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 Abstract: The focus of this paper is to present the concepts of quadripartitioned single valued neutrosophic refined volterra spaces and to investigate their characteristics. The ideas discussed in this paper are illustrated using a few examples.  
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L.A. Zadeh [19]was the first to explain fuzzy sets and fuzzy set operations. Fuzzy topological spaces were first introduced and developed by Chang [5]. The earliest publication of the "Intuitionistic fuzzy set" notion was made by Atanassov [1].Fuzzy sets and neurothosophic sets, an expansion of intuitionistic fuzzy sets, were first described by Smarandache[12]. Neutosophic set theory addresses the problem of uncertainty. As an extension of intuitionistic fuzzy sets, fuzzy sets, and the classical set, Wang [17] proposed single-valued neutrosphic sets.Four membership functions make up Chatterjee’s quadripartitioned single valued neutrosophic sets: truth, contradiction, unknown, and falsity. Deli et al.’s [6] development of intuitionistic fuzzy multisets and fuzzy multisets was the introduction of neurosophic refined sets.The concept of Volterra spaces has been thoroughly studied in classical topology [4,7,8,9].Thangaraj and Soundararajan[15] introduce and research the idea of fuzzy Volterra space.By Soundararajan, Rizwan, and Syed Tahir Hussainy [14], the idea of intuitionistic fuzzy Volterra space was first suggested and researched.This paper is arranged as follows: quadripartitioned single valued neutrosophic refined nowhere dense set , quadripartitioned single valued neutrosophic refined volterra space and its characteristics is present and some results are made about the functions that preserve this context of images and preimages. 
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Definition 2.1 [2] A QSVNRS  on  can be defined by 
                ={,:}
where:[0,1] such that 0+++4 (J=1,2,...P) and for every . are the truth membership sequence,a contradiction membership sequence,an unknown membership sequence and falsity membership sequence of the element x respectively. P is also referred to as the QSVNRS() dimension. 
 
Definition 2.2 [2] Let ,   QSVNRS() havimg the form 
 ={,:} (J=1,2,...P)
 ={,:} (J=1,2,...P).Then
      1.    if   ,   ,    and   (J=1,2,...P)
      2.  ={,:} (J=1,2,...P)
      3.   =  and is defined by
=max{,}, =max{,}, =min{,},         =min{,}  for all     and  J=1,2...P.
      4.    =  and is defined by
=min{,}, =min{,}, =max{,}, =max{,}  for all     and  J=1,2...P. 
 
Definition 2.3 [2] A QSVNRTS on  in a family  of QSVNRS in  which satisfy the following axioms.
1.  ,   .
2.     for any ,   .
3.     for every{  : i  I} .
Here the pair (,) is called a QSVNRTS and any QSVNRS in  is said to be quadripartitioned single valued neutrosophic refined open set (QNROS) in . The complement of  of a QNROS  in a QSVNRTS (,) is known as quadripartitioned single valued neutrosophic refined closed set (QNRCS) in . 
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Definition 3.1 A QSVNRS  in a QSVNRTS (,) is said to be QSVNR dense if there exists no QNRCS  in (,) such that     . 
 
Definition 3.2 A QSVNRS  in a QSVNRTS (,) is said to be QSVNR nowhere dense set if there exists no QNROS  in (,) such that   QNR().That is QNR(QNR()) = . 
 
Proposition 3.3 Let  be a QSVNRS.If  is a QNRCS in (,) with QNR() = , then  is a QSVNR nowhere dense in (,). 
 
Proof. Let  is a QNRCS in (,). Then QNR() = . Now QNR(QNR()) = QNR() =  and hence  is a QSVNR nowhere dense  in (,). 
 
Proposition 3.4 Let  be a QNRCS in (,),then U is a QSVNR nowhere dense set in (,) iff QNR(U) = . 
 
