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1. Introduction

Let R be a commutative ring with identity and I be an ideal of R. The pow-
ers of an ideal has been extensively studied in order to define classical notions in
commutative ring theory and algebraic geometry. For example, the Rees algebra
R(I) =

⊕
n≥0 I

n and the Symmetric algebra S(I). The applications of such al-
gebras are determined the moving curve of ideals and its relation to adjoint curve
[3].

If I = (x1, . . . , xn), the Rees algebra of an ideals defined as: a graded epi-
morphism φ : R[X1, . . . , Xn] → R(I) such that Xi → xi, where xi ∈ Ii whose
kernel is the ideal Q of R[X1, . . . , Xn] generated by the homogeneous polynomials
f(X1, . . . , Xn) such that f(x1, . . . , xn) = 0. The generators of the ker is called
defining equation of the Rees algebra. The relation type of I, rt(I) is the least inte-
ger N ≥ 1 such that Q = Q(N), where Q(N) is the ideal generated by homogeneous
polynomial R[X1, . . . , Xn] of degree at most N . It can also defined by the universal
property of the Symmetric algebra of an R-module. Consider Rn → I induces a
onto R[X1, . . . , Xn] = S(Rn) → S(I) whose kernel is the homogeneous ideal Q(1)
of R[X1, . . . , Xn] generated by the linear forms

∑n
i=1 biXi such that

∑n
i=1 bixi = 0,

where bi ∈ R. Hence Q(1) is contained in Q and equality hold if S(I) is isomorphic
to R(I). An ideal I is said be of linear type if Q(1) = Q. Therefore the relation
type of an ideal rt(I) is independent of the chosen set of generators of an ideal.

The connection between the symmetric algebra S(I), the Rees algebra R(I) and
reduction of ideals are important role in algebraic geometry. From geometric point
of view it would be interesting that Proj(α) : Proj(R(I)) → Proj(S(I)) is an
isomorphism, where I is a an regular sequence, α : R(I)→ (S(I)) [1] and reduction
number shows that analytically independent element and minimal generating set
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of the Rees algebra R(I) [8]. These results give to the study of relation between
the maximal minor of the generic matrix and generator of ideal, almost complete
intersection ideals, projective dimension, reduction number. In [2] author investi-
gated the results when S(I) and R(I) are isomorphic if and only if normal cone
and normal bundle to the closed subscheme spec(R/I) in spec(R) are isomorphic.
If I is of linear type , then I is itself a minimal reduction [11]. There are many
algebraist to discuss the results see [1], [2], [3], [4], [6], [7], [8]. This paper is based
on work Valla on Rees algebra of an ideal, analytically independent element and
begins the study of equation of the Rees algebra.

2. Main Results

Definition 2.1. Let (R,m) be a Noetherian local ring and I be ideal of R. Then
the fiber cone of I is defined by

FI(R) =
R(I)

mR(I)
=

⊕
n≥0

In

mIn
.

Definition 2.2. The element x1, . . . xn,∈ I are said to be analytically independent
in I if for any homogeneous polynomial f(X1, . . . , Xn) ∈ R[X1, . . . , Xn] of degree r,
the condition f(x1, . . . , xn) ∈ mIr implies that all the coefficients of f(X1, . . . , Xn)
are in m.

Theorem 2.3. Let (R,m) be a Noetherian local ring and I be an ideal of R.
Suppose x1, . . . xn are analytically independent in I. Then :

(1) The elements x1, . . . , xn are minimally generate (x1, . . . , xn).
(2) If (y1, . . . , yn) = (x1, . . . , xn), then y1, . . . , yn are analytically independent.
(3) If J = (x1, . . . , xn), then FJ(R) is isomorphic to a polynomial ring in n

variable over R/m.

Proof. (1) We have to show that {x1, . . . , xn} is a basis of vector space J/mJ
over R/m, where xi = xi + mJ , J = (x1, . . . , xn), i = 1, . . . , n. Let x ∈ J
such that

x =

n∑
i=1

ai xi, where ai ∈ R.

x+mJ =

n∑
i=1

ai xi +mJ.

x =

n∑
i=1

ai xi.

Therefore, x generates J .
Claim: {x1, . . . , xn} is a linear independent set over R/m.

n∑
i=1

ai xi = mJ.

n∑
i=1

ai xi +mJ = mJ.

n∑
i=1

ai xi ∈ mJ ⊆ mI.
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Since x1, . . . , xn are analytically independent in I, the polynomial f(X1, . . . , Xn) =
a1X1 + · · · + anXn of degree one with coefficient of f(X1, . . . , Xn) are in
m. Therefore, ai = ai +m = 0. So that {x1, . . . , xn} is a basis.

