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ABSTRACT

In deregulated electricity markets there is a strong need for effective allocation of transmission embedded costs to market participants. The conventional usage based methods such as MW-Mile and Zero Counter Flow (ZCF) methods which are currently employed in market scenario may fail to send right economic signals. Hence in this paper, cooperative game theory based approaches are demonstrated. The existing game theory based approaches like Nucleolus and Shapley Value methods are found to be inefficient for transmission embedded cost allocation, due to their own pros and cons. Therefore Proportional Nucleolus (P-N) method which is also a cooperative game theory approach is proposed in this paper to overcome the drawbacks of aforementioned methods. All the methods presented in this paper are tested on IEEE 14 bus system, New England 39 bus system and Indian 75 bus system and a comparative study was carried out with the obtained results. Concept of Monotonicity is also explained on IEEE 14 bus system.
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Introduction

In the present day power markets, the issue of allocating fixed costs to the market participants is of great significance. Fixed costs make up the largest part of transmission charges; hence there is a great demand for a fair and effective allocation of these costs to the market participants [1, 2, 3]. Different allocation schemes have been formulated in recent years based on the “natural economic use” of the transmission system [1], [10], [12], [17-18]. In [19] three variations of the MW-Mile method for pricing counter flows are investigated for the cost allocation method. But it failed in providing incentives to users of the grid who causes counter flows. Therefore all the conventional usage based methods like MW-Mile method, Zero counter flow (ZCF) method are advantageous from an engineering point of view, but they may fail to send right economic signals. The fixed cost allocation [4] is a typical case where cooperation between the agents produces incentives and economies of scale. These benefits can in turn be shared among the network participants. Thus the cooperative game theory (C.G.T) provides interesting concepts, methods and models that may be used when assessing the interaction of different agents in competitive markets and in the solution of conflicts that arise in that interaction, such as those of the electricity markets [12]. In particular, cooperative game theory arises as a most convenient tool to solve cost allocation problems [12]. The solution methodologies of cooperative game theory behave well in terms of fairness, efficiency, stability, and qualities required for the correct allocation of transmission costs [13]. C.G.T also suggests reasonable fixed cost allocations that may be economically efficient as well as advantageous from engineering point of view [11]. Hence in this paper three C.G.T methods namely Nucleolus, Shapley and Proportional Nucleolus are attempted for transmission fixed cost allocation problem. Proportional Nucleolus method is proposed in this paper which is already in use for transmission loss cost allocation [18] problem.
In this paper, section II gives the basic introduction of Game theory. Section III discusses about different methods of C.G.T. Section IV presents usage based methods for transmission fixed cost allocation. Section V details about general algorithm of C.G.T and presents a case study on IEEE 14 bus system, New England 39 bus system and Indian 75 bus system. Section VI explains about Monotonicity concept. Section VII concludes the paper.

GAME THEORY

Game Theory is the formal study of decision making where several players must make choices that potentially affects the choice of other players. The Game theory is a kind of mathematical analysis designed to predict what the outcome or to predict the most likely result of a dispute between two individuals [17]. Game theory deals with any problem in which each player’s strategy depends on what other players do. It is assumed that the rationality of all players is of common knowledge. A player is said to be rational if he seeks to play in a manner which maximizes his own payoff. Payoff is nothing but the payment received at the end of game. It is mainly employed in power systems to prevent collusion due to market power i.e. discourage collusions that could minimize payoff [5]. The game theory methodologies can be used to identify non-competitive situations (from market co-coordinator point of view) and minimize the risks in price decisions (from participant’s point).

Characteristics of a Game 

In order to play a game, the players must exhibit the following characteristics [17]:
1. Symmetry: Two players, A and B, are symmetrical if all coalitions in which they can participate are met:

    (1)                                                                                   
2. 
Attractiveness: One player, A, is more desirable than another player, B, if it satisfies (2)                                                                                 
3. Additivity: If two or more coalitions agree to co-operate with each other then the payoff with the union can guarantee itself should be at least equal to the sum of their individual payoffs. That is

                  (3)                               
4. Inessential : For all the subsets of N if the equality holds in (3), then it is indifferent for the players to form any coalition and the game is called inessential.

