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Abstract
The electromagnetic radio spectrum is a valuable and limited resource for wireless communication systems. However, with the emergence of new wireless technologies and increasing bandwidth demands, the spectrum has become depleted. Surprisingly, studies have shown that much of the allocated spectrum is used inefficiently most of the time, contributing to the scarcity issue. The problem is not only due to inflexible spectrum management but also inefficient usage. To address the challenge of enhancing bandwidth utilization, this paper explores the concept of cognitive radio networks (CRNs). CRNs introduce a new approach to spectrum access, topology, spectrum sensing techniques, applications, problem formulation, benefits, challenges, and various features that are vital for the development of next-generation cognitive wireless networks (CWN) communication systems. The key idea is to enable secondary users (SU) to access temporarily unused licensed bands, known as white spaces or spectrum holes, without causing significant interference to primary users (PU). This is achieved by adjusting the secondary users' transmitting parameters intelligently. By doing so, CRNs aim to make more efficient use of the available spectrum and alleviate the spectrum scarcity problem.
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1.0	Introduction
It will be challenging to imagine life without wireless communication in this modern era. There are large numbers of users of wireless communication, but the available spectrum is limited. Thus, spectrum scarcity becomes an issue. To mitigate this difficulty, CR was developed and designed such that it can communicate effectively and efficiently by sensing the wireless environment. Currently, much research has been done on the use of these spectrum bands which are either empty or not in use at full capacity. CR technology was first recommended by Dr. Joseph Mitola in 1999. CR is a software-based technology that senses the electromagnetic environment in which it functions, detects inactive frequency bands, and uses the radio working parameters to broadcast in these bands [1].
The goal of CRNs is to effectively use the temporarily inactive licensed spectrum for communications at a specific time or in a specific location. Primary users (PUs) and secondary users (SUs) are two categories for users in a CRN. A PU, often referred to as a licensed user, is given priority access to the spectrum and is exempt from interference from other users that could be damaging. To coexist with the PU, an SU or cognitive user uses cutting-edge radio access techniques and dynamic spectrum allocation procedures, provided that the SU's interference does not impair the PU's performance [2]. This strategy enables a CRN to get around the radio frequency shortage.  
This review's objective is to provide a succinct summary of current state-of-the-art research in cognitive radio systems as well as anticipated future advances. The review's remaining sections are organized as follows: Following a review of the fundamental CR ideas, we outline the components of a CRN and provide a viewpoint summary of the main research issues. Then, we provide a summary of the most cutting-edge spectrum sensing and spectrum-sharing methods currently available for CR systems. A quick summary of the research on the economics and security of CRNs follows here. The applications (such as smart grid [3,4], machine-to-machine (M2M) communications [5,6], and cloud computing [6]) and the present and next trends in CR are discussed, and the open research issues are listed. The standardization efforts on CR are finally summed up.
CR technology is an important technology that allows a network to utilize the spectrum in a dynamic manner. A spectrum is the range of electromagnetic radiation that enables wireless communication and is controlled by governments. A Cognitive Radio is a radio that can change its transmitter parameters based on interaction with the environment in which it operates [7]. Recently, CR became apparent technology which is used to avoid congestion in wireless communication by utilizing unused radio spectrum [8]. 
In terms of transmission and reception parameters, CR is categorized as Full Cognitive Radio and Spectrum-Sensing Cognitive Radio. In Full CR every single parameter is monitored by a wireless node while in Spectrum-Sensing CR the radiofrequency (RF) spectrum is monitored. In terms of spectrum availability, it is classified as Licensed-Band Cognitive Radio and Unlicensed-Band Cognitive Radio. Licensed-Band CR is able to utilize bands which are allocated to licensed users. A standard was developed for wireless regional area network (WRAN) by IEEE 802.22 to operate on TV white spaces (unused television channels). Utilization of unlicensed parts of the radio frequency spectrum occurs in Unlicensed Band Cognitive Radio [9, 10]. It explained the manner in which intelligent radio devices and connected networks communicate and are able to modify their operating parameters to match the needs of the user/network. It does this by adjusting the transmission parameters (e.g., transmission power, modulation mode, and frequency band) in a real-time and online manner [10]. Communications among CR users/nodes can be established using CRN. Communication parameters are adjusted to respond to changes in the topology, radio environment, user requirements or operating conditions. Cognitive radio does not have primary rights to pre-assigned frequency bands because it operates as a secondary user; this makes it necessary for it to detect the presence of primary users [8]. 