Proof. Let  be a QNRCS in (,), with QNR() = . Then by Proposition 3.3,  be QSVNR nowhere dense set (,). Conversely,Let  is a QSVNR nowhere dense set in (,).we have QNR(QNR()) =  implies that QNR() = .Since  is a QNRCS,QNR(U) = . 
 
Proposition 3.5 If  is a QSVNR dense and QNROS in (,),then  is a QSVNR nowheredense set in (,). 
 
Proof. Let  is a QNROS in (,),we have QNR() = . Now QNR(QNR()) = (QNR(QNR( = (QNR()) = . Hence  is a QSVNR nowheredense set in (,). 
 
Proposition 3.6 If  be a QSVNR nowhere dense set in (,), then QNR() is also a QSVNR nowhere dense set in (,). 
 
Proof. Let QNR( )=.Now QNR(QNR()) = QNR(QNR(QNR())) = QNR(QNR()) = . Hence  = QNR() is a QSVNR nowheredense set in (,). 
 
Definition 3.7 A QSVNRS  in QSVNRTS (,) is said to be QSVNR -set in (,) if  =  where  are QNROS in (,). 
 
Definition 3.8 A QSVNRS  in a QSVNRTS (,) is known as QSVNR -set in (,) if  =  where  are QNRCS in (,). 
 
Definition 3.9 A QSVNRTS (,) is said to be QSVNR first category set if  =  where ’s are QSVNR nowhere dense sets in (,).Otherwise (,) is known as QSVNR second category. 
 
Definition 3.10 A QSVNRTS (,) is known as Baire space if QNR()= , where ’s are QSVNR nowhere dense sets in (,). 
 
Definition 3.11 A QSVNRTS (,) is known as QSVNR volterra space if QNR() = , Here ’s are QSVNR dense and QSVNR -sets in (,). 
 
Example 3.12 Let  ={}. Define the QSVNRS , ,    and    as follows 
 ={,{0.5,0.3,0.4,0.2},{0.8,0.5,0.6,0.3},{0.5,0.3,0.2,0.4}, 
,{0.2,0.4,0.3,0.1},{0.3,0.5,0.2,0.4}, {0.4,0.2,0.3,0.5}} 
  ={,{0.4,0.5,0.2,0.1},{0.7,0.9,0.4,0.5},{0.6,0.4,0.3,0.5}, 
,{0.5,0.6,0.2,0.3},{0.1,0.6,0.3,0.2}, {0.5,0.1,0.2,0.6}} 
   ={,{0.5,0.5,0.2,0.1},{0.8,0.9,0.4,0.3},{0.6,0.4,0.2,0.4}, 
,{0.5,0.6,0.2,0.1},{0.3,0.6,0.2,0.2}, {0.5,0.2,0.2,0.5}} 
   ={,{0.4,0.3,0.4,0.2},{0.7,0.5,0.6,0.5},{0.5,0.3,0.3,0.5}, 
,{0.2,0.4,0.3,0.3},{0.1,0.5,0.3,0.4}, {0.4,0.1,0.3,0.6}} 
Then  = { , , , ,   ,   } is a QSVNRT on .Thus (,) is a QSVNRTS. 
Let  = {     (  )},  = {     (  )}, = {     (  )  (  )}, 
where , ,  are QSVNR -set in (,) and QNR() = , QNR() = , QNR() = .Then QNR(    ) = . Hence (,) is a QSVNR volterra space. 
 
