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Abstract:  

 
        Kodaira and Spencer (1957) have studied on the variation of almost complex 

structure. Hsiung (1966) has defined and studied structures and operators on almost 

Hermition manifolds. Also, Ogawa (1970) has studied operators on almost Hermition 

manifolds. In this paper, we have defined and studied structure and operators on almost 

Kaehlerian spaces and several theorems have been derived. We have also been 

demonstrated within nearly Kaehlerian spaces that for the structure to be integrable, it is 

both necessary and sufficient that the square of the difference between Γ and 𝛾, i. e., ( Γ −

𝛾 )2 = 0. Additionally, when the operator  Γ2  vanishes across the entire space, then the 

space can be classified as Kaehlerian.  
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1 Introduction:  

                    
     Consider 𝑀𝑛 as a Riemannian space, where its fundamental metric tensor is denoted 

as 𝑔𝑖𝑗, and 𝑔 = 𝑑𝑒𝑡|𝑔𝑖𝑗|. In this context, Greek indices  𝑖, 𝑗, 𝑘, and so on, range from 1 to 

n, which is the dimension of the space. Let 𝜀
𝑖1…….𝑖𝑝

𝑗1…….𝑗𝑝
 represent the generalized Kronecker’s 

delta, and  𝜀𝑖1……𝑖𝑝
 signify   𝜀𝑖1…….𝑖𝑝

1……..𝑝
 . We define  𝐹𝑝 as the algebra of differential p-forms 
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on  𝑀𝑛. Consequently, the operators of exterior differentiation d: 𝑭𝒑 → 𝑭𝒑+𝟏 , and the 

adjoint operator  𝒅′: 𝑭𝒑 → 𝑭𝒏−𝒑 can be expressed for a p-form u =( 𝑢𝑖1……𝑖𝑝
)as follows: 

(1.1)             (𝑑𝑢)𝑖0……𝑖𝑝
   = 

1 

𝑝!
  𝜀

𝑖0…….𝑖𝑝

𝜌𝑗1…….𝑗𝑝∇𝜌 𝑢𝑗1……𝑗𝑝
  

 

(1.2)             (𝑑′𝑢)𝑖1……𝑖𝑛−𝑝
 = 

1 

𝑝!
 √𝑔 𝑔𝜌1𝑗1……𝑔𝜌𝑝𝑗𝑝  𝑢𝜌1……𝜌𝑝

𝜀𝑗1……𝑗𝑝𝑖1……𝑖𝑛−𝑝
 

where  ∇𝑗Represents the covariant differentiation concerning the Riemannian connection, 

the exterior co-differentiation 𝜹: 𝑭𝒑 → 𝑭𝒑−𝟏 is specified by 

(1.3)                𝛿 =  (−1)𝑛𝑝+𝑛+1   𝑑′𝑑 𝑑′ 

can be expressed locally as  

(1.4)                 (𝛿𝑢)𝑖2……𝑖𝑝
 ∇𝜌𝑢𝜌𝑖2……𝑖𝑝

 

 

  Let ∆ be the Laplace-Beltrami operator defined by  

                          ∆ = 𝑑𝛿 +  𝛿𝑑  

Subsequently, utilizing equations (1.1) and (1.3), it is straightforward to confirm that in 

the case of a 𝑝 − degree form 𝑢, 
(1.5)                 (∆𝑢)𝑖1……..𝑖𝑝

   =  − ∇ρ∇ρ 𝑢𝑖1……𝑖𝑝
 + + ∑ 𝑅𝑖𝜆 

𝜌𝑝
𝑖=1  𝑢

𝑖1…𝑎⏞
𝜆

…𝑖𝑝

           

                                              +∑ 𝑅𝑖𝜆𝑖𝜇

𝜌𝑎
𝜆<𝜇  𝑢

𝑖1…𝜌⏞
𝜆

…𝑎⏞
𝜇

…𝑖𝑝

 

holds, where  𝑅𝑖𝑗𝑘𝑙  (𝑜𝑟  𝑅𝑖𝑗 ) represents the curvature (or Ricci) tensor linked to the 

Riemann connection. In the notation 𝑢
𝑖1…𝑎⏞

𝜆

…𝑖𝑝

 , the index 𝜌 replaces the index  𝑖𝜆   , while 

in  𝑢𝑖1…�̂�……𝑖𝑝
  indicates that the subscript  𝑖𝑎  is deleted. 