(2) Let J = (x1, . . . , xn) ⊆ I and f(x1, . . . , xn) ∈ mJr for polynomial f(X1, . . . , Xn) ∈
R[X1, . . . , Xn] with deg(f) = r. Note that f(x1, . . . , xn) ∈ mJr ⊆ mIr.
Since x1, . . . , xn are analytically independent in I, all the coefficient of
polynomial f(X1, . . . , Xn) are in m. Therefore, x1, . . . , xn are analytically
independent in J = (y1, . . . , yn) and y1, . . . , yn are analytically independent
element.

(3) Consider the R/m- algebra homomorphism
g : R/m[X1, . . . , Xn]→ FJ(R) such that

g(

r∑
i1+i2+···+in=0

ai1i2...inX
i1
1 . . . Xin

n ) =

r∑
i1+i2+···+in=0

ai1...inx
i1
1 xi22 . . . x

in
n .

Then g is onto. By using fundamental theorem of R/m- algebra homomor-

phism
R/m[X1, . . . , Xn]

ker(g)
∼= FJ(R), where

ker(g) = {
∑r
i1+i2+···+in=0 ai1i2...inX

i1
1 . . . Xin

n | g(
∑r
i1+i2+···+in=0 ai1i2...inX

i1
1 . . . Xin

n ) =

0}. Since x1, . . . , xn are analytically independent in J , the polynomial
f(X1, . . . , Xn) ∈ R[X1, . . . , Xn] with deg(f) = r such that f(x1, . . . , xn) ∈
mJr with all the coefficient of polynomial f(X1, . . . , Xn) are in m for r ≥ 1.

Therefore
∑r
i1+i2+···+in=0 ai1i2...inX

i1
1 . . . Xin

n = 0 and ker(g) = 0. Hence

R/m[X1, . . . , Xn] ∼= FJ(R).
�

Proposition 2.4. Let R be a Noetherian ring, I ⊂ R be an ideal of R. Suppose A
is a flat R-algebra. Then

R(I)
⊗

RA ∼= R(I
⊗

RA)

Proof. Consider the short exact sequence of algebras

0 −→ Ker(g) −→ S(I) −→ R(I) −→ 0.

Since A is a flat R-algebra,

0 −→ Ker(g)
⊗
R

A −→ S(I)
⊗
R

A −→ R(I)
⊗
R

A −→ 0.

Note that Ker(g)
⊗

RA = Ker(g
⊗
ids) and S(I)

⊗
RA ∼= S(I

⊗
RA). So that

commutative diagram with exact rows.

0 −−−−→ Ker(g)
⊗

RA −−−−→ S(I)
⊗

RA −−−−→ R(I)
⊗

RAy y y
0 −−−−→ Ker(g

⊗
ids) −−−−→ S(I

⊗
RA) −−−−→ RA(I

⊗
RA)

Hence R(I)
⊗

RA ∼= R(I
⊗

RA) �
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Proposition 2.5. Let R be a ring, Q = ker(φ) and Q(r) = {f ∈ ker(φ) | deg(f) ≤
r}, where φ : R[X1, . . . , Xn] −→ R(I). Then

Q(0) ⊆ Q(1) ⊆ Q(2). . . . .Q(r) . . . and
⋃
r≥0

Q(r) = ker(φ).

.

Proof. Let φ : R[X1, . . . , Xn] −→ R(I) such that

φ(

m∑
i1+i2+···+in=0

ai1i2...inX
i1
1 . . . Xin

n ) =

m∑
i1+i2+···+in=0

ai1...inx
i1
1 x

i2
2 . . . x

in
n .

(1) Q(0) = {ai0....0 | ai0.....0 ∈ R | deg(f) = 0}.

(2) Q(1) = {f ∈ ker(φ) | deg(f) ≤ 1}

= {ai0...0 + ai10...0X1 + ȧi01...0Xn, ai0...0}.

(3) Q(2) = {f ∈ ker(φ) | deg(f) ≤ 2}

= {a0...0, a0...0+aii...0X1+ai20...0X2+a0...inXn,
∑

i1+i2+···+in=2

ai1i2...inX
i1
1 X

i2
2 . . . Xin

n }.

(4)

Q(r) = {a0...0, a0...0+aii...0X1+ai20...0X2+a0...inXn,
∑

i1+i2+···+in=r−1

ai1i2...inX
i1
1 X

i2
2 . . . Xin

n ,
∑

i1+i2+···+in=r
ai1i2...inX

i1
1 X

i2
2 . . . Xin

n }.

