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ABSTRACT:  In this paper, we introduce the concepts of   ,      ,       and       with some of their properties and we prove some theorems based on      ,  , ,  .

1. INTRODUCTION
     Nowadays many real life problems includes in the field of engineering, economics deals with the concept of uncertainty, imprecise judgements, ambiguity etc.. . In these situations, we use  [11] theory which was founded in 1965 by Zadeh to solve those ambiguity.  which allows the elements to have a  in the set and it lies in the real unit interval of [0, 1]. As an extension of , Atanassov introduced the concept of  [1] which includes ..  theory is utilized in the areas like  , , ,  etc. Later on, in 1993, Gau & Beuhrer introduced the  [4] .
     After some time, in 2005 Smarandache presented the  to solve problems contains insufficient, undefined and fickle information. In this theory, the elements in the set are allowed to have  and .     deals with uncertainty factor i.e, indeterminacy factor which is independent of truth and falsity values. Since  is used to solve indeterminate and inconsistent information effectively, we apply  in many fields like decision support system, semantic web services, new economy's growth, image processing, medical diagnosis etc., . In 2010 Wang et al., [5] developed     and he defined some basic operations like , , ,    on .
     In 1977, Belnap [2] introduced a new concept which includes a four valued logic in which any data is denoted by four parameters such as , , and . As an extension of this concept, Smarandache [10] developed four numerical valued  in which  is splitted into two terms namely  and .
    Hence a new set  was introduced by Rajashi Chatterjee.,et al [9] in which we have four components  in real unit interval [0,1]. Recently we have fused Vague set and Quadripartitioned Neutrosophic set and found Quadripartitioned Neutrosophic vague set[7]. In this paper, we introduce the concepts of   ,      ,       and       with some of their properties and we prove some theorems based on      ,  , ,  .




2. PRELIMINARIES

Definition 2.1[7]: Let  be the universe of discourse. A     ()  on written as  whose  ,  ,       is defined as: ,,,  Where,  (1)  (2) (3)  (4)  (5) 

Definition 2.2[7]:  A   onis a family  of     () in  satisfying the following axioms:
(i)  	
(ii) for any 
(iii) .
   In this case the pair  is called     () and any  in  is known as      () in . The complement  of   in   is called      () in . 

Definition 2.3 [7]: The  of two s  and  is a , written as whose , ,  and  functions are related to those of  and  by 





Definition 2.4 [7]:  The intersection of two s  and  is a  , written as              whose , ,  and  functions are related to those of  and  by 





Definition 2.5 [7]: Let  be an arbitrary family of s. Then



Definition 2.6 [7]: Let  be  and
  be  in . Then the  and   are defined by
(i) 
(ii) 
Also for any   in , we have  and .
It can also be shown that  is  and  is  in .
a)  is  in  if and only if 
b)  is  in  if and only if 

3. QUADRIPARTITIONED NEUTROSOPHIC VAGUE GENERALIZED CLOSED SETS AND QUADRIPARTITIONED NEUTROSOPHIC VAGUE GENERALIZED PRE CLOSED SETS.

Definition 3.1: A   in a   is called,
i)       if and only if

ii)       if and only if


Definition 3.2: A   in a   is called,
i)   () if

ii)   () if

iii)   () if

iv)   () if

v)   () if

vi)   () if

vii)   ()  if 

viii)  () if


Definition 3.3: Let be a  and 
 
 be a  in . Then     () and      () of  are defined by,



Result 3.4:  Let  be a in , then
(i) 
(ii) 

Definition 3.5: Let be a  and
  
 be a  in . Then       and      of  are defined by,
(i ) 
(ii) 

Result 3.6: Let 

 be a  in , then
(i) 
(ii) 

Definition 3.7:  Let  be a     . A subset  of  is called        if  whenever  and  is a     . Complement of  set is called  set.

Theorem 3.8: Every      is a       in .
Proof:
[bookmark: _GoBack]  Let  be a  and  where  be  in . Since  is ,  [ since ]. Therefore . Hence  is a  set in .

Theorem 3.9:  Let  and  be  sets in  then  is also  set in .
Proof: Since  and  are  sets in ,we get ⊆ and   whenever where  is  in . This implies  is also a subset of  where  is  in . Then  = . i.e.,. Therefore  is  set in .

Theorem 3.10: Let  and  be  sets in  then .
Proof: Since  and  are  sets in , we get  and   whenever where  is  in . This implies  is also a subset of  where  is . Since  and  and also we know that if  then . Therefore  and  which implies that . Hence proved.

Remark 3.11: The intersection of two  sets need not be a  set.