 

                       If a Riemannian space 𝑀𝑛  admits an almost complex structure 𝐴𝑖
𝑗
  

satisfying  

(1.6)                𝑔𝑘ℎ  𝐴𝑖
𝑘  𝐴𝑗

ℎ    =  𝑔𝑖𝑗    

  then it is called an almost Hermitian space.  

And If in an almost Kaehler space, the Nijenhuis tensor satisfies the condition 

                        𝑁𝑗𝑖ℎ +    𝑁𝑗ℎ𝑖 = 0, 

then we deduce from it 𝐺𝑗𝑖ℎ = 0, i.e. 

                         𝐹𝑖,𝑗
ℎ +  𝐹𝑗,𝑖

ℎ  = 0      

and the space is an almost Tachibana space. Thus, we have 

                         3 𝐹𝑖ℎ,𝑗=  𝐹𝑗𝑖,ℎ= 0. 

Consequently, the space is a Kaehler space i.e., an almost Kaehler space is a Kaehler 

space, if and only if the Nijenhuis tensor equation is satisfied. 

 

                        Let  𝑇𝑐 (𝑀)  represent complexified tangent space of the manifold 𝑀𝑛. 

consider 𝐹𝑐
𝑝

 as the space of complexified differential p-forms, which are essentially 

complex-valued functions defined on 𝑇𝑐(𝑀)  ∧ … .∧  𝑇𝑐(𝑀). For non-negative integers r, 

s we introduce the projection mapping denoted by ∏  ∶ 𝐹𝑐
𝑝  →  𝐹𝑐

𝑝
, where  

                                                                                          r,s 



p = r + s as follows. At first 

(1.7)                   ∏𝑖 
𝑗

= ( 
1

2 
 ) (𝛿𝑖

𝑗
 −  √−1 𝐴𝑖

𝑗
 ) 

                           1,0 

and its conjugate 

(1.8)                   ∏𝑖 
𝑗

= ∏̅𝑖 
𝑗

= ( 
1

2 
 ) (𝛿𝑖

𝑗
 +  √−1 𝐴𝑖

𝑗
 ) 

                            0,1       1,0 

which will be abbreviated to  ∏   𝑎𝑛𝑑  ∏̅  respectively. Then for a p-form u of  𝐹𝑐
𝑝
, we 

define  

(1.9)               (∏ 𝑢)
𝑖2………𝑖𝑝

 = (
1

𝑝!
) ∏

𝑖2…….𝑖𝑝

𝑗1…….𝑗𝑝  𝑢𝑗1………𝑗𝑝
 

                         r,s                                               r,s 

                              = [
1

(𝑟!𝑠!)
] 𝜀𝑖1……………….𝑖𝑝

𝑡1…..𝑡𝑟ℎ1……ℎ𝑠∏𝑡1

𝑗1 … … . ∏𝑡𝑟

𝑗𝑟∏̅ℎ1

𝑘1   . … … . ∏̅ℎ𝑠

𝑘𝑠𝑢𝑗1…..𝑗𝑟𝑘1…….𝑘𝑠
. 

 

A p-form u of  𝐹𝑐
𝑝

  is called of type (r, s) if it satisfies ( ∏ 𝑢 ) = u. 

                                                                                          r,s                             

                       Now, here following two Lemmas given by [Kodaira and Spencer (1957)], 

Ogawa (1970), 

Lemma (1.1): In an almost complex space, for any set of functions  𝑢𝑖1………𝑖𝑝  , we have 

(1.10)                    ∑  (  ∏     𝑢)
𝑖1………𝑖𝑝

𝒑
𝒗=𝟎  ==  𝑢𝑖1………𝑖𝑝

 

                                          (p-v, v)   

and 

(1.11)                   ∑ 𝐶𝑣
𝑝
𝑣=0     𝑝   𝜀

𝑗1………𝑗𝑝

𝜌1………𝜌𝑝∏𝜌1

𝑗1 … … ∏𝜌𝑣

𝑗𝑣 ∏̅𝜌𝑣+1

𝑗𝑣+1 … … ∐̅𝜌𝑝

𝑗𝑝  𝑢𝑗1…….𝑗𝑝
 

                                                           

                                             = 𝜀
𝑖1………𝑖𝑝

𝑗1………𝑗𝑝𝑢𝑗1………….𝑗𝑝
   

            

holds for any p-form 𝑢𝑗1………….𝑗𝑝
 , 1 ≤ 𝑝 ≤ 𝑛 .                        

