equation describing the velocity distribution within a circular pipe for laminar flow at any radius r is as follows: (7.4)
Or 							… (i)
Imagine a small elemental area dA shaped like a ring, situated at a distance of r from the center and with a width of dr. In this context,				
dA = 2πr dr
					


fig 7.11
The fluid flow rate passing through the ring				   
         = dQ = velocity × area of ring element
				      = u×2πr dr
The momentum of the fluid passing through the ring per second
				      = mass × velocity
				      = ρ × dQ × u = ρ ×2πr dr × u × u = 2πρr dr
 ∴ The aggregate actual momentum of the fluid per second across the section
				     = 
Replacing the value of u from equation (1)
				     = 2πρ 
				     = 2πρ 
				     = 2πρ 
				= 	  
				=  
				= 
				=                     ……….(ii)
Momentum of the fluid per second based on average velocity
				= 
				= ρA ×  = ρA
Where A = area of cross section = π ,  = average velocity = 
				= 		
				= 
 ∴ Momentum/sec based on average velocity
				= ρ × π 
				=          …………….(iii)
 ∴			           β =  	
				=  Ans.
(ii) Energy Correction Factor, α. The kinetic energy of the fluid passing through the elementary ring with a radius of 'r' and a width of 'dr' per second
				= 
				=   
 ∴ Total actual kinetic energy of flow per second
				= 
				= πρ × 
				= πρ × 
				= 
				= 
				= 
				= 
				= 					… (IV)
Kinetic energy of the flow based on average velocity
				= 
Substituting the value of         A = ( π )
And 			             = 
 ∴ Kinetic energy of the flow/sec
				= 	 
				= 
				= 				…. (V)
 ∴			           α =  	
[bookmark: _GoBack]				=  Ans.


7.5 Power dissipated in viscous flow
       In the context of lubricating machine parts, oil is employed. The oil flow within a bearing serves as an instance of viscous flow. When a lubricating bearing uses oil with high viscosity, it leads to increased resistance, resulting in higher power dissipation. Conversely, if a low-viscosity oil is utilized, it becomes difficult to maintain the required film between the moving component and the stationary metal surface. Consequently, wear between the two surfaces occurs. Thus, it becomes essential to select an oil with the appropriate viscosity for lubrication purposes. The task at hand involves calculating the power needed to overcome viscous resistance in the subsequent scenarios:
1. Viscous Friction in Journal Bearings
2. Viscous Friction in Footstep Bearings
3. Viscous Friction in Collar Bearings 

7.5.1   Viscous Friction in Journal Bearings: Imagine a shaft with a diameter of D rotating within a journal bearing. The gap between the shaft and the journal bearing is occupied by a viscous oil. The layer of oil in contact with the shaft revolves at the shaft's speed, while the oil layer touching the journal bearing remains stationary. Consequently, the oil creates a viscous resistance against the rotating shaft.
    
  Let			     speed of shaft in r.p.m.
                                                        thickness of oil film
                                                       length of oil film
	    Angular speed of the shaft,  
  Tangential speed of the shaft 
The shear stress in the oil is given by , 

						
                                            Fig 7.12  journal bearing.
As the thickness of oil film is very small, the velocity distribution in the oil film can be assumed as linear.
    Hence 			
                                                   
     Shear force or viscous resistance  Area of surface of shaft
  		 	
 Torque required to overcome the viscous resistance,
                                                            Viscous resistance 
                         		      	
 Power consumed in counteracting viscous resistance
			             
                                             	Ans.      ……….(7.24)

Problem 7.7   A shaft having a diameter of  10 cm rotates centrally in a journal bearing having a diameter of 10.02 cm and length  20 cm .  The angular space between the shaft and the bearing is filled with oil having viscosity of 0.8 poise.  Determine the power absorbed in the bearing when the speed of rotation is 500 r.p.m.
Solution .    Given  :
Dia. of shaft,   		 10 cm or 0.1m
Dia. of bearing,	           cm ot 0.1002 m
Length ,                                   20 cm  or  0.2 m
	of oil   poise  
	        r.p.m.
		        Power 
∴       Thickness of oil film, 
 	 cm  m m
Tangential speed of shaft,  m/s
Shear stress                           /
∴      Shear force                Area 
	 