The primary network and the cognitive network (CN) are two groups that make up the CR network structure in Figure 1. The legacy network with the sole authority to use a particular spectrum band is known as the primary network (PN).  CN is not authorized to operate in the intended band, though. A primary base station and a group of primary users make up a primary network (PN). Certain licensed spectrum bands may be used by primary users with the cooperation of primary base stations. Secondary networks (SN) should not obstruct their transmission. Primary users and primary base stations typically do not have CR services available to them. Therefore, if an SN and PN share a licensed spectrum band, the secondary network must immediately detect the presence of a primary user and direct the secondary transmission to another accessible band to avoid interfering with the primary transmission. This is in addition to detecting the spectrum white space and using the best spectrum band. A network of secondary users (SU) with or without a secondary base station is referred to as an SN. Only when a primary user is not using the licensed spectrum may secondary users access it. A secondary base station, a fixed infrastructure element acting as the core of the secondary network, is primarily responsible for organizing the opportunistic spectrum access of secondary users. CR features are available on both SU and secondary base stations [11].
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        Figure 1: Cognitive radio network topology [11]
2.0	Review of Related Literature
Junhui and Tao presented a power control technique for cognitive radio (CR) systems, taking into account constraints on transmitter power and interference temperature. They considered interference limitations to ensure the quality of service and non-cooperative power control models for the primary users (PUs) [12]. Lu Yang explored the multiuser diversity in uplink multiple-input multiple-output (MIMO) cognitive radio networks. They proposed a two-stage opportunistic user scheduling scheme [13]. Wenhao Xiong investigated user selection approaches for the downlink of MIMO cognitive radio networks. The approach involved selecting underlay CR secondary users to share sub-channels with primary users using cognitive base stations (CBS) [14]. Duoying Zhang studied spectrum sharing in a multiple-input multiple-output cognitive interference channel, where multiple PUs coexists with multiple secondary users (SUs). They introduced an interference alignment (IA) approach to allow SUs to access the licensed spectrum without causing harmful interference to PUs. Numerical results showed that this design increased the achievable degree of freedom (DoF) of primary links and provided a significant sum rate for both secondary and primary transmissions under rank limitations [15]. Junhui and Qiping proposed an optimization algorithm that combines diverse spectrum shared bandwidth and power allocation in cognitive radio systems. The approach allows the cognitive user (CU) to switch between the Underlay spectrum sharing model and the Overlay spectrum sharing model [16].
Cui & Gao focused on the crucial aspect of supportive spectrum sensing in cognitive radio (CR). Their proposed spectrum sensing algorithm demonstrated significantly improved performance compared to existing algorithms, and it also considered multiple primary users simultaneously [17]. Sidhu and Gao conducted research on resource allocation in relay-assisted orthogonal frequency division multiplexing (OFDM) cognitive radio networks. They employed a combined subcarrier pairing and power allocation approach to maximize the throughput of secondary users while ensuring that interference to primary receivers remained within acceptable limits. They also developed a sub-optimal resource allocation technique to reduce computational complexity, and simulation results showed enhanced performance compared to standard resource allocation methods [18]. Lu and Wang introduced an FD (full-duplex) opportunity spectrum-sharing protocol that takes action when the primary system experiences poor channel conditions. They jointly optimized subcarrier allocation and power distribution to maximize the transmission rate of the secondary system while ensuring that the primary system achieves its target rate. The modelling results suggested that such secondary spectrum access strategies could be beneficial for both primary and secondary systems [19]. In summary, Table 1 in this paper outlines the limitations of existing works and presents the author's contributions to address these gaps in knowledge. The paper provides a comprehensive overview of cognitive radio, covering its topology, spectrum sensing techniques, applications, problem formulation, benefits, challenges, and other essential features crucial to cognitive wireless networks (CWN) communication systems. Ultimately, the paper offers a forward-looking perspective on the necessary steps to expedite the development of this promising generation of wireless communication.
              Table 1. Limitations of some added related works and contributions.
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	Presented the fundamental concept about CR technology and CR capability functions.
Challenges and security issues of CR networks were discussed. 