                          Now we define the operators 𝑑1: 𝐹𝑐
𝑝  →  𝐹𝑐

𝑝+1
 of type (1, 0) and 

𝑑2: 𝐹𝑐
𝑝  →  𝐹𝑐

𝑝+1
 of type (2, −1) in accordance with [Kodaira and Spencer (1957)] given 

by 

 

(1.12)                  𝑑1 =  ∑        ∏    𝑑   ∏   ,                  

                                      r+s=p      r+1,s            r,s 

(1.13)                  𝑑2 =  ∑        ∏      𝑑   ∏   .                 

                                      r+s=p      r+2,s-1              r,s 

Here we denote the conjugate operator of 𝑑1  (𝑜𝑟 𝑑2 ) by �̅�1 (𝑜𝑟 �̅�2). 

  
Lemma (1.2): In an almost complex space, on  𝐹𝑐

𝑝
 , we have 

(1.14)                              ∏      𝑑 ∏ = 0, 

                                      r+3,s-2           r,s 

where, r + s = p. 

From Lemmas (1.1) and (1.2), we have [2] [Kodaira and Spencer (1957)] given by 

(1.15)                     𝑑  =   𝑑1 +  𝑑2  + �̅�1 + �̅�2       



                 

                  The definitions of complex counterparts of the real operators 𝑑 𝑎𝑛𝑑 𝛿 , as per 

the framework established by Kodaira-Spencer in their (1957) work [2], can be stated as 

follows: 

(1.16)                    𝜕 = 2𝑑2 +  𝑑1 − �̅�2    

(1.17)                    𝔇 =  − ∗ 𝜕 ∗ 

                           On the other hand, Hsiung (1966) defined them by the following 

operators 

(1.18)                    (𝝏𝑢)𝑖0………..𝑖𝑝
= (

1

𝑝!
)   ∑     ∏

𝑖0……….𝑖𝑝

𝑡𝑗1…….𝑗𝑝
  ∏𝑡

ℎ ∇ℎ 𝑢𝑗1…….𝑗𝑝
 ,                

                                                                  r+s=p    r+1,s                         

(1.19)                    (𝕯𝑢)𝑖0………..𝑖𝑝
= −   ∑     ∏

𝑡𝑖2……….𝑖𝑝

𝑗1…….𝑗𝑝
  ∏ℎ 

𝑡 ∇ℎ 𝑢𝑗1…….𝑗𝑝
 ,                

                                                               r+s=p    r ,s                          

for a  p-form 𝑢 = ( 𝑢𝑖1…….𝑖𝑝
 ). After then we shall show that the relation  

(1.20)                      𝕯 =  − ∗ 𝝏 ∗ 

is valid. 

 

2. Operators on Almost Kaehlerian Manifolds: 
 

     We have studied the following properties of the operators  

 

Lemma (2.1): In an almost Kaehlerian space, the operator Γ  is a skew-derivation and 

satisfies 

(2.1)                    ∗ Γ ∗ = − 𝐷 

 Proof:   Ogawa (1967) gives that Γ is a skew-derivation and that for any p-form u           

= 𝑢𝑖1…….𝑖𝑝
, 

(∗ Γ ∗ 𝑢)𝑖2…….𝑖𝑝
 =  (−1)𝑛𝑝+𝑛+1 (𝐷𝑢)𝑖2……….𝑖𝑝

 

holds, where n is the dimension of the space. Since n is even, therefore 

(2.1) is proof. 