            (4)          
In this case the characteristic function ‘v’ is just additive. For the inessential game it is:  

	                                          (5)                                                                                                                           
     where n is the number of players in the game.
5. Monotony : Monotony means that when the characteristic function value v(S) of a coalition increases then the payoff to the members of this coalition is getting larger.

Solution Methodologies in Cooperative Game Theory 

Terminology 



Consider a game of N players with a characteristic function v. These players can form  coalitions including the φ (null) coalition. The characteristic function v(S) assigns to each coalition say ‘S’ is the minimum payoff under any adverse conditions. This can be found by applying max-min criteria to S and  (N-S) players. The set of all possible distribution of payoffs to the participants are called Imputations. A payoff vector is an imputation if it holds the following two conditions i.e., global rationality given by (6) and individual rationality given by (7).

                                                           (6)

                         (7)
There are numerous methods for the allocation of benefits among the participants or players of a cooperative game. Some of them are briefly described below:

The Core

One of the first solutions suggested for cooperative game is the core concept [7]. It is based on domination of imputations. That is, the core of a game is the set of all the imputations that are not dominated over any coalition. For an imputation to belong to the core, it must satisfy global rationality and coalitional rationality given by (8), (9).



                                                         (8)	     	                           (9)                       where ns is the number of players in coalition ‘S’.
It is clear that the core may include one or more than one imputation or may be even empty. Thus to choose a single solution whenever the core is non empty, Nucleolus concept was introduced in [6, 8].

The Nucleolus

It is based on the idea of minimizing the dissatisfaction of the most dissatisfied groups. For a coalition S, measure of its dissatisfaction is the excess e(S):

                                            (10)						                                                                       
where  [image: ]  						                                                                         
Thus the larger the excess, the more dissatisfied the coalition is with this Imputation. Thus it reduces to the following optimization problem.
[image: ]                                                              (11)                                                                                                                     
                                                          (12)
                                                       (13)

One main drawback of Nucleolus is that it is not monotonic i.e., even though the characteristic function v(S) of a coalition S is increased, the payoff to the members of this coalition is not affected.

The Shapley Value 

For the foundation of Shapley value [8-9], [14-15] three axioms have to be settled.
i) Symmetry: [image: ] is independent of the labelling of the players.

	                                           (14)
ii) Efficiency: The sum of the expectations must be equal to the characteristic functional value for the grand coalition N.
[image: ]   	                                (15)
iii) Additivity: The sum of expectations, for a player, by     playing two games with characteristic values v1 and v2 must be equal to the value if he played both games together.
[image: ]                  (16)
Thus the Shapley value which satisfies three axioms is given by
[image: ]     (17)
Its main advantage is it exhibits monotonicity. However its main disadvantage is that it may or may not lie inside the core.

Proportional Nucleolus 

This solution concept coincides with the cases where core is nonempty. It is an important characteristic of extended core solution concept. It gains greater importance, as there are considerable number of games in which the core concept cannot be applied. As the extended core is a multiple valued concept, it is important to find a unique solution among its imputations. Hence Proportional Nucleolus (P-N) method is proposed in this paper for transmission fixed cost allocation problem, which is previously used for transmission loss cost allocation problem [18]. P-N method always chooses an imputation from the extended core in a similar way to the concept of Nucleolus. P-N method differs from the original Nucleolus in the definition of excess concerned with coalitions. It is defined as
[image: ]                                        (18)
The Proportional Nucleolus can expand the core to obtain a unique solution in both cases of empty core and large core. Thus the P-N method provides a better solution to both the extended core and core selection problem. The solution approach for P-N is to solve a linear program of the following problem formation:
[image: ]                                                                  (19)        
subjected to
[image: ]                                              (20)                                                    
[image: ]                                                     (21)                               
The P-N of a game satisfies the properties namely:
· non emptiness
· single valuedness 
· solution belonging to extended core.
	P-N solution always lies inside the core and it is always monotonic as the excess value is proportional to the characteristic functional value. Thus it is the most efficient and plausible method among all the discussed game theoretic approaches.