To explore the application of CR technology in machine-to-machine communication.



The study presents basic theory and Key Technologies in CWN.
Issues from network architecture to multi-dimension sensing technologies and radio resource management.


Introduce the fundamentals of CRN.
Architecture of a CRN and applications.


Provide a study on the recent advances and applications of
CR in various domains, such as military emergency response, communication, and commercial
communication.


The authors provide a brief overview of operation, principles, architecture and
security of CR.


Methods and practices in CRN to improve the performance of the CRN. Various models and schemes in Cross Layer and Design Network environment.

Reviewed CR technology and its numerous
Features.
Roles in the field of next-generation wireless communication networks.
	Challenges with enabling technology were not properly stated.
Applications were not clearly outlined.



Related literature not emphasized.
Limited practical applications of CR were presented.
Future focus not presented.

Problem of selecting a suitable frequency band as the working spectrum channel of the testbed.
Future Research Directions not clearly outlined.




Applications are not clearly itemized.
Challenges with supporting
technologies are not clearly defined.

Methods not presented.
Applications not clearly outlined.
Future Research guidelines not outlined.



No clear application was presented.
The challenge with each supporting technology is not well presented.

The importance of the concept is not stated.
No connecting related works outlined.
Challenges with methods and model if any not stated.

No cohesion between the abstract and the conclusion.
Enabling technologies were discussed, but no clearly outlined challenges.
Future focus directions are not presented.
	Clear understanding of CR technology.
Its role in national development.
Future focused - Security issues and efficient spectrum management challenges.



Present detailed survey on machine-to-machine communication.
Analyze the diﬀerence between conventional and CR Machine to Machine wireless communication system.

Purpose of the research well presented.
Discussion on Flexible network architecture, cognition of multi-dimension environment, and discretionary resource management were presented as key technologies to make CWN a reality.
Challenge with each supporting
technology presented.

Architecture of a CRN discussed.
Security challenges extensively
discussed.
Enabling technologies clearly outlined.


Clearly outlined key principles of CR.
Applications were presented.






The architecture of a CRN is well discussed.
An overview of security threats, including physical, link, network and transport layer attacks is presented. The future research focus is clearly outlined.

Performances in Cross Layer networks and solutions are well outlined.
The needed resources are clearly outlined.
Problems and solutions are clearly stated.
Future focus stated.


Spectrum sensing techniques in CR were mentioned.
Cyclostationary detection is the best.
spectrum sensing technique, it senses a spectrum even in low SNR.





3	Three Major Tasks of the CR

(i)   Radio-scene analysis, 
(ii)  Channel identification, and 
(iii) Dynamic spectrum management and transmit-power control. [28]:

The receiver's implementation of radio-scene analysis includes the estimation of the interference temperature of the area's radio environment, environment prediction modelling, and spectrum hole identification. For coherent message signal recognition and better spectrum utilization, the receiver must have channel identification implemented. Finally, the transmitter's dynamic spectrum management and transmit-power control system uses the data from the radio-scene analysis and channel identification to decide on the transmission parameters.
4	Fundamental Cognitive Radio Cycle (CRC)
The basic functions of CR are Spectrum Sensing, Spectrum mobility, Spectrum management and Spectrum Sharing. CR technology has some basic functions, and these functions help users in the following ways:
(i) Spectrum sensing - to detect the part of the spectrum that is free and detect the presence of licensed users when a user is active in a licensed band. It is the first and fundamental function of cognitive radio; unused portions of the spectrum are used opportunistically upon detection. 
(ii) Spectrum management - to select the best available channel. When spectrum holes are detected, the CR must have the capability to select the channel that matches its communication requirements.
(iii) Spectrum sharing - to organize access to this channel with other users. In a CR network, there must an algorithm scheduled to ensure that all the cognitive radios get an impartial chance to use the spectrum.
(iv) Spectrum mobility - to free the channel when a licensed user is detected. Since the CR is given a lower importance, they should be able to interrupt their communication when a licensed user comes back and seamlessly move onto another free channel [1]. Figure 2 shows a Cognitive radio cycle. [23]
[image: ]
                                             Figure 2 Cognitive Radio Cycle
The CR can also be considered a continuous process consisting of the following steps: 
(i) Sensing, 
(ii) Understanding, 
(iii) Deciding 
(iv) Adapting
As shown in Figure 3. CR exploits this cycle in a way that the spectrum is the main figure to be sensed, and all the subsequent process focuses also on how to handle the spectrum based on the observations. [28]
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                      Figure 3. Generic CRC.
The CC containing the cognitive tasks is shown in Figure 4. The feedback channel between the receiver and the transmitter is the facilitator for intelligence in the CR. The feedback channel is required to transmit the following information [29]: 
i. The centre frequencies and bandwidths of the spectrum holes,
ii. The combined variance of interference plus thermal noise in each spectrum hole, 
iii. The estimate of SNR for adaptive transmission.
A CC link with the transmitter and receiver located in different CR devices is seen in Figure 4. The CR devices are transceivers and have a radio scene analysis unit on the transmitter side to detect the spectrum in the immediate area of the transmitter. However, this sensing unit is not depicted in Figure 4 because it is part of a different link. [image: ]
                             Figure 4. CC for cognitive radio link. [29]