Lemma (2.2): In an almost Kaehlerian space, the operator ∅ is a derivation and satisfies 

for any p-form 𝑢𝑝,  

(2.2)                    ∗ ∅ ∗ 𝑢𝑝  =  (−1)𝑝∅ 𝑢𝑝 , 

 

(2.3)                    𝑑∅ −  ∅𝑑 =  −Γ +  Υ     

 Proof: From directive calculation with respect to an orthonormal local coordinate system 

for any p-form   𝑢 =  𝑢𝑖1……..𝑖𝑝
, we have                      

           (∗ ∅ ∗ 𝑢)𝑖1……..𝑖𝑝
= (

1

(𝑛 − 𝑝)!  𝑝!
)  𝑔 𝑔𝑗1𝑗1………𝑔𝑗𝑛−𝑝𝑗𝑛−𝑝𝑔𝑘1𝑟1……….𝑔𝑘𝑝𝑟𝑝𝑢𝑘1……….𝑘𝑝

 

                         

                                     = (−1)𝑝(𝑛−𝑝) (∅ 𝑢) 𝑘1……𝑘𝑝
. 

 

Since n is even, we have (−1)𝑝(𝑛−𝑝) =  (−1)𝑝, and thus (2.2) is proved. 

   Now, we have  



 (𝑑∅𝑢)𝑖0…….𝑖𝑝
  =   ∇𝑖0

𝐴𝑖𝑟

𝑡 𝑢
𝑖1……𝑡⏞

𝑟

….𝑖𝑝

−   ∇𝑖𝑟
𝐴𝑖0

𝑡 𝑢
𝑖1……𝑡⏞

𝑟

….𝑖𝑝

 

                       − ∑ ∇𝑖𝑟
 𝐴𝑖𝑠

𝑡   𝑢
𝑖1…𝑖0

⏞
𝑟

…𝑡⏞
𝑟

….𝑖𝑝

𝑟≠𝑠  + 𝐴𝑖𝑟  

𝑡 ∇𝑖0
 𝑢

𝑖1……𝑡⏞
𝑟

….𝑖𝑝

 

                       − 𝐴𝑖0  

𝑡 ∇𝑖𝑟
 𝑢

𝑖1……𝑡⏞
𝑟

….𝑖𝑝

  − ∑ 𝐴𝑟≠𝑠 𝑖𝑠  

𝑡
∇𝑖𝑟

 𝑢
𝑖1…𝑖0

⏞
𝑟

…𝑡⏞
𝑟

….𝑖𝑝

 

 

    (∅𝑑𝑢)𝑖0…….𝑖𝑝
   =    𝐴𝑖0

𝑡   ∇𝑡  𝑢𝑖1…….𝑖𝑝
  −    𝐴𝑖𝑠

𝑡  ∇𝑡  𝑢
𝑖1……𝑖0

⏞
𝑠

……𝑖𝑝

  

                            +   𝐴𝑖𝑟

𝑡 ∇𝑖0
𝑢

𝑖1……𝑡⏞
𝑟

……𝑖𝑝

  −   𝐴𝑖0

𝑡 ∇𝑖𝑟
 𝑢

𝑖1………𝑡⏞
𝑟

…….𝑖𝑝

 

                               −   ∑   𝐴𝑟≠𝑠 𝑖𝑠  

𝑡
∇𝑖𝑟

  𝑢
𝑖0……𝑡⏞

𝑠

…𝑖0
⏞
𝑟

….𝑖𝑝

. 

 

Hence it follows that 

  (𝑑∅𝑢 −  ∅𝑑𝑢)𝑖0………..𝑖𝑝
  = ( ∇𝑖0

𝐴𝑖𝑟

𝑡 −   ∇𝑖𝑟
𝐴𝑖0

𝑡 )𝑢
𝑖1……𝑡⏞

𝑟

….𝑖𝑝

 

                                                − ∑ (−1)𝑛  
𝑛 𝐴𝑖𝑛  

𝑡 ∇𝑡 𝑢𝑖0……�̂�….𝑖𝑝
 

 

                                           +  ∑    (−1)𝑟

𝑟<𝑠 

(∇𝑖𝑟
  𝐴𝑖𝑠

𝑡 −    ∇𝑖𝑠
 𝐴𝑖𝑟

𝑡  ) 𝑢
𝑖0𝑖1…�̂�…𝑡⏞

𝑠

…….𝑖𝑝

. 