Fixed Cost Allocation using Usage Based Methods  

The MW-Mile Method 

MW-Mile method takes into account the transacted power flow on all transmission lines, it can reflect not only the amount of wheeled energy, but also the path and distance of transfer. However this method does not consider the economies of scale (The cost advantage that arises with increased output of a product. Economies of scale arise because of the inverse relationship between the quantity produced and per-unit fixed costs; i.e. the greater the quantity of a good produced, the lower the per-unit fixed cost because these costs are shared over a larger number of goods) of transmission network facilities and does not argue the stability of the solution.
For each transaction ‘i’
[image: ]                                                             (22)
where, Cl = specific transfer cost of branch ‘l’
            fi,l =use of branch ‘l’ by participant ‘i’
          [image: ] = power flow on branch ‘l’ by participant ‘i’
Thus the total network usage for ‘nl’ number of lines is given by
[image: ]                                                       (23)
Thus the cost allocation by MW-Mile method is given by
[image: ]                               (24)
     where ‘K’ is the total fixed cost to be allocated.
The drawback of this method is, it does not consider the direction of line flow. 

The Zero Counter Flow Method 

MW-Mile method does not consider the direction of power flow of each transaction. However, it is often argued that power flows having opposite direction from the net flow (the power flow due to all transactions) contribute positive in the system situation by relieving congestions and increasing the Available Transfer Capacity. Using Zero Counter Flow method transmission users are charged or credited based on whether their transactions lead to flows or counter flows with regard to the direction of net flows. The method suggests that if a particular transaction results in flows in the opposite direction of the net flow, then the transaction should be credited. Hence to accommodate this concept, Zero Counter Flow (ZCF) method is introduced. According to this method, the usage of a line by a particular transaction is set to zero if the power flow due to the transaction goes in the opposite direction of the net flow for the line.  
Thus the change for each transaction ‘i’ is given as

[image: ]                                           (25)                                   
Thus the total network usage is given by
[image: ]                                                             (26)
Thus the cost allocation by ZCF is given by
[image: ]                                     (27)
But this method may fail to send right economic signals, i.e. it is well established from engineering point of view but subsidizes the largest network users with comparatively smaller users due to the counter flows of former. The savings due to counter flows are not allocated as payoffs to participants, which is a major drawback of ZCF method. 
Hence to overcome the drawbacks of usage based methods, Game theory based methods are attempted in this paper.

Fixed Cost Allocation using Cooperative Game Theory and a Case Study on IEEE 14 Bus System   

Game Definition 

Many of the fixed cost allocation methods are based on the network usage from the side of market participants. The payment Ri allocated to each participant ‘i’ or player ‘i’ may be given by one of the following forms:

                                          (28)

                  		              (29)
where   b= cost of 1 MW power flow

General Algorithm 

Step1:	 Consider the number of possible coalitions that can be formed using the players (n) of the game.
Step2: 	 Run DCOPF for each transaction ‘i’ and then calculate corresponding fixed cost fi.
Step 3: Calculate characteristic function v(S) of each coalition   
[image: ]      	                                           (30)
where [image: ] = usage of the network by coalition S  
From (30) it is explicit that the characteristic function represents the savings that can be achieved in case of cooperation. It is obvious that for individual player i, it is v(i) = 0.
Step4:	Using Nucleolus, Shapley Value and Proportional Nucleolus methods allocate the savings to all the players i.e., payoffs of the players [image: ] arose from the solution of the game.
Step 5: These payoffs are resulting in a reduction of [image: ] for each player: 
[image: ]                                  (31)
where [image: ] is the new use of network by player i. If the savings assigned to player i are larger than the original [image: ] then the [image: ] is set at zero. Thus, a player does not have the opportunity to receive money back from the network operator. The reason of making this adjustment is to prevent the misuse of game from the side of players.
Step 6: Calculate the amount that player ‘i’ has to pay. The cost allocation is done using the given formula

                                                           (32)
When the electricity market operates in an environment of bilateral transactions then each transaction agent or player is responsible to pay a part of power system fixed cost. The formulation of a coalition between some players can be profitable by the existence of counter flows.