If several SNs share one common spectrum band, their spectrum usage may be organized by a central network, called spectrum broker [30].  
5	Spectrum Sensing Methods
CR is a crucial technique that enables opportunistic, efficient use of scarce and underutilized frequency bands. Whether the spectrum sensing function is carried out correctly or not has a significant impact on the communication performance and stability in CR networks.
Spectrum sensing is a serious issue of CR technology because of the fading, time-varying nature of wireless channels and shadowing. To sense unused or limited frequency bands, several approaches for spectrum sensing have been suggested in the literature review. Examples are cyclostationary-based sensing [31, 32], waveform-based sensing [32], matched filtering [34, 35], eigenvalue-based sensing [36, 37], energy detection sensing [38–39] and wavelet-based sensing [40]. 
i. Cycle-based detection. is a method for detecting PU transmissions that makes use of the received signal's cyclostationary characteristics [41]. To detect the presence of PUs, it makes use of the periodicity in the primary signal that was received. This allows the detector to differentiate between PU signals, SU signals, and interference. However, the effectiveness of this detection method depends on having enough samples, which makes the calculation more difficult. performs well in comparison to other detection systems despite its nonlinearity, spectrum leakage of large amplitude signals, and expensive costs [42].                                                                 
ii. Sensing based on waveforms. utilized in systems that have recognized signal patterns. Preambles, midambles, regularly broadcast pilot patterns, and spreading sequences are examples of these patterns [43]. A midamble is communicated in the middle of a burst or slot, whereas a preamble is an identifiable sequence transmitted before each burst. With a known model, the function of spectrum detection is carried out by comparing the received signal to a duplicate of itself.  
iii. Detection using matched filtering. If specific signal characteristics, such as bandwidth, modulation type and grade, operating frequency, frame structure of the PU, and pulse shape, are known, matched filtering detection approaches with shorter detection times are employed [44, 45]. This technique's detection performance mostly depends on the channel reaction. To get around this, both the physical and media access control layers must be perfectly timed and synchronized. The sensing performance, however, rapidly deteriorates if the PU information is provided improperly to the matched filter detector. [46, 47] 
iv. Spectrum sensing is based on eigenvalues. It is not necessary to have a thorough understanding of PU signals and noise power [48] for this. This detection method idea was first presented in 2007 [49]. The decision threshold for making hypothesis testing in the eigenvalue-based spectrum detecting techniques was obtained using random matrix theory. The decision threshold is compared to the test statistic created using the ratio of the greatest or average eigenvalue to the minimum eigenvalue to determine the existence or absence of the PU signal. However, this method's high-functioning complexity is negative [50, 51]. 
v. Energy detection is a spectrum sensing approach that works by detecting the received signal energy and comparing it to a threshold to determine whether the PU is present or not. The noise power affects how the threshold function is calculated [4652]. Depending on the channel circumstances, the threshold may change or remain constant. However, this method is unreliable [53]. 
vi. An excellent method for examining singularities and edges is the wavelet transform. In the wavelet-based spectrum sensing technique, the interest frequency bands are often decomposed as a train of subsequent frequency sub-bands [54]. Wavelet transform is used to detect anomalies in these bands and determine whether the spectrum is full or empty. 
Hybrid models, which combine the use of two or more detection strategies, have recently been developed to increase a CRN's capacity for spectrum sensing. Hybrid models frequently employ machine learning algorithms (MLA) and artificial intelligence (AI) [55].
5.1	The Best Standard Spectrum Detection Techniques are: 
(i)	Cyclostationary feature detection
(ii)	Energy detection
(iii)	Matched filter detection
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                                           Figure 5:  Spectrum pooling idea [56]
6.0	Features of the Cognitive Radio: 
i. Cognitive capability (CC) - radio technology's capacity to gather data from its radio environment. By identifying the portions of the spectrum that are inactive at a specific time or location, the optimal spectrum and the most appropriate operating parameters can be chosen. 
ii. Reconfigurability (RC) - Reconfigurability enables the radio to be dynamically programmed in accordance with the radio environment, whereas spectrum awareness is provided by the CC. More specifically, CRs can be designed to employ a variety of transmission access protocols provided by their hardware and to broadcast and receive data at a wide range of frequencies, as shown in Figure 6 [9]. 