 

                                          =  ∑    (−1)𝑛
𝑛<𝑚 (∇𝑖𝑛

  𝐴𝑖𝑚

𝑡 −    ∇𝑖𝑚
 𝐴𝑖𝑛

𝑡  ) 𝑢
𝑖0…�̂�… 𝑡⏞

𝑚

…….𝑖𝑝

. 

                                          − ∑     (−1)𝑛
𝑛   𝐴𝑖𝑛

𝑡  ∇𝑡  𝑢𝑖0…….�̂�……𝑖𝑝
.      

             

                                         =  (𝛶 𝑢 −  𝛤 𝑢) 𝑖0………𝑖𝑝
.      

 

   Now, we have consider the following relation 

  ∑  𝜀
𝑖1………………………….𝑖𝑝+𝑞

𝑗1……𝑡⏞
𝑠

....𝑗𝑝𝑗𝑝+1……𝑗𝑝+𝑞𝑝
𝑠=1  𝐴𝑡

𝑗𝑠   +  ∑  𝜀
𝑖1………………………….𝑖𝑝+𝑞

𝑗1…..𝑗𝑝𝑗𝑝+1…… 𝑡⏞
𝑠′

….𝑗𝑝+𝑞𝑝+𝑞
𝑠′=𝑝+1  𝐴𝑡

𝑗𝑠 

 

                                       =  ∑    𝐴𝑖𝑛

𝑡𝑝+𝑞
𝑛=1   𝜀

𝑖1………𝑡⏞
𝑛

…….𝑖𝑝+𝑞

𝑗1……………….𝑗𝑝+𝑞 , 

Then, we have    

    (∅𝑢 ∧ 𝑣)𝑖1………..𝑖𝑝+𝑞
+  (𝑢 ∧  ∅𝑣)𝑖1…………𝑖𝑝+𝑞

 

 

                               = (
1

(𝑝!𝑞!)
) [ ∑ 𝜀

𝑖1………..𝑖𝑝+𝑞

𝑗1……….𝑗𝑝+𝑞𝑝
𝑟=1  𝐴𝑗𝑟

𝑡  𝑢
𝑗1……𝑡⏞

𝑠

……..𝑗𝑝

𝑣𝑗𝑝+1…….𝑗𝑝+𝑞
 

                                                                      

                           + ∑  𝜀
𝑖1………..𝑖𝑝+𝑞

𝑗1……..𝑗𝑝+𝑞𝑝+𝑞
𝑠′=𝑝+1  𝐴𝑗

𝑠′

𝑡  𝑢𝑗1……𝑗𝑝
  𝑣

𝑗𝑝+1…… 𝑡⏞
𝑠′

…𝑗𝑝+𝑞

]     

 

                           = (
1

(𝑝!𝑞!)
) ∑  𝐴𝑖𝑛

𝑡  𝜀
𝑖1……𝑡⏞

𝑛

…..𝑖𝑝+𝑞

𝑗1……..𝑗𝑝+𝑞𝑝+𝑞
𝑛=1  𝑢𝑗1……𝑗𝑝

  𝑣𝑗𝑝+1………𝑗𝑝+𝑞
     



                           = ∅ (𝑢 ∧ 𝑣)𝑖1……………..𝑖𝑝+𝑞
 

 

Thus, the operator ∅ is a derivation. From this, we have the following: 

  

Corollary (2.1): In almost Kaehlerian space, the operator  𝛶 is a skew-derivation. 

Corollary (2.2): In almost Kaehlerian space, the relation  

(2.4)                            𝑑 Γ +  Γ𝑑 = 𝑑 𝛶 + 𝛶𝑑  

holds. 