Example 3.13 Let  ={}. Define the QSVNRS , ,    and    as follows 
 ={ ,{0.5,0.4,0.3,0.6},{0.2,0.7,0.4,0.3},{0.4,0.5,0.3,0.6}, 
,{0.6,0.5,0.4,0.7},{0.5,0.6,0.3,0.6}, {0.5,0.3,0.4,0.6}} 
  ={,{0.7,0.3,0.4,0.2},{0.8,0.3,0.9,0.2},{0.5,0.2,0.6,0.1}, 
,{0.7,0.4,0.5,0.6},{0.4,0.3,0.7,0.2}, {0.2,0.7,0.7,0.2}} 
   ={,{0.7,0.4,0.3,0.2},{0.8,0.7,0.4,0.2},{0.5,0.5,0.3,0.1}, 
,{0.7,0.5,0.4,0.6},{0.5,0.6,0.3,0.2}, {0.5,0.7,0.4,0.2}} 
   ={,{0.5,0.3,0.4,0.6},{0.2,0.3,0.9,0.3},{0.4,0.2,0.6,0.6}, 
,{0.6,0.4,0.5,0.7},{0.4,0.3,0.7,0.6}, {0.2,0.3,0.7,0.6}} 
Then  = { , ,, ,   ,   } is a QSVNRT on .Thus (,) is a QSVNRTS. But there is no QSVNR -set in (,). Hence (,) is not a QSVNR volterra space. 
 
Proposition 3.14 If  = , where  are QSVNR dense and QSVNR -sets in QSVNR volterra space (,), then  is not a QNRCS. 
 
Proof. Let  = , where ’s are QSVNR dense and QSVNR  sets in (,). Since (,) is a QSVNR volterra space, we have QNR() = .(i.e.,) QNR() =  which implies that QNR()  . Therefore  is not a QNRCS in (,). 
 
Proposition 3.15 A QSVNRTS (,) is a QSVNR volterra space, iff QNR() = , where ’s are QSVNR dense and QSVNR -sets in (,). 
 
Proof. Let (,) be a QSVNR volterra space and ’s are QSVNR dense and QSVNR -sets in (,). Then we have QNR() = . Now QNR( = (QNR( = .
Conversely let QNR() = ,where ’s are QSVNR dense and QSVNR -sets in (,).Then QNR( = , this implis that (QNR( = .Therefore (,) is a QSVNR volterra space. 
 
Proposition 3.16 Let (,) be a QSVNRTS. If QNR() = , ’s are QSVNR nowhere dense and QSVNR  sets in (,), then (,) is a QSVNR volterra space. 
 
Proof. Let QNR() = , which implies (QNR()) =  (i.e.,) QNR() = . ’s are QSVNR nowhere dense and QSVNR  sets implies that  are QSVNR dense and QSVNR  sets in (,).Therefore QNR() = . Hence (,) is a QSVNR volterra space. 
 
Definition 3.17 A QSVNRTS (,) is known as QSVNR p-space if countable intersection of QNROS in (,) in QSVNR open in (,). 
 
Definition 3.18 A QSVNRTS (,) is said to be QSVNR hyperconnected space if every QNROS  is QSVNR dense set in (,) (i.e.,) QNR() = , for all   . 
 
Proposition 3.19 If the QSVNRTS (,) be QSVNR p-space and QSVNR hyperconnected space then (,) is also a QSVNR volterra space. 
 
Proof. Let ’s ( to ) is QSVNR dense and QSVNR -sets in (,). Since (,) is QSVNR p-space, ’s is QSVNR  sets, this implies that ’s is QNROS in (,).Then   .Since (,) is a QSVNR hyperconnected space    implies that QNR() = . Hence (,) is a QSVNR volterra space. 
 
Definition 3.20 A QSVNRTS (,) is said to be QSVNR submaximal space if for each QSVNRS  in (,) such that QNR() = , then   . 
 
Proposition 3.21 If the QSVNRTS (,) be QSVNR submaximal and QSVNR hyperconnected space then (,) is a QSVNR volterra space. 
 
Proof. Let ’s ( to ) is QSVNR dense and QSVNR  sets in (,). Since (,) is a QSVNR submaximal space QNR() = , implies that ’s   for all( to ) this implies that   . Since (,) is a QSVNR hyperconnected space,    implies that QNR() = . Hence (,) is a QSVNR volterra space. 
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 The concepts of quadripartitioned single valued neutrosophic refined volterra space as well as characterizations of these spaces is presented outcomes of functions that preserve quadripartitioned single valued neutrosophic refined volterra space in the context of images and preimages are obtained.
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