[image: ]
             Figure 6: Cognitive radio network system [56].
6.1	Cognitive Radio (CR) and Software Defined Radio (SDR)
A type of radio known as SDR has physical layer functionalities that are defined by software. This contrasts with hardware radio, where changes to the communications scheme can be made by altering the hardware, as opposed to software that is factory-programmed and cannot be changed due to radio topological rigidity. After SDR, cognitive radio is seen as the next stage in reconfiguration flexibility since it allows for adaptability and reconfiguration. Saying that a cognitive radio is a software-defined radio, in which the software secures the radio's cognitive functionality, would not be out of place. SDR that lacks cognition is not always a CR [57].
6.2	Spectrum Hole or White Space 
Spectrum Hole or white space is nothing but the available free spectrum of the primary user. It is shown in bellows Figure 7. The main challenge for cognitive radio systems is to sense the spectrum when it lies within such a spectrum hole [58]. High Utilization of lower frequency band and lower utilization of higher frequency spectrum. This lower spectrum utilization is known as a spectrum hole. CR searches the free frequency and allocates this frequency to spectrum utilization is termed a spectrum hole [16]
[image: ]
                Figure 7: Spectrum hole (white space concept)
In another view, a spectrum hole is deﬁned as a band of frequencies readily allocated to a PU, though; it may not always be used by the PU at a particular time or in a geographic area (see Figure 8), [28]. 
[image: ]
Figure 8: Example of a Spectrum Distribution Graph.
The following frequency, time, or space parameters can be used to determine spectrum holes depending on the communication environment [59, 60]: 
i. Temporal spectrum hole: This refers to a frequency band that remains unoccupied by a primary user (PU) for a certain period. By employing advanced spectrum sensing techniques, a secondary user (SU) can detect these spectrum holes and opportunistically access them without negatively impacting the quality of service for the primary user.
ii. Frequency spectrum hole: In this case, the activities of the secondary user do not cause any harmful interference to the primary users. This allows the secondary user to utilize the spectrum without disrupting ongoing primary user communications.
iii. Spatial spectrum hole: This type of spectrum hole pertains to a specific geographical area where the transmission of the primary user is currently occupying the spectrum. However, if the secondary user is located outside of this area (as depicted in Figure 9), they can make use of this spectrum without causing interference to the primary user's transmission.
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Figure 9: Spatial spectrum hole where the secondary user (SU) is not permitted to operate within the protected area of the primary user (PU).

Furthermore, spectrum holes can be classified into different spaces as described below [28]:
(i) Black spaces: These are areas where high-power signals interfere with control for a certain period.
(ii) Gray spaces: In these spaces, low-power signals cause moderate interference with control.
(iii) White spaces: No interfering signals are present, but natural noises like broadband thermal noise and impulsive noise can be observed.
7 CR Characteristics
A cognitive radio network (CRN) differs from conventional wireless communication networks primarily by its cognitive capabilities. With the help of these skills, a secondary user (SU) can identify numerous characteristics of the radio environment in its vicinity, including distance, temperature, noise power, and other variables. The SU can choose the best frequency, transmit power level, and modulation scheme based on the information gathered to achieve optimum performance. The following traits should be included in CRNs during actual implementation [59]: 
i. Efficient spectrum sensing and analysis methods should be employed by the SU to ensure continuous spectrum availability and reliable communication.
ii. The SU should share spectrum information with other users and coordinate communication to minimize interference and avoid collisions with primary users using the same frequency bands.
iii. The SU's architecture should be unified and designed across different layers to meet diverse Quality of Service (QoS) requirements.
iv. Dynamic spectrum access methods should be employed by the SU, allowing it to adapt to the fluctuating nature of the CRN.
7.1	Cooperative Spectrum Sensing (CSS)
