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A B S T R A C T
The rapid advancements in electronic communication, data processing, and internet technologies have ushered in an era of seamless access and interaction with a diverse array of smart devices spread across the globe. Our world is now encompassed by countless devices equipped with sensors and actuators, collectively forming the Internet of Things (IoT). This interconnected network, combined with cloud technologies, enables the collection of vast amounts of data from this heterogeneous environment, which can be transformed into invaluable knowledge through the application of data mining techniques. This knowledge, in turn, plays a pivotal role in intelligent decision-making, optimizing system performance, and efficiently managing resources and services. Against this backdrop, this paper conducts a comprehensive and structured review of various data mining techniques used in both large and small-scale IoT applications, aiming to establish an intelligent environment. Additionally, the paper provides an overview of a cloud-assisted IoT Big data mining system, highlighting the significance of data mining within the IoT ecosystem.
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1. Introduction:
The Internet of Things (IoT) and data mining are two powerful technological advancements that have gained significant attention in recent years. The IoT refers to a network of interconnected devices, objects, and systems that have the ability to collect and exchange data. These devices, ranging from smartphones and wearable to sensors and actuators embedded in everyday objects, generate vast amounts of data, creating opportunities for extracting valuable insights. The IoT ecosystem comprises billions of interconnected devices that continuously generate data in various formats and from diverse sources. This data can include environmental readings, user behaviour patterns, energy consumption statistics, health monitoring measurements, and much more. However, this massive influx of data presents a significant challenge in terms of its volume, velocity, variety, and veracity, commonly referred to as the four V's of big data. Data mining, on the other hand, is the process of extracting useful and actionable patterns, knowledge, and information from large datasets. It involves applying various computational techniques and algorithms to discover hidden relationships, correlations, and trends within the data. Data mining techniques play a vital role in handling and analyzing this vast amount of IoT data. By applying algorithms such as clustering, classification, regression, association rule mining, and anomaly detection, organizations can identify meaningful patterns, predict future outcomes, detect anomalies, and gain valuable insights from the data.
There have been several valuable surveys on IoT and its data, each offering unique perspectives. Stankovic's [1] (2014) work stands out for its emphasis on the global vision and defining characteristics of IoT. The survey delves into eight crucial research areas, providing a wealth of informative insights. Additionally, it proposes an architectural approach for IoT, drawing inspiration from the world of Smart-Phones. The proposed approach involves creating an App-Store-like environment to streamline the development, authentication, installation, and uninstallation of applications and services. This idea holds great potential for enhancing the efficiency and user-friendliness of IoT systems. Tsai [2] presented a unified framework that offers a perspective on core data mining algorithms from two distinct angles: "data about things" and "data generated by things." Within this framework, three fundamental functions, namely scan, construct, and update, were introduced to facilitate efficient and comprehensive data mining processes. By adopting this approach, Tsai's work contributes to a more holistic understanding of data mining in the context of IoT, encompassing both data collected about IoT devices and data generated by these devices. In their work,  Rashid [3] et al. (2020) conducted a thorough examination of existing behavioral pattern mining algorithms, subjecting them to critical analysis. Additionally, the researchers put forth a knowledge-based framework tailored for real-time stream data originating from a multitude of sensors within Wireless Sensor Networks (WSN) and the Internet of Things (IoT). This proposed framework aims to harness the potential of data from diverse sensors to derive meaningful insights and patterns in real-time, enhancing the efficiency and effectiveness of data processing in dynamic IoT environments. In their research, Pacheco [4] et al. (2019) conducted a comprehensive and organized survey, focusing on the application of machine learning techniques in the realm of network traffic classification. The study aimed to explore and evaluate the effectiveness of machine learning algorithms in accurately identifying and categorizing different types of network traffic. By delving into this area, the researchers sought to contribute valuable insights and advancements to the field of network traffic management and optimization. The potential of IoT big data analytics in IoT applications was explored in a study conducted by Marjani et al. (2017) and Mohammadi [5] et al. (2018). The researchers not only discussed the methods and techniques of IoT big data analytics but also presented a cloud-oriented IoT big data architecture. Furthermore, Mohammadi et al. (2018) conducted a survey specifically focusing on IoT real-time big data streams and provided a comprehensive overview of deep learning algorithms and architectures that contribute to enhanced analytics and learning in the IoT domain. In their research, the authors also highlighted the significant research efforts involving deep learning, supported by Fog and cloud computing, within IoT application environments. Although these surveys offer a robust understanding and application of data mining in IoT, they briefly touched upon the aspect of IoT applications. Therefore, a more comprehensive exploration of IoT applications may warrant further attention in future research.