Theorem (2.3):   In almost Kaehlerian spacer, we have 

 

(2.5)                     ∗ 𝛶 ∗ = − 𝝑 –  𝑖(𝛿𝐴) 

where 𝑖(𝛿𝐴) denotes the inner product with respect to a 1-form 𝛿𝐴(𝐴 = 𝐴𝑖𝑗) 

Proof: We have the definition of 𝛶, for a p-form u, 

                             (𝛶𝑢)𝑖0……….𝑖𝑝
=  ∑  (−1)𝑛

𝑛<𝑚   𝑇𝑖𝑛𝑖𝑚

𝑡  𝑢
𝑖0……�̂�……… 𝑡⏞

𝑚

……𝑖𝑝

 , 

Where, we write  𝑇𝑖𝑗
𝑡 =  ∇𝑖𝐴𝑗

𝑡 −  ∇𝑗𝐴𝑖 .
𝑡  Therefore we have 

 

                      (∗ Υ ∗ 𝑢)𝑖2……….𝑖𝑝
=

𝑔

(𝑎−𝑝+1)!𝑝!
 ∑ (−1)𝑟−1

1≤𝑟<𝑠≤𝑎−𝑝+1  𝑇𝑗𝑟𝑗𝑠

ℎ  

                                    . 𝑔𝑡1𝑗1 … … … 𝑔𝑡𝑎−𝑝+1𝑗𝑎−𝑝+1𝑔ℎ1𝑘1 … … … … … 𝑔ℎ𝑝𝑘𝑝 

                                     . 𝑢𝑘1……..𝑘𝑝
 𝜀

ℎ1……ℎ𝑝𝑗1…�̂�……ℎ⏞
𝑠

….𝑗𝑎−𝑝+1 
𝜀𝑡1……..𝑡𝑎−𝑝+1𝑖2…….𝑖𝑝

 

 

                                    = 
(−1)𝑟(𝑝−1)(𝑎−𝑝+1)

(𝑎−𝑝+1)(𝑎−𝑝)𝑝!
  ∑ 𝑇𝜏

𝑡𝑟𝑡𝑠
𝑟<𝑠   𝜀

𝑗2…………𝑗𝑝𝑡𝑟𝑡𝑠

𝑘1………….𝑘𝑝 𝜏  𝑢𝑘1……….𝑘𝑝
 

 

                                 = − ∇𝑙𝐴𝑙
𝑡  𝑢𝑡 𝑖2………𝑖𝑝

−  ∑  (−1)𝑛𝑝
𝑛=2  ∇𝑡 𝐴𝑖𝑛 

ℎ 𝑢𝑡ℎ 𝑖2……�̂�….𝑖𝑝
 

                                 = [ i (𝛿𝐴)𝑢 – 𝝑𝑢 ]𝑖2……….𝑖𝑝
. 

           

 Similarly, we have proof of the following: 

                       

Theorem (2.4):   In an almost Kaehlerian space, we have  

 

(2.6)                      𝝏 = (𝑑 − √−1 Γ )/2 , 

(2.7)                      𝕯 = (𝛿 −  √−1 D )/2 , 

(2.8)                      �̅� = (𝑑 + √−1 Γ )/2 , 

(2.9)                      �̅� = (𝛿 +  √−1 D )/2 ,          

(2.10)                    𝝏 = [𝑑 −  √−1  (Γ −  Υ)] / 2 , 

(2.11)                       𝕯 = [𝛿 −  √−1 {D − 𝝑 −  i (𝛿𝐴)} ] / 2 , 
 

 

3. Structure on almost kaehlerian spaces: 
 

Theorem (3.1): In an almost Kählerian space, the structure's integrability is both a 

necessary and sufficient condition when: 



                               (𝛤 −  𝛶)2 = 0. 

 

Proof. We have the intergability condition of the almost complex structure is defined by 

𝜕2 = 0, given by [2] Kodaira and spencer (1957), Then by equation (2.10) 

                              𝜕2 =  
1

4
 [−(Γ −  Υ)2 + √(−1) (dΓ + Γ𝑑 − 𝑑Υ −  Υ𝑑 )], 

Considering that the imaginary components disappear due to the implication of Corollary 

(2.2), we derive the result: 

 

                            𝜕2 =  − 
1

4
 (Γ −  Υ)2 

Which is real operator. 