Resistance torque              
Power 	.  Ans.
Problem 7.8   A shaft 150 mm diameter runs in a bearing of length 300 mm with a radial clearance of 0.04 mm at 40  r.p.m.  Find the velocity of the oil, if the power required to overcome the viscous resistance is 220.725 watts.
Solution.    Given  :
                                               mm m
                                              mm m
                                              mmm
                                            r.p.m. ;   watts
                                                  or     220.725 
∴                                         
			   poise.  Ans.
7.5.2 Viscous Friction in Footstep Bearings
    Viscous Friction in Footstep Bearings: Illustrated in Figure 7.13 is a footstep bearing configuration, where a vertical shaft is in rotation. An oil film exists between the lower surface of the shaft and the bearing. In this scenario, the radius of the shaft's surface in contact with the oil isn't uniform, unlike that in a journal bearing. Consequently, the calculation of viscous resistance in a footstep bearing involves the consideration of a small circular ring element with a radius of r and a thickness of dr, as depicted in Figure 7.13.
Let    	speed of the shaft
                                                                 thickness of oil film
          	  radius of the shaft
Area of the elementary ring                   
Now shear stress is given by                
where  is the tangential velocity of shaft at radius  and is equal to 
                                                         
                       Shear force on the ring   area of elementary ring
                                                                        
   Torque required to overcome the viscous resistance,                              

	
	     Fig. 7.13    Foot- step  bearing .	 


	                                    …(7.25) 
     Total torque required to overcome the viscous resistance,
	    	
	         
	         		                                                        …(7.25A)
    Power absorbed ,                               watts
				                                                        …(7.26) 
 		   
Problem  7.9   Find the torque required to rotate a vertical shaft of diameter 80 mm at 800 r.p.m. The lower end of the shaft rests in a foot-step bearing.  The end of  the shaft and surface of the bearing are both flat and are separated by an oil film of thickness 0.75 mm.  The viscosity of the oil is given 1.2 poise.

Solution.   Given  :
Dia. of shaft,		
∴			
			r.p.m.
Thickness of oil film,       
			 
The torque required is given by equation (9.19) or
			
			   
7.5.3 Viscous Friction in Collar Bearings
  Viscous Friction in Collar Bearings. Fig. 7.14 depicts the collar bearing, where the collar's surface is isolated from the bearing surface by a uniform oil film thickness.
Let 		  N = Speed of the shaft in r.p.m.
		 = Internal radius of the collar
		 = External radius of the collar
		   t = Thickness of oil film.
		

			
				Fig. 7.14 collar bearing
Imagine a basic circular ring with a radius of 'r' and a width of 'dr' on the bearing surface. In this context, the torque (dT) needed to surpass the viscous resistance acting on the elementary circular ring aligns with the expression provided in equation (7.25A). or
		 dT =  dr
  The cumulative torque necessary to overcome the viscous resistance across the entire collar is
		   T = 
		      = 			… (7.27)
 ∴ Power absorbed in overcoming viscous resistance
		   P = 
		      =  watts.					… (7.28) 
Problem 7.9  A collar bearing with an external diameter of 200 mm and an internal diameter of 100 mm is employed to handle the axial thrust of a shaft. The collar surface and the bearing maintain an oil film of 0.3 mm thickness in between. Determine the power dissipated in countering the viscous resistance as the shaft rotates at a speed of 250 revolutions per minute. Consider the viscosity as μ = 0.9 poise.