Case study on IEEE 14 bus system 

The above algorithm is implemented on IEEE 14 bus system [16]. The loads are aggregated based on their Locational Marginal Prices (LMP) and then 4 transactions are formed in the system. The transactions are shown in the Fig. 1. 


Figure 1: IEEE 14 bus test system
From Fig.1 it can be observed that first transaction is near to the generators and does not use much of the network. From Fig.1 it can be observed that first transaction is near to the generators and does not use much of the network. The generator power outputs are obtained by running DCOPF and thus the obtained transactions (Players) are as given in Table 1.
Table 1: Transaction data of IEEE 14 bus system 
	Transaction / Player (i)
	Load demand (MW)
	S (j, k)
	B (i)

	1
	29.3
	(1  24.070508) ,
(2  5.229492)
	2,5

	2
	142
	(1  75.247070) ,
(2  66.752930)
	3,4

	3
	30.8
	(1  19.452344) ,
(2  11.347656)
	6,12,13

	4
	56.9
	(1  21.694922) ,
(2  35.205078)
	9,10,11,14



where S(j,k) = Bus ‘j’ supplying load ‘k’ for transaction ‘i’. B(i) = Load Buses. In the above table, row 1, the first transaction comprises of a total load of 29.3 MW (buses 2 and 5 are grouped together based on their LMP’s evaluated using Power World Simulator). This load is met by both generators with 1st generator generating 24.07 MW where as 2nd generator 5.23 MW.
By running a DCOPF for each transaction, the network usage and characteristic functional values of each coalition are obtained considering counter flows and are presented in table 2. The last row shows the grand coalition in which all players are present, which assures maximum savings.
From table 2 for coalition 5:
Players 1 and 2 forms coalition.





v(S) =  = (31.1526 + 326.3217) - 353.8507 = 3.6236 €
Similarly v(S) is calculated for each coalition. v(S) is the minimum amount which the coalition can assure itself. v(S) value obtained for grand coalition in table 2 is the maximum total savings i.e., 68.5833 € which is allocated to players in the game as their payoffs. In table 2 network usage values for each coalition are calculated by (26). v(S) values are calculated by (30).




Next is to calculate the minimum and maximum values of payoffs . is taken as v(S) when player ‘i’ acts alone i.e., zero for all 4 players.  is taken as [1].
Table 2: Characteristic functional values of IEEE 14 bus system 
	S. No.
	Coalition
	

	v(S)

	1
	1 0 0 0
	31.1526
	0

	2
	0 1 0 0
	326.3217
	0

	3
	0 0 1 0
	133.0911
	0

	4
	0 0 0 1
	230.2376
	0

	5
	1 1 0 0
	353.8507
	3.6236

	6
	1 0 1 0
	161.3797
	2.864

	7
	1 0 0 1
	258.0073
	3.3829

	8
	0 1 1 0
	433.6315
	25.7813

	9
	0 1 0 1
	538.2311
	18.3282

	10
	0 0 1 1
	320.8602
	42.4685

	11
	1 1 1 0
	461.7372
	28.8282

	12
	1 1 0 1
	566.2091
	21.5028

	13
	1 0 1 1
	348.8808
	45.6005

	14
	0 1 1 1
	623.9727
	65.6777

	15
	1 1 1 1
	652.2197
	68.5833




For player 1:

 = 2.9056
Similarly for the remaining 3 players maximum limits are determined and are shown in table 3.
Table 3: Maximum limit of Payoffs  
	Player
	
 max

	1
	2.9056

	2
	22.9828

	3
	47.0805

	4
	39.7551



The payoffs and the new usage of network of player ‘i’ obtained by Nucleolus, Shapley Value and Proportional Nucleolus methods are shown in tables 4, 5 and 6.
Table 4: Payoffs and new network usage of 4 players in Nucleolus method
	Player 
	

	


	1 
	1.45 
	29.7026 

	2 
	3.62 
	322.7017 

	3 
	45.63 
	87.4611 

	4 
	17.88 
	212.3576 

	Total
	68.583
	652.223 


Table 5: Payoffs and new network usage of 4 players in Shapley Value method
	Player 
	