2.	Characteristics and challenges of IoT  Big Data mining
IoT devices are interconnected, allowing seamless communication and data exchange. It encompasses diverse devices with different capabilities, protocols, and data formats. They are equipped with sensors that collect data from the physical environment. It generates a continuous stream of real-time data, enabling timely decision-making. The IoT ecosystem can accommodate a massive number of devices and data sources. It generates massive volumes of data at high speeds, posing challenges in storage, processing, and transmission. IoT data comes in various formats, structures, and semantics, requiring efficient data integration and preprocessing techniques.  Ensuring the quality, accuracy, and reliability of IoT-generated data is crucial for reliable analysis and decision-making.  Protecting the privacy and security of IoT data and devices from cyber threats and unauthorized access is a significant challenge.  seamless interoperability and integration among diverse IoT devices, platforms, and protocols is complex and requires standardization efforts.
However, there are several challenges that arise with the integration of IoT and data mining. These challenges include data privacy and security concerns, scalability issues, computational complexity, and the need for efficient storage and processing infrastructures. Addressing these challenges requires ongoing research, technological advancements, and collaboration among various stakeholders. Overcoming these hurdles can unlock the full potential of IoT and data mining, enabling organizations to derive valuable insights, optimize processes, and drive innovation in diverse domains.

3. IoT  Big Data mining System  :
An IoT big data mining system is a complex framework designed to gather, store, process, analyze, and extract valuable insights from massive volumes of data generated by Internet of Things (IoT) devices. These devices include sensors, actuators, and various smart devices, which continuously collect and transmit data over the internet. The purpose of the IoT big data mining system is to enable organizations to make data-driven decisions, identify patterns, predict trends, optimize operations, and improve overall efficiency	
The first step is collecting data from various IoT devices and sensors. This data can be of various types, including numerical readings, images, videos, text, and more. IoT gateways and edge computing play a crucial role in pre-processing and filtering data before sending it to the central data processing system. The collected data is stored in a distributed and scalable data storage system, such as a data lake or a NoSQL database like Apache Cassandra. This ensures that the vast amount of data generated by IoT devices can be effectively managed. Before analysis, the raw data often needs to be cleaned, transformed, and aggregated to remove noise and inconsistencies. Pre-processing might involve data normalization, feature extraction, and dealing with missing values.
The heart of the system lies in the big data processing engine, which can efficiently handle large-scale data processing. Technologies like Apache Hadoop, Apache Spark, or cloud-based services like Amazon EMR or Google Cloud Dataproc are commonly used for this purpose. Once the data is pre-processed, various data mining and machine learning algorithms are applied to uncover patterns, correlations, anomalies, and trends within the data. This process involves techniques like clustering, classification, regression, and time series analysis. Some IoT applications require real-time or near-real-time analysis to respond promptly to critical events or changes. Stream processing engines like Apache Kafka or Apache Flink are used to handle continuous data streams and trigger immediate actions based on the analyzed data.
4. Key Data mining methods:
There are several data mining methods and techniques that can be applied to IoT data to extract valuable insights and knowledge. Data mining methods commonly used in IoT are Classification, Clustering, Association analysis. Fig. 1 illustrates the crucial role of data mining in the process of knowledge discovery. Initially, the data collected from diverse IoT devices undergoes transmission to a pre-processing unit. Within this unit, several actions are carried out, including feature selection and extraction, noise abstraction, normalization, and dimension reduction. These steps are essential in transforming the raw data into a suitable format for subsequent analysis. Subsequently, the formatted data is forwarded to the Data Mining unit. Here, an array of data mining techniques come into play, each performing its designated task to extract valuable higher-level information from the dataset. This information holds the key to gaining insights and discovering patterns and relationships within the IoT data.
[image: ]
Fig. 1  Knowledge discovery overviewed

4.1	Classification :
Classification is a fundamental data analysis process that involves categorizing objects into pre-defined groups or classes. The main objective of classification is to accurately predict the appropriate category or class for each data object (Kesavaraj [7] and Sukumaran, 2013). The process relies on the assumption that the labels or class assignments for the data objects are already known before the classification procedure is carried out Classification techniques categorize IoT data into predefined classes or labels based on historical data. By training machine learning models on labelled data, classification can be used to predict or classify new IoT data instances.  These algorithms help in making predictions and decisions in IoT applications. One of the commonly used classification algorithms in IoT data mining is the k-Nearest Neighbours (k-NN) algorithm. The k-Nearest Neighbors (k-NN) algorithm works based on the principle that data instances that are close to each other in the feature space are likely to belong to the same class. 

4.1.1 Mathematical Representation of Classification:
Given a dataset D = {(X1, y1), (X2, y2), ..., (Xn, yn)}, where Xi represents the input features of the IoT data instance i, and yi represents the class label or category of the data instance.