Theorem 3.12:. Let  be  set in  and  then  is  set in .
Proof: Let  where  is  in . Then   implies  . Since  is , we get  whenever . And also  implies  . Thus  and so  is  set in .

Theorem 3.13:. A  set  is  if and only if  is ..
Proof. First assume that  is  then we get and so  which is . Conversely assume that  is . Then , i.e.,  implies that  is . Hence proved.

Definition 3.14: Let  be a    
. A   in  is called   
    () if  whenever  and  is a      in  .

Definition 3.15. Let  be a and  

 be a  in . Then     () and     () of  are defined by,
(i) 
(ii) .

Result 3.16: Let  be a  in , then


Definition 3.17: Let  be a    
. A   in  is called   
   set if  whenever  and  is a       . The family of all
 set of a   is denoted by ).

Theorem 3.18: Every     () is a     ()
but not conversely.
Proof. Let  be a  in  and where  be  in . Since  and  is a  in , . Hence  is a  set in .

Theorem 3.19: Every  Neutrosophic    ()
is a     ()  but not conversely.
Proof. Let  be a  in  and  where  be  in . By hypothesis,  and since, . Here . Therefore  is a  set in .

Theorem 3.20: Every      ()  is a      () set but not conversely.
Proof: Let  be a  set in  and  where  be  in . Since  and by hypothesis, . Therefore  is a  set in .

Theorem 3.21: Every     () set is a     () set but not conversely.
Proof: Let  be a  in  and  where  be a  in . Since  which implies . Therefore . Hence  is a  set in .

4. QUADRIPARTITIONED NEUTROSOPHIC VAGUE GENERALIZED 
    CONNECTED SPACE AND QUADRIPARTITIONED NEUTROSOPHIC VAGUE 
    GENERALIZED COMPACT SPACE.

Definition 4.1: Let  be a    
. A   in  is called   
  () set if   whenever  and  is a      in . The family of all  sets of a   is denoted by .

Definition.4.2: Let ,  be any two s. Then
1. A function  is known as      () if  of every      (respectively  ) in  is  set (respectively ) in .
2. A function  is known as      if  of every  set (respectively ) in  is  set (respectively ) in .
3. A function  is known as      if  is both     and     in  for each     in .
4. A function is known as       if  is both  and  set in  for each   in .

Definition 4.3: A   is known as    if no non empty    is both     and     .

Definition 4.4: A   is said to be    () space if every  set is a     in .

Definition.4.5: Let  be any . Then  is known as      () if there exists a  and  set  such that  and  .  is known as  if it is not .

Proposition 4.6: Every  space is    . But the converse is not true.
Proof: Let  be a  space and assume that it is not    . Hence there exist a     
 

 such that  is both  and  in . Since every     and      is ,  respectively. It shows that  is . Hence the proof.

Theorem 4.7: Let  be a  space. Then  is     if and only if  is .
Proof: First assume that  is . Then there exist a  and  set  such that  and . Since  is  space  is both     and    . Hence  is not    . Conversely assume that  is not    . Then there exist a     and      in . Since every     and   is  and ,  is not . Hence the proof.

Proposition 4.8: Let ,  are two s. If  is  surjection and  is  then  is .
Proof. Let  be not . Then there exists a  and  set  in  such that  and . Since  is ,  is  and  set in . Thus  is not g-connected. Hence the proof.

Definition 4.9: Let  be a     . If a family 
 of sets in  satisfies the condition,  then it is known asof .
A finite subfamily of a  of
 which is also a  of  is known as    of
.

Definition 4.10: A   is called      () if and only if every  of  has a  .

Theorem 4.11:  Let,  be two s and  be . If  is  then  is also .
Proof:  Let  be a  in  with

Since  is ,

is  of . 
Now, ...................... (1)  
Since  is , there exists a finite sub cover  such that,

Hence, 
 [by (1)]

Therefore  is .

Definition 4.12: Let  be a  and  be a  in . If a family

of  sets in  satisfies the condition 
 then it is known as cover of .
A finite subfamily of a  cover
 of  which is also a  cover of  is known as  of 
.

Definition 4.13: A   in   is known as  if and only if every  of  has a .

Theorem 4.14:  Let ,  be any two s and  be an  function. If  is  in  then  is  in .
Proof. Let  be a  cover of  in  i.e, 
Since  is , 

is  of  in . 
Now, 
Since  is , then there exist a   such that,

Hence, 
 is  in .

CONCLUSION: We have introduced the concepts of     ,      ,       and       with some of their properties and we prove some theorems based on      ,  , ,  .
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