	


	1 
	0.0 
	31.1526 

	2 
	3.78 
	322.5417 

	3 
	26.32 
	106.7711 

	4 
	38.48 
	191.7576 

	Total
	68.58
	652.223


Table 6: Payoffs and new network usage of 4 players in Proportional Nucleolus method
	Player 
	

	


	1 
	0.0 
	31.1526 

	2 
	3.78 
	322.5417 

	3 
	26.32 
	106.7711 

	4 
	38.48 
	191.7576 

	Total
	68.58
	652.223




From tables 4, 5 and 6, it is observed that the sum of the payoffs of 4 players is equal to v(S) of grand coalition in table 2. That means the payoffs satisfied the condition shown in (6). New usage of network by player ‘i’ is  and is calculated using (31). From these tables 4, 5 and 6, the total network usage by all the 4 players is equal to the value obtained for  of grand coalition value in table 2. This indicates that when the 4 players acting individually the total network usage is 720.803 € whereas when 4 players forms a grand coalition the total network usage is reduced to 652.2197 €. Finally the allocations to players can be computed by (32).
Next step is to calculate the total fixed cost to be covered by the market participants i.e., K. This cost is calculated by multiplying the power flows with their corresponding line lengths and line costs. Table 7 shows the allocation of K = 2773.35 € to four players with all the above discussed methods.
Table 7: Cost allocation using various methods in IEEE 14 bus system
	Player
	MWM
(€)
	ZCF(€)
	Nucleolus(€)
	Shapley
Value(€)
	Proportional Nucleolus (€)

	1
	104.50
	119.86
	126.28
	122.56
	121.13

	2
	1340.23
	1255.54
	1372.16
	1322.38
	1331.65

	3
	528.08
	512.07
	371.91
	450.01
	464.96

	4
	800.52
	885.85
	902.98
	878.39
	855.59


Players are in the ascending order of 1,3,4,2 w.r.to demand as can be seen from table 1. 3rd player utilizes more network compared to 4th player because 3rd player accounts for higher line lengths than 4th player. 4th player got 902.9843 € by Nucleolus method & 878.3903 € by Shapley value method, whereas by P-N method the cost is still reduced to 855.5968 €. 3rd player got 371.9095 € by Nucleolus method and 450.0096 € by Shapley value method whereas by P-N method this player got 464.9632 €. As 3rd player uses more network, the cost is increased by P-N method. Remaining cost is allocated to other 2 players. The comparison graph is shown in Fig. 2 further supports the results obtained using various methods.
From Fig.2, we can infer that the cost allocated using Game Theory is in tune with other fixed cost allocation methods.
[image: ]

Figure 2: Comparison of allocations in IEEE 14 bus system with different methods

Case study on New England 39 bus system 

The developed algorithms are tested on New England 39 bus system. Loads are aggregated to form two transactions using LMP’s computed in Power World Simulator. The resulting transactions are as shown in table 8. The loads are aggregated based on their Locational Marginal Prices (LMP) and then 2 transactions are formed in the system. The data for New England 39 bus system is taken from [20].
a) Nucleolus method: The network usage and characteristic functional values for each of the three coalitions are shown in table 9.
Table 8: Transaction data of New England 39 bus system
 (
Transaction / Player (i)
Load demand (MW)
S (j 
 k)
B(i)
1
4184.8
(30
90.0), (31
600.0), (32
460.0), (33
650.0), (34
608.0), 
 (35
357.95), (36
279),
 (37
297.85), (38
387), (39
455)
3,4,7,8,12,15,16,
18,20,21,23,24,27
2
1965.7
(30
90.0), (31
249.0), (32
170.0), (33
307.8), (34
232.9), (35
170), (36
152), (37
148), (38
206), (39
240) 
25,26,28,29,31,39
)


















v(S) value obtained for global coalition in table 9 is the maximum total savings i.e., 39671.854 $ allocated to both the players in the game as their payoffs. Maximum values of payoffs  are shown in table 10 and these are calculated in the same way as in IEEE 14 bus system. min is zero for both the players.
The payoffs and the new usage of network by player ‘i’ obtained by Nucleolus method are shown in table 11. The payoffs satisfied the condition shown in equation (6) i.e., they met the global rationality.
Table 9: Network usage by each coalition and characteristic functional value
	S. No.
	Coalition 
	

	v(s) 