Wireless communications are influenced by natural phenomena like multi-path fading, shadowing, and noise, which can impact the strength of the received signal. For instance, if a primary user (PU) is located far from a secondary user (SU), or if the PU's signal is obstructed by a large obstacle, the signal received at the SU may be weak. As a result, accurately detecting the presence of a PU becomes challenging. Figure 10 illustrates a scenario where the PU's transmitter (PU Tx) is hidden behind an obstacle, making it difficult for the secondary transmitter (SU Tx) to sense the PU Tx signal. Consequently, the SU Tx might unknowingly cause harmful interference to the PU's receiver (PU Rx) as it begins using the licensed spectrum to communicate with the secondary receiver (SU Rx).
[image: ]
Figure 10: Example of a hidden PU where SU Tx can’t sense the presence of the PU Tx due to obstacles.
CSS has been recommended to prevent these hiccups [61, 62]. Multiple users' separate fading channels and spatial diversity have been shown to be advantageous for improving detection probability and cutting down on sensing time in cooperative networks [63]. Figure 11 depicts a case where CSS might be used. With the aid of SR1 and SR2, two secondary relays (SRs), the SU Tx may detect the PU Tx.
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Figure 11: Two SRs support the SU Tx in detecting a hidden PU Tx.
7.2	Current State-of-the-Art Review on Spectrum Sharing in CRNs
This review encompasses the development of cognitive radio (CR) research, encompassing diverse aspects of spectrum sharing. These aspects include spectrum sensing [64–77], spectrum measurements, and statistical modelling of spectrum usage [78–84], as well as signal and waveform design [85–95]. Additionally, the review covers multiple access, resource allocation, and power control, spectrum mobility [96–105], cognitive learning, adaptation, and self-configuration [106–117], and multihop transmission and routing [118–123].
7.2.1	Spectrum sensing, interference modelling, measurements, and statistical modelling of spectrum usage:
Acquiring accurate information about spectrum usage by Primary Users (PUs) is essential for Secondary Users (SUs) to opportunistically access the spectrum. To gain such knowledge, research focuses on the following aspects:
(i) Spectrum sensing: This fundamental process enables SUs to assess whether PUs is currently utilizing the spectrum. Without this information, SUs may face challenges in accessing idle spectrum effectively, leading to reduced spectrum utilization, or they might unknowingly interfere with PUs occupying the spectrum.
(ii) Interference modeling: SUs may encounter interference on the spectrum due to two main reasons. First, SUs must ensure that their own transmissions do not disrupt ongoing PUs' communications. Second, when interference is present, SUs needs to access the spectrum in a manner that satisfies their transmission requirements. Interference modeling helps SUs achieve these objectives.
(iii) Measurements and statistical modeling of spectrum usage: While spectrum sensing provides instantaneous information about the spectrum status, spectrum measurement is conducted over a more extended period, often spanning several months, to gather statistical data about PUs' usage patterns. This valuable knowledge assists SUs in devising their spectrum access strategies, such as selecting specific times of the day to minimize interference to PUs.
7.2.2 Waveform and Modulation Design for Cognitive Radios:
The waveform and modulation design for signals from Secondary Users (SUs) can be adjusted to reduce interference to Primary Users (PUs). For instance, in a scenario with underlay spectrum access, SUs can use ultra-wideband transmission and modify the pulse width and/or position to avoid interfering with the narrowband transmission of PUs. Similar to this, in an overlay spectrum access scenario, SUs can reduce interference by using multicarrier modulation methods like orthogonal frequency division multiplexing (OFDM).
7.2.3 Multiple Access, Resource Allocation, Power Control, and Spectrum Mobility:
In a spectrum underlay scenario, the complexities of achieving optimal spectrum sharing among Secondary Users (SUs) can be formulated as an optimization problem with an appropriate objective function and a set of constraints. These constraints encompass factors such as user fairness, ensuring Quality of Service (QoS) for SUs, and adhering to interference limitations for Primary Users (PUs). In situations where the optimization problem becomes infeasible due to stringent constraints or high network load, an admission control mechanism is employed to limit the number of admitted SUs. Subsequently, power allocation for the admitted SUs can be performed.