                             The operator Γ  which delineates a Kählerian structure through an 

almost Hermitian structure, demonstrates Kählerian characteristics only when the 

operator 𝛤2 ceases to have an effect. As Γ  functions as a skew- derivation, its second 

operation, 𝛤2, acts as a derivation. Consequently, when 𝛤2nullifies its impact on forms of 

degrees 0 and 1, its influence dissipates across forms of all degrees. Taking into 

consideration a 0-form   f   and a 1-form 𝑢 = (𝑢𝑖), the following relationship holds:  

 

                     (Γ2𝑓 )𝑖𝑗 = ( 𝐴𝑖
𝑡∇𝑡𝐴𝑗

ℎ −  𝐴𝑗
𝑡∇𝑡𝐴𝑖

ℎ)∇ℎ 𝑓 , 

 

          (Γ2𝑢 )𝑖𝑗𝑘 = ⋃  ( 𝐴𝑖
𝑡∇𝑡𝐴𝑗

ℎ − 𝐴𝑗
𝑡∇𝑡𝐴𝑖

ℎ)∇ℎ 𝑢𝑘 + ⋃   ( 𝐴𝑖
𝑡𝐴𝑗

ℎ 𝑅𝑡ℎ𝑘
𝑙 ) 𝑢𝑙  

                              i,j,k                                                     i,j,k 

Where  ⋃   indicates that the terms are summed cyclically with respect to I,    

             i,j,k  

i, j, k. Consequently, the condition 𝛤2 = 0 can be expressed equivalently through the 

following relationships: 

 

(3.1)               ( 𝐴𝑖
𝑡∇𝑡𝐴𝑗

ℎ − 𝐴𝑗
𝑡∇𝑡𝐴𝑖

ℎ) = 0, 

 

(3.2)                    ⋃  ( 𝐴𝑖
𝑡𝐴𝑗

ℎ 𝑅𝑡ℎ𝑘
𝑙 )  = 0. 

                                   i,j,k               
 Theorem (3.2): In an almost Kaehlerian space, the operator 𝛤2 consistently equals zero. 

 Proof: Since the complex structure  𝐴𝑖
𝑗
 is a covariant constant in an Kaehlerian space, 

we have from (3.1) 

                             𝐴𝑖
𝑡  𝑅𝑡𝑗𝑘

𝜔         =     𝐴𝑗
𝑡 𝑅𝑡𝑖𝑘

𝜔  , 

 

and therefore        𝐴𝑖 
𝑡 𝐴𝑗

ℎ 𝑅𝑡ℎ𝑘
𝜔     =    𝑅𝑖𝑗𝑘

𝜔 , 

 

which gives (3.2) holds. 

Theorem (3.3): In an almost Kaehlerian space, when  𝛤2 = 0, if signifies that the 

structure is almost semi-Kaehlerian. 

Proof: We have, Transvecting (3.1) with 𝐴𝑙 
𝑖 , then 

                            ∇𝑙 𝐴𝑗
ℎ  +   𝐴𝑙 

𝑖 𝐴𝑗
𝑡  ∇𝑡 𝐴𝑖 

ℎ  = 0. 

Contracting l and h and noting   𝐴𝑖ℎ ∇𝑡 𝐴𝑖ℎ  = 0. prove the theorem. 



 

Theorem (3.4):  If 𝛤2 = 0 in an almost Kaehlerian space, then we have   

(3.3)                    ⋃  ( 𝐴𝑖
𝑡   𝑅𝑗𝑘𝑡

𝜔 )  = 0. 

                           i,j,k      

(3.4)                    
1

2
 𝐴𝑡ℎ  𝑅𝑡ℎ𝑖

𝑗
 +  𝐴𝑖

𝑡  𝑅𝑡
𝑗

= 0,        

 

(3.5)                    𝐴𝑖
𝑡 𝑅𝑡𝑗   +   𝐴𝑗

𝑡  𝑅𝑡𝑖 

Proof: Here, from equation (3.2), we get 

(3.6)                     𝐴𝑖
𝑡 𝐴𝑗

ℎ  𝐴𝑘 
𝑙 𝑅𝑡ℎ𝑙

𝜔  =  𝐴𝑖
𝑡 𝑅𝑘𝑡𝑗

𝜔  −  𝐴𝑗
𝑡  𝑅𝑘𝑡𝑖 

𝜔                

Taking the sum of terms of (3.6) cyclically with respect to the indices i, j, k, we have 

                              ⋃   𝐴𝑖
𝑡  𝐴𝑗

ℎ 𝐴𝑘 
𝑙 𝑅𝑡ℎ𝑙

𝜔      =      ⋃   𝐴𝑖
𝑡 𝑅𝑗𝑘𝑡

𝜔   = 0. 