	1 
	10 
	26707.491 
	0

	2 
	01 
	48448.721 
	0

	3 
	11
	35484.358 
	39671.854 


Table 10: Maximum limit of payoffs
	Player 
	
   max      

	1 
	39671.854 

	2 
	39671.854 





Table 11: Payoffs and new network usage of 2 players in Nucleolus method
	Player 
	

	


	1 
	19835.927 
	6871.564 

	2 
	19835.927 
	28612.794 

	total
	39671.854
	35484.358 



In table 11, the total network usage by both the players is equal to the value obtained for  corresponding to global coalition value in table 9. Here also total network usage is reduced (i.e., 35484.358 $) when the 2 players form global coalition rather than when they act individually (i.e., 75156.212 $). This same observation was made in Shapley Value and Proportional Nucleolus methods also.

b) The Shapley Value method: The network usage and characteristic functional values of each coalition are same as shown in table 9. The min and max limits of payoffs are same as in Nucleolus method. The payoffs  and the new usage of network by player ‘i’ obtained by Shapley Value method are shown in table12. The payoffs meet the global rationality. The solution lies inside the core because “coalitional rationality” i.e., equation (9) is satisfied. 
Table 12: Payoffs and new network usage of 2 players in Shapley Value method
	Player 
	

	


	1 
	19835.927 
	6871.564 

	2 
	19835.927 
	28612.794 

	total
	39671.854
	35484.358 



From table 12, it can be observed that the total network usage by both the players is equal to the value obtained for  corresponding to global coalition value in table 9. 

c) Proportional Nucleolus method: The network usage and characteristic functional values of each coalition are same as shown in table 9. The min and max limits of payoffs are same as in Nucleolus method. The payoffs  and the new usage of network by player ‘i’ obtained by Proportional Nucleolus method are shown in table 13. The payoffs meet the global rationality. 
Table 13: Payoffs and new network usage of 2 players in Proportional Nucleolus method
	Player 
	

	


	1 
	16131.2815 
	10576.2095 

	2 
	23540.5725 
	24908.1485 

	total
	39671.854
	35484.358 



From table 13, it can be observed that the total network usage by both the players is equal to the value obtained for  of global coalition value in table 9.
All the payoffs obtained by Nucleolus, Shapley and Proportional Nucleolus methods are within the min., and max. limits and all these payoffs satisfy individual, collective, global rationalities. It indicates the payoff solutions obtained with all the three methods are within the core. Table 14 shows the allocation of K= 34430 $ (calculated in a similar manner as was done in 14 bus system) to two players.
Table 14: Transmission fixed cost allocation using various methods in New England 39 bus system
	Player
	MW-Mile 
Method
($)
	Zero Counter Flow method
($)
	Nucleolus Method
($)
	Shapley Value Method
($)
	Proportional Nucleolus Method
($) 

	1
	15523.229
	12235.035
	6667.387
	6667.387
	10261.955

	2
	18906.77
	22194.964
	27762.613
	27762.613
	24168.044



Transaction 1 i.e., T1 has more load than T2, but T2’s network usage is more than T1; that means T2 accounts for higher line lengths than T1. So cost allocated to T2 is more than T1 in MW–Mile method. In ZCF method counter flows are more for T1, hence cost allocation for T1 is still reduced.  For T2 counter flows are very less and the remaining cost is allocated to T2. In Nucleolus and Shapley value methods; due to payoffs, T1’s share is further reduced and T2’s share is raised in transmission cost allocation. But as Proportional Nucleolus method is an extended core method; even though T2 accounts for higher line lengths, T1’s load is more than T2 and therefore T1’s share is improved, T2’s share is reduced when compared to Nucleolus and Shapley methods in transmission cost allocation. 
The comparison graph is shown in Fig. 3.