To achieve fairness among SUs in practical scenarios using Code Division Multiple Access (CDMA) technology at the physical layer (PHY), an approach proposed in [99] addresses the joint problem of admission control and power allocation. It is essential to estimate instantaneous channel gains among SUs and interference from Secondary Transmitters (STs) to Primary Receivers (PRs) for power allocation solutions. When only estimates of average channel gains are available, conservative power allocations for STs are necessary to meet the target interference constraint violation probability for PRs [101].
In [102], the challenge of maximizing the sum-rate for STs is investigated in a Cognitive Radio Network (CRN) with multiple STs and PRs (each equipped with one antenna) under joint beamforming and power allocation. Additionally, [103] reviews dynamic resource allocation strategies for CR systems using the interference temperature-based spectrum sharing model.
8.1 Economics of Cognitive Radio Networks:
In CR systems, pricing plays a vital role and encourages primary and secondary users to share vacant spectrum through spectrum trading [127]. Spectrum trading allows entities in the CR system, such as primary and secondary users, spectrum owners, service providers, and subscribers, to exchange radio resources, either through monetary transactions or other resource exchanges (bartering). Two major approaches for spectrum trading are auction-based and open market-based.
8.2 Price Competition in the Open Market:
In the unregulated open market paradigm, main and secondary users are able to freely sell and buy radio resources. The price method used by primary users is significant since it defines their income and affects secondary users' decisions about whether to purchase radio resources. Multiple major networks have been proposed with competitive pricing strategies based on non-cooperative games [128]. A spectrum trading framework for such circumstances was devised in [129]. In more general scenarios, spectrum trading in CR systems may involve many spectrum suppliers and purchasers.
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Figure 12. Spectrum trading in CR with multiple spectrum sellers and buyers [129].
9.1	Problem Formulation 
The following problems were identified in the review. First, the problem of optimization that occurred during the transmission of data, the complexity problem on multiple cognitive base stations (CBS) and PU. Others are the interference channel scenario with multiple CBSs and PUs; primary and secondary cognitive base station and User problem, and the transmission rank problem on many users [130].
9.2	Implementation Challenges 
Implementing a cognitive radio (CR) is a complex and thought-provoking task. The CR system must be designed to ensure that its transmission and reception do not interfere with the operations of Primary Users (PUs). Various techniques can be employed to avoid such interference and enable efficient frequency tuning [131], including:
(i) Adaptive frequency hopping
(ii) Dynamic frequency selection
(iii) RF band switching
Furthermore, there are several other challenges in deploying a Cognitive Radio Network (CRN), particularly in terms of monitoring the surrounding environment and logically acquiring resources based on established practices. These important challenges in implementing a cognitive radio are [132]:
(i) RF front-end-transceiver challenges
(ii) ADC and DAC challenges
(iii) Baseband challenges
Successfully addressing these challenging issues is crucial for cognitive radio to achieve sustainable and reliable communication.
9.3	The Technical Challenges Are:
As mentioned in [133], cognitive radio (CR) encounters highly demanding obstacles to establishing efficient communication. These challenges involve the design of the RF front-end, ensuring the performance and flexibility of ADC/DAC, and enabling support for flexible wideband multiband communication. Additionally, CR must address issues related to spectrum sensing, channel estimation, modulation and coding, spectrum shaping, transmit power control, interference avoidance, and the capability to sense, discover, negotiate, and transfer.
9.4	Security Challenges in CRNs
Security and privacy have been crucial concerns since the beginning of the information era. To address these concerns, a well-defined security system has been established, comprising security mechanisms, security attacks, and security requirements/services. This system allows for a systematic approach to defining, studying, and evaluating security challenges.
In the context of wireless communication, security is of utmost importance. Traditional wireless networks often face significant security attacks, posing major issues. In Cognitive Radio Networks (CRNs), two main types of security issues have been identified [134]:
(i) Traditional security threats
(ii) CRN-specific threats
The categorization of security attacks in CRNs includes two categories: infrastructure-based and infrastructure-less CRN-specific attacks.
9.3.1 Infrastructure-Based CRN Attack. It is time-consuming and costly. The CRNs will practically be adjusted towards frequency bands with second-importance spectrum stability. There are several attackers in the infrastructure-based CRN, they are:
(i)  IE (Incumbent Emulation)
(ii) Control channel jamming 
(iii) SSDF (Spectrum Sensing Data Falsification)
9.3.2   Infrastructure–Less CRN Specific Attacks. 
There are three major types of attackers in this context:
(i) Intruding Attackers:
Ad-hoc Cognitive Radio Networks (CRNs) are vulnerable to intruding challenger nodes that can gain access to the system and pose as authorized nodes. These malicious nodes can influence the overall spectrum sensing decision of the CRN, resulting in a security issue known as Spectrum Sensing Data Falsification (SSDF). In this attack, false information is persistently reported, leading to the perception of a busy channel. Detecting and identifying this attack is quite challenging.
(ii) Exogenous Attacker:
An exogenous attacker is not a part of the CRN and, therefore, is not included in the CRN's spectrum sensing process. However, this attacker can still disrupt the functioning of the ad-hoc CRN.
(iii) Jamming:
Jamming is a commonly used attack on wireless transmissions. It involves transmitting noise over the receiving channel, reducing the Signal-to-Noise Ratio (SNR) below the desired threshold [135].
9.3.3	Other security challenges
(i) Confidentiality: The prevention of unauthorized disclosure of transmitted information, which could occur due to passive attacks like eavesdropping, is ensured. This is achieved by implementing encryption and cyphers to encode the data before transmission, using a secret key that is shared exclusively with the intended recipients.
(ii) Integrity: The protection against any unlawful modification of transmitted information is guaranteed. This includes preventing unauthorized changes, creations, deletions, replaying of messages, or delays in transmission.
(iii) Authentication: Authentication safeguards protected systems from unauthorized access by verifying both the identity and authority of users. It is a necessary process to ensure that only approved users can gain access.
(iv) Non-repudiation: non-repudiation ensures that neither the sender nor the receiver of a message can deny the transmission. In the context of Cognitive Radio Networks (CRNs), non-repudiation techniques can be utilized to prove the misbehaviour of malicious CRUs that violate the protocol, resulting in the banning of such malicious users from the network.
(v) Availability: Devices and applications should continue to be able to access the network services via communication channels. The ability of Primary Users (PUs) and Cognitive Radio Users (CRUs) to access the spectrum is referred to as availability in the context of CRNs. For PUs, availability refers to their capacity to transmit in the authorized spectrum without suffering detrimental CRU interference [135].
10.1	Benefits of Cognitive Radio
The following are some of the benefits of CWN.
(i)  Implementation cost is low
(ii) It increases link reliability
(iii) Less complexity.
(iv) Overcome radio spectrum scarcity
(v) It has easy network topology.
(vi) It offers better spectrum utilization and efficiency. 
(vii) Uses modern network topology.
(viii) Configuration and upgrade are easy.