                             i,j,k                                    i,j,k 

gives (3.3). Contraction of i and 𝝎 in (3.3) yields 

(3.7)                      𝐴𝑖𝑡𝑅𝑖𝑡𝑗𝑘 + 𝐴𝑗
𝑡𝑅𝑡𝑘 −  𝐴𝑘

𝑡  𝑅𝑡𝑗 = 0. 

And, from equation (3.6) we get 

             − 𝐴𝑘
𝑡  𝐴𝑖

ℎ 𝐴𝑗  
𝑙 𝑅𝑡ℎ𝑙

𝜔  =  𝐴𝑖
𝑡  𝑅𝑘𝑡𝑗

𝜔  −  𝐴𝑘
𝑡  𝑅𝑖𝑡𝑗 

𝜔  −  𝐴𝑗
𝑡  𝑅𝑘𝑖𝑡 

𝜔 ,                          

Which can reduced to (3.4) by contracting with 𝑔𝑖𝑗 . Also, from (3.7) and (3.4), then we 

get the relation (3.5).    

 

Theorem (3.5):  If  𝛤2 = 0 in an almost Kaehlerian space, then we have  

(3.8)                        ∇𝑖𝐴𝑗𝑘 ∇𝑗  𝐴𝑖𝜔 = 0. 

Proof: We have, Differentiating (3.1) by ∇𝑖 , then 

   𝐴𝑖𝑡 ∇𝑖 ∇𝑡 𝐴𝑗
ℎ   =   ∇𝑖𝐴𝑗

𝑡  ∇𝑡 𝐴𝑖
ℎ + 𝐴𝑗 

𝑡 (𝑅𝑖𝑡𝑙
𝑖  𝐴𝑙ℎ + 𝑅𝑖𝑡𝑙 

ℎ 𝐴𝑖𝑙). 

From (3.4) and (3.5) and noting above equation, we get 

   (
1

2
)  𝐴𝑖𝑡  ( ∇𝑖 ∇𝑡 𝐴𝑗

ℎ   −   ∇𝑡 ∇𝑖 𝐴𝑗
ℎ )  

                        = (−
1

2
) 𝐴𝑖𝑡 𝑅𝑖𝑡𝑗

𝑙  𝐴𝑙
ℎ  +  (

1

2
) 𝐴𝑖𝑡  𝑅𝑖𝑡𝑙

ℎ  𝐴𝑗
𝑙  = −𝑅𝑗

ℎ + 𝑅𝑗
ℎ = 0. 

                               

Here, the second and third terms on the right- hand side are reduced to   −𝑅𝑗
ℎ and   𝑅𝑗

ℎ  , 

respectively and thus we have (3.8). 

 

Theorem (3.6): If the operator  𝛤2 vanishes everywhere in an almost Kaehlerian space, it 

implies that the space is Kaehlerian. 

Proof: Here, firstly we prove that 

 

(3.9)                    𝐴𝑗𝑘 ∇𝑡 ∇𝑡 𝐴𝑗𝑘  = 0. 

Then, by virtue of (3.1) we find  

  

                            ∇𝑖 𝐴𝑗
ℎ    =    𝐴𝑗

ℎ  𝐴𝑙
𝑡 ∇𝑡  𝐴𝑖

𝑙 

 

the above equation and (3.8) and (3.5) gives 

                           ∇i  ∇𝑖 𝐴𝑗
ℎ    =    𝐴𝑗

ℎ  ∇𝑖 𝐴𝑙
𝑡  ∇𝑡  𝐴𝑖

𝑙 



Now contracting above equation with    𝐴ℎ
𝑗
    and noting theorem (3.5), we obtain (3.9).  

From equation (3.9) follows immediately  

                               ∇𝑖𝐴𝑗𝑘∇𝑖𝐴𝑗𝑘  = ( 
1

2
) ∇𝑖∇𝑖 (𝐴𝑗𝑘𝐴𝑗𝑘) −  𝐴𝑗𝑘∇𝑖∇𝑖𝐴𝑗𝑘 = 0. 

Which means    ∇𝑖𝐴𝑗𝑘 = 0.  proving the structure to be Kaehlerian. 
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