[image: ]
Figure 3: Comparison of allocations in New England 39 bus system with different methods

Case study on Indian 75 bus system 

The developed algorithms are also tested on Indian 75 bus system. Loads are aggregated to form two transactions using LMP’s computed in Power World Simulator. The formed transactions are as shown in table 15. The data for Indian 75 bus system is taken from [21].
a) Nucleolus method: The network usage and characteristic functional values for each of the three coalitions are shown in table 16.


v(S) value obtained for global coalition in table 16 is the maximum total savings i.e., 265.195421 $ allocated to both the players in the game as their payoffs. Maximum values of payoffs  are shown in table 17. min is zero for both the players.
Table 15: Transaction data of Indian 75 bus system
	Transaction / Player (i)
	Load demand (MW)
	S(j  k)
	B(i)

	1
	5199.26 
	(1  847.74), (2  331.63), (3  258.77), (4  25.91), (5  93.98), (6  205.75), (7  90.60), (8  68.56), (9  296.25),      (10  62.00), (11  19.52), (12  1704.82),  (13  806.88), (14  216.66), (15  170.17)
	16, 20, 24, 25, 27, 28, 30, 32, 34, 37, 39, 42, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75 

	2
	368.86
	(1  15), (2  15), (3 15), (4  15), (5  15),  (6  15), (7  15), (8  15), (9  15), (10  15),  (11  15), (12 15), (13  15), (14  158.86), (15  15) 
	57,58,59 



The payoffs and new usage of network by player ‘i’ obtained by Nucleolus method are shown in table 18. The payoffs meet the global rationality.  

In table 18, the total network usage by both the players is equal to the value obtained for  corresponding to global coalition value in table 16. Here also total network usage is reduced (i.e., 4180.0393 $) when the 2 players form global coalition rather than when they act individually (i.e., 4445.239012 $). The same observation was made in Shapley Value and Proportional Nucleolus methods also.
Table 16: Network usage by each coalition and characteristic functional value
	Sl. no.
	Coalition 
	

	v(s) 

	1 
	10 
	3993.270032 
	0

	2 
	01 
	451.968980 
	0

	3 
	11
	4180.043591 
	265.195421 


Table 17: Maximum limit of payoffs
	Player 
	
   max      

	1 
	265.195421 

	2 
	265.195421 




Table 18: Payoffs and new network usage of 2 players in Nucleolus method
	Player 
	

	


	1 
	132.60 
	3860.670032 

	2 
	132.60 
	319.36898 

	total
	265.2
	4180.0393 




b) The Shapley Value method: The network usage and characteristic functional values of each coalition are same as shown in table 16. The min and max limits of payoffs are same as in Nucleolus method. The payoffs  and the new usage of network by player ‘i’ obtained by Shapley Value method are shown in table 19. 
Table 19: Payoffs and new network usage of 2 players in Shapley Value method
	Player 
	

	


	1 
	132.597711 
	3860.672321 

	2 
	132.597711 
	319.371269 

	total
	265.195422
	4180.04359 




The payoffs meet the global rationality. The solution lies inside the core because “coalitional rationality” is satisfied. From table 19, it can be observed that the total network usage by both the players is equal to the value obtained for  corresponding to global coalition value in table 16. 

c) Proportional Nucleolus method: The network usage and characteristic functional values of each coalition are same as shown in table 16. The min and max limits of payoffs are same as in Nucleolus method. The payoffs  and the new usage of network by player ‘i’ obtained by Proportional Nucleolus method are shown in table 20. The payoffs meet the global rationality.  

From table 20, it can be observed that the total network usage by both the players is equal to the value obtained for  of global coalition value in table 16.
All the payoffs obtained by Nucleolus, Shapley and Proportional Nucleolus methods are within the min., and max. limits and all these payoffs satisfy individual, collective, global rationalities. It indicates the payoff solutions obtained with all the three methods are within the core. Table 21 shows the allocation of  K= 3515.03 $ (calculated in a similar manner as was done in 14 bus system) to two players.