By (1), (2), (3), . . . (4), . . . , we can observe that Q(0) ⊆ Q(1) ⊆ Q(2). . . . .Q(r) . . . .
Since kerφ is a graded ring,

⋃
r≥0Q(r) = ker(φ). �

Theorem 2.6. Let R be a Noetherian ring and I = (x1, . . . , xn) be an ideal of R.
Suppose T1, T2, . . . , Tn are variables over R. Consider a map φ : R[T1, . . . , Tn] −→
R(I) with φ(Ti) = xi. Let Q(1) be the subideal of ker(φ) generated by all homo-

geneous elements of degree1. Let Rm
A−→ Rn

φ−→ I −→ 0 be a presentation of I,
where A = [aij ]m×n and T = [T1, . . . , Tn]1×n matrix and L be the ideal generated
by the entries of the matrix TA that vanish after subsituation Ti −→ xi. Then
Q(1) = L.

Proof. Note that Q(1) = {a1T1 + . . .+ anTn | a1x1 . . .+ anxn = 0;xi ∈ I}. Define

T A = [T1, . . . , Tn]1×n


a11 a12 · · · a1m
a21 a22 · · · a2m
...

...
an1 an2 · · · anm


n×m

TA = [a11T1+a21T2+· · ·+an1Tn, a12T1+a22T1+· · ·+an2Tn, a1mT1+a2mT2+· · ·+
anmTn]. This implies that L is ideal of R[T1, T2, ..., Tn] defined by L =< a11T1 +
a21T2 + · · ·+an1Tn, a12T1 +a22T1 + · · ·+an2Tn, . . . a1mT1 +a2mT2 + · · ·+anmTn >.
Claim : L = Q(1).
Let x ∈ L such that x = y1(a11T1 + a21T2 + · · ·+ an1Tn) + y2(a12T1 + a22T1 + · · ·+
an2Tn) + · · ·+ yn(a1mT1 + a2mT2 + · · ·+ anmTn).
Therfore x = (y1a11 + a12y2 + · · ·+ a1mym)T1 + (y1a21 + y2a22 + · · ·+ yma2m)T2 +
· · · + (y1an1 + y2an2 + · · · + ymanm)Tn. Take ai =

∑m
i=0 aij yj . Since aij ∈ R,

aij yj ∈ R. Then x = a1T1 + a2T2 · · ·+ anTn. By assumption of L,
a1x1 + a2x2 + · · ·+ anxn = 0 (1).
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This implies that x ∈ Q(1).
Conversely, A = [aij ]n×m. Let x ∈ Q(1). Then x = a1T1 + · · · + anTn. Since
a1x1 + · · ·+ anxn = 0, (a1, . . . , an) ∈ ker(φ) = Im(A),

where Im(A) = [z1z2 . . . zm]1×m


a11 a12 · · · an1
a12 a22 · · · an2
...

...
a1m a2m · · · anm


m×n

= [z1a11 + z2a12 + · · · + zma1m z1a21 + z2a22 + · · · + zma2m . . . z1an1 + z2an2 +
· · ·+ zmanm]1×n.
So that a1 = z1a11 + z2a12 + · · ·+ zma1m.
a2 = z1a21 + z2a22 + · · ·+ zma2m
...
an = z1an1 + z2an2 + · · ·+ zmanm
By (1), We can write [z1a11 + z2a12 + · · · + zma1m]x1 + [z1a21 + z2a22 + · · · +
zma2m]x2 + · · ·+ [z1an1 + z2an2 + · · ·+ zmanm]xn = 0.
This implies that z1(a1x11 + a21x2 + · · ·+ an1xn) + z2(a12x1 + a22x2 + · · ·+ an2) +
· · ·+ zm(a1mx1 + · · ·+ anmxn) = 0. Therefore x ∈ L. �

Example 2.7. Let R = k[x, y, z] be a ring and ideal I = (x y, y z, x z) of R, where
k is a field. Then the Rees algebra of I,

R(I) ∼=
k[X1, X2, X3, x, y, z]

< x X2 − y X3, z X1 − y X3 >
, rt(I) = 1.

Proof. By using singular software we can compute the Rees algebra of R(I):
LIB”reesclos.lib”;
ringR = 0, (x, y, z), dp;
ideal I = x y, y z, x z;
list L = ReesAlgebra(I);
def Rees = L[1];
setring Rees;
Rees;
ker;
ker[1] = x X2 − y X3,
ker[2] = z X1 − y X3

�
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