Solution.    Given  :
External  Dia.   of collar, 	
∴			
Internal Dia.  of collar,	
			
Thickness of oil film,     	
			
				 
The power required is given by equation (9.22) or
			
                                                
			
                                                

7.6  Turbulent Flow
Turbulent is a state of flow in which orderly motion of fluid particles collapses to from eddies that spread into the entire region of flow. It is rather a state of instability of fluid motion caused by movements of adjacent layers at different velocities and the associated viscous forces in between. Sources of disturbances that would cause turbulence and eddy currents may be varied such as roughness projections on a boundary surface, sharp discontinuities in the boundary geometry, the trailing edge of aero foils and zones of boundary layer separation. Up to a certain velocity these disturbances are not allowed to spread by the damping and stabilizing effect of viscosity. However, beyond that stage even small disturbances are not damped out. They move along with the flow spreading into the whole region leaving only a thin layer close to the wall. The individual disturbances loose their identity and the flow becomes turbulent, that is, one of total disorder.
        An examination of the diffusion of the dye filament in Reynolds experiment would suggest that the fluid particles acquire secondary motions in the direction transverse to the main flow.  Thus the resulting turbulent flow is the direction transverse to the main flow. Thus the resulting turbulent flow is the superposition of these irregular secondary  motion on the primary motion of the stream.  The velocity at any point in turbulent flow fluctuates in both magnitude and direction .  In other words, turbulence is three dimensional  in character . Strictly speaking, turbulent flow can never be steady as per the usual definition .  However, a  recognizable pattern of fluctuations can be observed (see Fig.7.15) in the variation of velocity with time so that we may call the flow quasi steady. Though it is impossible to describe exactly the random nature of the fluctuations, statistically one can think of a time averaged mean velocity , .  Then the instantaneous velocity  at any point can be written equal to the time average velocity plus a fluctuating component  which is found to be of the order of one per cent of stream velocity. That is, for the three components of velocity
			 and 
and
			   etc.
where   is the time over which the average is taken.

			
					Figure 7.15
	The magnitude of fluctuating component is a measure of the intensity of turbulence. From the definition it is clear that the mean of  would be zero. But the statistical quantity root-mean-square may serve our purpose. Thus we have the intensity of turbulence
                                        Intensity        etc.
which  may vary with location and degree of turbulence. The velocity fluctuations in the different directions can be measured accurately by the hotwire anemometer.

7.6.1  Stresses in Turbulent Flow
The normal and shear stresses exist in turbulent flow in its own way. The fluctuations of motion practically do not have any impact on the normal stress or the pressure. In any pressure measuring device, these turbulent fluctuations get damped out and we measure only the mean value which is the one wanted in engineering calculations.
       The case of shear stress in turbulent flow is entirely different.  In laminar flow the shearing resistance is offered by two factors. One is due to cohesion, the mutual attraction between the molecules. The other is due to the interference of the molecules vibrating to the amplitude of therir mean free path between layers of different velocities. This is termed as molecular activity. The fluctuations in turbulent flow are just analogous to this molecular activity  but in a macroscopic scale. Lumps of fluids fluctuate in the direction transverse to the main flow, collide and exchange momentum due to differential velocities , causing considerable dissipation of energy and hence large resistance to flow . The momentum exchange due to complex mixing is so great that the effective viscosity of the fluid appears hundreds of times as large as molecular viscosity, contributing to high frictional losses. The fact is evident from the following observations for a circular pipe. Eq. (7.8) states that the loss of head under laminar flow
						
which  plots as a straight line in Fig. 7.16 As the velocity is increased to bring in turbulence, the head loss is observed to increase sharply initially and then to attain a greater rate of increase than for laminar flow. Latter analysis revealed that for turbulent flow
				   	               

                                                                        
			Figure 7.16 losses in circular pipes.
where  n is close to 2. This is also evident from the fact that momentum and energy are transported in the transverse direction by the random motion of turbulent eddies.  Consequently, a more unifrom velocity distribution is produced  (see Fig 7.17). Since the resistance to flow or shear stress at the turbulent flow (because of steeper slope) offers greater resistance than laminar flow.
				[image: E:\fmhmfig\ch7\7 file drw no 17 a Model.jpg]
					