Table 20: Payoffs and new network usage of 2 players in Proportional Nucleolus method
	Player 
	

	


	1 
	118.9481 
	3874.3219 

	2 
	146.2473 
	305.7216 

	total
	265.1954
	4180.0435 


Table 21: Transmission fixed cost allocation using various methods in Indian 75 bus system
	Player
	MW-Mile 
Method($)
	Zero Counter Flow method($)
	Nucleolus Method($)
	Shapley Value Method($)
	Proportional Nucleolus Method($) 

	1
	3271.62
	3157.63
	3246.46
	3246.46
	3257.94

	2
	243.4
	357.39 
	268.56
	268.56
	257.08



The comparison graph is shown in Fig. 4. 

[image: ]

Figure 4: Comparison of allocations in Indian 75 bus system with different methods
From Fig. 4 it can be understand that, in 75 bus system 2nd player demand is less and it uses less network than 1st player; so cost allocated to 2nd  player is less than 1st  player in all the methods. With P-N method the cost allocated for 2nd player is minimum. 

monotonicity

If v(S) of a coalition is increased, then the payoffs of all the players belonging to that coalition should also increase. 8th coalition of table 2 is considered in all methods for monotonicity testing, in which players 2 and 3 forms a coalition. Base case payoffs of players 2 and 3 are given in tables 4, 5 and 6. The base case characteristic functional value of 8th coalition is v(S) = 25.78 $. Assume v(S) value is increased to 29.78 $ for monotonicity testing. Then the new payoffs are given in tables 22, 23 and 24.







Table 22: New payoffs in Nucleolus method
	Player
	


	1
	1.45

	2
	21.53

	3
	9.70

	4
	35.90


Table 23: New payoffs in Shapley value method
	Player
	


	1
	1.9950

	2
	15.6645

	3
	27.5939

	4
	23.3297


Table 24: New payoffs in Proportional Nucleolus method
	Player
	


	1
	0.0

	2
	20.97

	3
	44.09

	4
	3.53



· From the new payoffs it can be observed that in Nucleolus method player 2 payoff is improved but player 3 payoff is reduced, so Nucleolus method does not exhibit monotonicity. This method favors player 2 but not player 3.
· In Shapley value method payoffs of both 2nd and 3rd players are improved slightly; hence Shapley value method exhibits monotonicity. Shapley value method payoffs are non-zero for all the case studies.
· In Proportional Nucleolus method payoffs of both 2nd and 3rd players are improved significantly; hence Proportional Nucleolus method exhibits monotonicity.

Conclusions

In this paper cooperative game theory is implemented for power system fixed cost allocation in a transaction based market model in an equitable manner and the results obtained are compared with conventional usage based methods like MW-Mile method and Zero counter flow method. The study of the cost allocation is of high importance and it is at the origin of discussion and study all over the world. Since players behave in rational way, the cost allocation problem becomes a matter of conflict. Cooperative game theory is used to deal with such matters of conflict. In MW-Mile method counter flows are not accounted. In ZCF method counter flows are accounted but the savings due to counter flows are not allocated to players which could be achieved with game theory methods. Hence game theory methods give correct economic signals about the allocations of transmission fixed cost to players in the system. In the case of a pool market, concerning the whole system, there is no obstacle for such an implementation. However, negative characteristic function values may arise if the game is played at each system branch. For a bilateral transaction market, the fixed cost allocation can take place in the entire network as well as at each single branch. Monotonicity for different game theory methods is tested on 8th coalition of IEEE 14 bus system. All the results of IEEE 14 bus system satisfy individual, coalition and global rationalities. Nucleolus is not monotonic, solution always lies within the core if the core is non-empty and it may favor some players only. If the core is empty Nucleolus method cannot produce solution. Shapley value method is monotonic and always assigns a non zero payoff to the players. But the solution with Shapley Value method may or may not lie within the core. Hence Proportional Nucleolus method is proposed for fixed cost allocation problem in this paper to overcome the drawbacks of Nucleolus and Shapley Value methods. P-N method is also monotonic and the solution is always lies within the core for both empty and non empty core cases due to the extended core concept used in P-N method. Due to its inherent property of extended core concept, a better solution is obtained by P-N method in the presented case study.
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Fig .1 IEEE 14-bus Test system
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