11.1	Areas for Future Consideration
CR technology has many areas for future investigations which can be considered to better understand the behaviour of user detection. Under listed are some of these areas:
(i) Cooperative approach for detecting and isolating intruders.
(ii) Assessment of denial-of-service (DoS) attack scenarios and methods for defence.
(iii) Implementation of hybrid sensing approach.
(iv) Consideration of multiple attackers’ defence mechanisms.
(v) Investigations to introduce capable preventive techniques to mitigate threats and attacks that CR networks face. 
(vi) Using Cyclostationary detectors which employ second-order signal structure.

12	CR STANDARDIZATION
At present, the primary standards governing Cognitive Radio (CR) are IEEE 802.22 and SCC 41, which have gained significant attention in the field of Cognitive Radio [136]. Nonetheless, several other standards are currently in the developmental stage. In November 2004, the IEEE established the 802.22 Working Group (WG) for Wireless Regional Area Networks (WRANs). This WG's objective was to develop an air interface (PHY and MAC) based on CRs for unlicensed operation in TV broadcast bands. The focus of IEEE 802.22 is to provide rural broadband wireless access, covering a substantially larger distance than that of IEEE 802.16 [137]. In summary, a variety of standardization efforts are currently underway in the field.
12.1. IEEE 802.22:
A summary of the 802.22 architecture, including entities, connections, and topology, as well as its requirements like service coverage, MAC layer details, and service capacity, along with applications and coexistence challenges (e.g., TV, antenna, and wireless microphone protection and sensing), was provided in [138, 139]. The IEEE 802.22 networks operate in the frequency band of 54–862 MHz in North America, accommodating various international TV channel bandwidths of 6, 7, and 8 MHz. These systems utilize a fixed point-to-multipoint air interface, where the base station controls the consumer premise equipment (CPEs).
12.2. IEEE 1900–SCC41-DYSPAN:
The IEEE Standard Coordinating Committee 41 (SCC41), formerly known as the IEEE 1900 task force [140], was established to focus on dynamic spectrum access (DSA) networks for standardizing Cognitive Radio (CR). SCC41 comprises four Working Groups (1900.x), each dedicated to specific aspects of CR standardization. The key standards developed under SCC41-DYSPAN are as follows:
IEEE P1900.1 (Terminology and Concepts for Next Generation Radio Systems and Spectrum Management): This standard defines a vocabulary of key terms and ideas for Software-Defined Radio (SDR), Adaptive Radio, Policy-Defined Radio, Spectrum Management, and Interconnected Technology. It compares several technologies and outlines their capabilities [141].
IEEE P1900.2 (Recommended Practice for Interference and Coexistence Analysis): The 1900.2 Working Group proposes a framework for monitoring and evaluating interference and sets standards for interference analysis. This standard provides a methodical way to deal with interference and coexistence problems.
IEEE P1900.3 (Dependability and Evaluation of Regulatory Compliance for Radio Systems with DSA): The 1900.3 Working Group focuses on test techniques to evaluate SDR devices. Its main objective is to verify the coexistence and compliance of software modules for CR devices before certifying final devices.
IEEE P1900.4 (Architectural Building Blocks Enabling Network-Device Distributed Decision Making for Optimized Radio Resource Usage in Heterogeneous Wireless Access Networks): This standard was created for radio systems that utilize various Radio Access Technologies (RATs) [142, 143]. With the use of several RATs and Cognitive Radio capabilities, it supports end-user terminal users and enables flexible operations in various frequency bands. In order to facilitate decision-making at the terminal and network levels, IEEE 1900.4 defines the reconfiguration of management entities.
12.3. International Telecommunication Union Standardization
The International Telecommunication Union (ITU) Radio communication sector (ITU-R) Study Group 8, which deals with Radio Determination, Mobile, Related Satellite Services, and Amateur Services, is in charge of standardizing Cognitive Radio Networks (CRNs). Software Defined Radio (SDR) has been the subject of two reports from ITU-R Study Group 8 [144, 145]. In these publications, the use of SDR technology inside IMT-2000 (International Mobile Telecommunications-2000) systems is specifically examined. Third-generation mobile IMT-2000 systems provide access to a range of telecommunication services supported by fixed telecommunications networks (such PSTN/ISDN/IP) as well as those designed specifically for mobile users. Mobile radio access networks' base stations and controllers use SDR technology, which increases the networks' adaptability and flexibility.
Conclusion
Cognitive Radio (CR) represents a novel approach to developing intelligent wireless networks that address the issue of spectrum scarcity and significantly enhance spectrum efficiency. We have conducted a comprehensive review of research activities in the field of Cognitive radio communication networks. The review encompassed major challenges in CR design, including spectrum sensing, dynamic spectrum access (DSA), applications, and standardization. Additionally, we provided a historical perspective on CR as a driving force for dynamic and efficient next-generation wireless systems. Various methods of spectrum sharing in CR were examined, and security and economic considerations were also discussed. Moreover, we explored future research focuses and highlighted open research areas. Finally, some standardization activities related to CR were summarized.
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