[image: E:\fmhmfig\ch7\7 file drw no 17 b Model.jpg]
Figure 7.17 comparison of Velocity profile for (a) laminar, and (b) turbulent pipe flow. 
7.6.2 BOUSSINESQ EDDY VISCOSITY
To account for the increased shear stress due to turbulence, many semi empirical methods were proposed. The first of these, given by Boussinesq is a turbulent shear stress in terms of an eddy viscosity analogous to the Newton’s equation of viscosity. He wrote the total shear stress as
				 
				      ………(7.29)
where 
				 time averaged mean velocity
                                                           molecular viscosity
				eddy viscosity
There is only convenience rather than merit to write in the from of Eq. (7.17) because the eddy viscosity   is not a fixed  quantity unlike the molecular viscosity.  It is a property of the fluid motion that depended upon the location and the intensity of turbulence. Except at the vicinity of the wall, turbulent shear stress  is much greater than the laminar shear stress  so that  (d/) is often neglected. 


7.7 Loss of Head due to Friction in turbulent Flow-Darcy Equation
     For turbulent flow in pipes, experimental observations have revealed that the viscous friction  
     effects attributed to the fluid are proportionate to;
1. The length of the pipe, L,
1. Th wetted perimeter, P, and
1. Vn, Where Vj is the average velocity of flow and n is an index varying from 1.5 to 2 (depending on the material and nature of the pipe surface); for commercial pipes =2 (with turbulent flow);
Expression for loss of head due to friction in pipes.


Fig 7.18
     Fig. 7.18. shows a horizontal pipe having steady flow, Consider control volume enclosed between sections 1 and 2 of the pipe, L distance apart. where let the intensities of pressure be and  respectively. By applying Bernouli’s equation between the sections 1 and 2, we obtain
                          
Since                                  and 
 		Loss of head   =   =         ….(i)
i.e., the pressure intensity will be reduced by the frictional resistance in the direction of flow and the difference of pressure heads between any two sections is equal to the loss of head due to friction between these sections.
   Further let ‘f’ be the frictional resistance per unit area at unit velocity, then frictional resistance (F1)
				F1= 
				=  V2       ….(ii)
Where p is the wetted perimeter of the pipe.
      The pressure forces at the sectional 1 and 2 are ( and  respectively. Thus resolving all the forces horizontally, we have
				=  + F1      ….(7.30)
Or                        (A = V2        [    from(ii)  F1=  V2]
Or 		      (  = 2
Dividing both sides by the specific weight 𝜌g of the flowing fluid
			
But                                     = , then 
                                           =      ….(iii)
       The ratio of cross-sectional area of the flow (wetted area) to the perimeter in contact with the fluid (wetted perimeter) i.e.,  is called hydraulic mean depth (H.M.D.)  and it is represented by m .
Then 			       = 
For pipes running full
			       m =  	
Substituting this in the equation for   
			       
			    	   ….(iv)	
Putting 		     where f is known as co-efficient of friction.

                                 	     =      ….(7.31)
   Equation 7.31 is known as Darcy-Weisbach equation .This equation is commonly used for finding loss of head due to friction in pipes.
Some times equation (7.31) can be written as

hf =  then f is known as friction factor.

Equation for the coefficient of friction in relation to shear stress:
Refer 7.7,
                             (P1 – P2) A  = Force due to shear stress, τ0
                             (Where, τ0 = shear s tress at the pipe wall)
                              = Shear stress (τ0) × surface area
                              = τ0 × πDL
Or,                        (P1 – P2)     = τ0 × πDL
Or,                        (P1 – P2)    = τ0 L
Or,                        (P1 – P2) =                  -----(7.32)
Eqn. (7.31) can be written as  
 hf =   = 
Or,                                                       (P1 – P2) =  × ρg        ------(7.33)
Equating eqns.  (7.32) and (7.33), we get
  =   × ρg
Or,                                                 τ0  =  =    
Or,                                             f =   ----------------------(7.34)

7.8 Loss of head due to friction in viscous flow.
The drop in pressure head, denoted as hf, within a pipe of diameter D, through which a viscous fluid with a viscosity of μ is flowing at an average velocity u̅, is determined using the Hagen-Poiseuille formula, represented by equation (7.8) as:
hf=              ….(i)
 Where  L =length of pipe 
   The loss  of head due to friction  is given by 
    =   =      …(ii){  velocity in pipe is always average velocity    v=   }
Where f= co-efficient of friction between the pipe and fluid.
Equating (i) and (ii), we get    = 
                                        f =   X   =
                                                                                   =16X  = 16X 
       Re =Reynolds number =  
 Therefore   f=    …..(7.35)


Problem 7.10  Water is flowing through a 150 mm diameter pipe with coefficient of friction   The shear stress at a point 40 mm from the pipe axis is 0.01962 . Calculate the shear stress at the pipe wall.
Solution.    Given   :
Dia.  of pipe,                    
Coefficient of friction,    
Shear stress at 
Let the shear stress at pipe wall 
First find whether the flow is viscous or not. The flow will be viscous if Reynold number  is less than 2000.
Using equation (7.35),   we get     or   0.05
∴		               	
This means flow is viscous. The shear stress in case of viscous flow through a pipe is given by the equation  (7.2) as
				
But   is constant across a section.  Across a section, there is no variation of x and there is no variation of p.
∴				
At the pipe wall, radius = 100 mm and shear stress is 
∴			     or        
∴			 Ans.
   
Exercise Questions:
1. Define the terms: viscosity, kinematic viscosity gradient and pressure gradient.
2. What do you mean by “viscous flow”?
3. Drive an expression for the velocity distribution for viscous flow through a circular pipe. Also sketch the velocity distribution and shear stress distribution across the section of the pipe.
4. Prove that the maximum velocity in the circular pipe for viscous flow is equal to two times the average velocity of the flow.                                               (Delhi university, December 2002)
5. Find an expression for the loss of head of viscous fluid flowing through a circular pipe
6. What is Hagen poiseuille’s formula? Derive an expression for Hagen poiseuille’s formula.
7. Prove that the velocity distribution for viscous flow between two parallel plates when both plates are fixed across a section is parabolic in nature. Also [prove that the maximum velocity is equal to one and a half times the average velocity.
8. Show that the difference of pressure head for a given length of the two parallel plates which are fixed and through which viscous fluid is flowing is given by 
hf=12µūL/Þgt2
Where µ =viscosity of fluid,                                                 ū = average velocity,
t =distance between two parallel plates,             L = length of the plates,
9. Define the terms: kinetic energy correction factor and momentum correction factor.
10. Prove that for viscous flow through a circular pipe the kinetic energy correction factor is equal to 2 while momentum correction factor=4/3.
11. A shaft is rotating in a journal bearing. The clearance between the shaft and the bearing filled with a viscous resistance.
12. Prove that power absorbed in overcoming viscous resistance in footstep bearing is given by 
P=µπ3N2R4/60*30t
Where R = Radius of the shaft,                                               N = speed of the shaft,
t = clearance between shaft and footstep bearing,          µ = viscosity of fluid.                                
 13. Show that the value of the coefficient of friction for viscous flow through a circular pipe is given by 
f =16/Re     where R =Reynolds number.      
14.  prove that the coefficient of viscosity by the dash-pot arrangement is given by , 
         µ = 4Wt3/3πLD3V
Where     W = weight of the piston,           t = clearance between dash-pot and piston,
L = length of piston,                         D = diameter of piston,
V = velocity of piston.
15. What are the different methods of determining the co-efficient of viscosity of liquid ? Describe any two methods in details.
16. Prove that the loss of pressure head for the viscous flow through a circular pipe is given by
             hf=32µūL/Þgb2
Where ū = average velocity,     w = specific weight.
17. For a laminar steady flow, prove that the pressure gradient in direction of motion is equal to the shear gradient normal to the direction of motion.
18. Describe Reynolds experiments to demonstrate the two types of flow.
19. For the laminar flow through a circular pipe ,prove that:
(i) The shear stress variation across the section of the pipe is linear and
(ii) The velocity variation is parabolic.


                               
                                                                                                          



 



             
    



Objective questions
	1. 
	The torque required to overcome viscous resistance of a footstep bearing is (where μ = Viscosity of the oil, N = Speed of the shaft, R = Radius of the shaft, and t = Thickness of the oil film)

	
		A.
	[image: http://www.indiabix.com/_files/images/mechanical-engineering/hydraulics-and-fluid-mechanics/179-348-1.png]

	B.
	[image: http://www.indiabix.com/_files/images/mechanical-engineering/hydraulics-and-fluid-mechanics/179-348-2.png]

	C.
	[image: http://www.indiabix.com/_files/images/mechanical-engineering/hydraulics-and-fluid-mechanics/179-348-3.png]

	D.
	[image: http://www.indiabix.com/_files/images/mechanical-engineering/hydraulics-and-fluid-mechanics/179-348-4.png]



Answer: Option D
 


2.
	The torque required to overcome viscous resistance of a collar bearing is (where R1 and R2 = External and internal radius of collar)

		A.
	[image: http://www.indiabix.com/_files/images/mechanical-engineering/hydraulics-and-fluid-mechanics/179-350-1.png]

	B.
	[image: http://www.indiabix.com/_files/images/mechanical-engineering/hydraulics-and-fluid-mechanics/179-350-2.png]

	C.
	[image: http://www.indiabix.com/_files/images/mechanical-engineering/hydraulics-and-fluid-mechanics/179-350-3.png]

	D.
	[image: http://www.indiabix.com/_files/images/mechanical-engineering/hydraulics-and-fluid-mechanics/179-350-4.png]



Answer: Option D



3.
	65. 
	The power absorbed (in watts) in overcoming the viscous resistance of a footstep bearing is

	
		A.
	[image: http://www.indiabix.com/_files/images/mechanical-engineering/hydraulics-and-fluid-mechanics/179-349-1.png]

	B.
	[image: http://www.indiabix.com/_files/images/mechanical-engineering/hydraulics-and-fluid-mechanics/179-349-2.png]

	C.
	[image: http://www.indiabix.com/_files/images/mechanical-engineering/hydraulics-and-fluid-mechanics/179-349-3.png]

	D.
	[image: http://www.indiabix.com/_files/images/mechanical-engineering/hydraulics-and-fluid-mechanics/179-349-4.png]


Answer: Option B



4.
	In a footstep bearing, if the speed of the shaft is doubled, then the torque required to overcome the viscous resistance will be

		A.
	Double

	B.
	four times

	C.
	eight times

	D.
	sixteen times


Answer: Option A



5.
	The loss of pressure head in case of laminar flow is proportional to

		A.
	Velocity
	B.
	(velocity)2

	C.
	(velocity)3
	D.
	(velocity)4


Answer: Option A



6.
	The loss of head due to viscosity for laminar flow in pipes is (where d = Diameter of pipe, l = Length of pipe, v = Velocity of the liquid in the pipe, μ = Viscosity of the liquid, and w = Specific weight of the flowing liquid)

		A.
	[image: http://www.indiabix.com/_files/images/mechanical-engineering/hydraulics-and-fluid-mechanics/178-339-1.png]

	B.
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	C.
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	D.
	[image: http://www.indiabix.com/_files/images/mechanical-engineering/hydraulics-and-fluid-mechanics/178-339-4.png]



Answer: Option D
 



7.
	. 
	In a footstep bearing, if the radius of the shaft is doubled, then the torque required to overcome the viscous resistance will be

	
		A.
	Double

	B.
	four times

	C.
	eight times

	D.
	sixteen times


Answer: Option D
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