To classify a new data instance X (where X is a set of input features), the k-NN algorithm finds the k-nearest neighbours in the training dataset D. The class label of the new data instance is determined by majority voting among the k-nearest neighbours. In other words, the class label with the highest frequency among the k neighbours is assigned to the new instance.
The distance metric used to determine the proximity of data instances is typically the Euclidean distance. For two data instances Xi and Xj with p features, the Euclidean distance (d) is computed as follows:
d(Xi, Xj) = sqrt( (x1i - x1j)^2 + (x2i - x2j)^2 + ... + (xpi - xpj)^2 )
where xi and xj are the individual feature values of instances Xi and Xj, respectively.
Once the distances to all data instances in the training set D are computed, the k-NN algorithm selects the k-nearest neighbours (instances with the smallest distances) to the new data instance X. The class label of X is then determined by majority voting among the k-nearest neighbours.
4.2	Clustering :
Clustering algorithms group similar IoT data points together based on their inherent patterns or similarities.  Clustering is an unsupervised learning technique (Yue [6] et al., 2014; Tsai et al., 2014) i.e. it will not require prior knowledge to guide the partitioning process This technique helps in identifying distinct groups or segments within the data without predefined class labels. Clustering can be useful for identifying behavior patterns, segmenting users, or grouping IoT devices with similar characteristics.  Clustering is an unsupervised learning technique, meaning it does not require predefined class labels for the data instances. One of the commonly used clustering algorithms in IoT data mining is the k-Means algorithm. The k-Means algorithm aims to partition the data into k clusters, where each cluster is represented by its centroid (the mean of the data instances within the cluster). 
4.2.1	Mathematical Representation of Clustering:
Given a dataset D = {X1, X2, ..., Xn}, where Xi represents the input features of the IoT data instance i.
The algorithm starts by randomly selecting k initial centroids (representing k initial clusters). It then assigns each data instance to the nearest centroid (cluster) based on a distance metric (usually the Euclidean distance). After assigning all data instances to the clusters, the algorithm recalculates the centroids of each cluster as the mean of the data instances belonging to that cluster. This process of reassigning data instances to the nearest centroid and updating the centroids is repeated iteratively until convergence (i.e., when the centroids no longer change significantly). 
The Euclidean distance (d) between two data instances Xi and Xj with p features is calculated as follows:
d(Xi, Xj) = sqrt( (x1i - x1j)^2 + (x2i - x2j)^2 + ... + (xpi - xpj)^2 )
where xi and xj are the individual feature values of instances Xi and Xj, respectively.
The centroid of a cluster is calculated as the mean of the feature values of all data instances belonging to that cluster. If C represents a cluster and xi represents a data instance belonging to that cluster, the centroid (Ck) of the cluster C is computed as:
Ck = (1 / |C|) * Σ xi
where |C| represents the number of data instances in cluster C, and Σ xi is the sum of the feature values of all data instances in cluster C.
4.3	Association analysis :
Association analysis is used to discover relationships and correlations between different IoT events or sensor readings. It helps identify patterns indicating that certain events or sensor readings tend to occur together. This can be valuable for understanding dependencies and co-occurrences in IoT data.It is commonly used in IoT data mining to identify patterns, correlations, and co-occurrences among various events or items in IoT applications. Frequent patterns, as defined by Qiu [8] et al. (2019) and Che et al. (2013), refer to data objects, sets of data objects, or sequences of events that occur repeatedly within a system. By mining these frequent patterns, valuable analytical insights can be gained into the users' activities within a favorable environment. This process of pattern mining plays a significant role in understanding and uncovering regularities and behaviors that occur frequently, thus providing a deeper understanding of the underlying system dynamics. One of the popular algorithms used for association analysis is the Apriori algorithm. The Apriori algorithm works on the principle of finding frequent item sets and generating association rules from them based on support and confidence metrics. these rules help in discovering interesting relationships and patterns among items in the data, enabling insights and decision-making in various IoT applications.
4.3.1	Mathematical Representation of Association analysis :
Given a transactional dataset D, where each transaction T contains a set of items {item1, item2, ..., itemn}, the Apriori algorithm aims to find itemsets (combinations of items) that frequently co-occur in the dataset. It starts by identifying all frequent 1-itemsets (items that appear with a minimum support threshold in the dataset). It then uses a join and prune approach to generate candidate k-itemsets based on frequent (k-1)-item sets. For each candidate item set, the algorithm scans the dataset to calculate the support (frequency of occurrence) of the item set. Frequent item sets with support above a user-defined minimum support threshold are selected.
The support (S) of an itemset X in the dataset D is defined as the proportion of transactions that contain all the items in X. It is calculated as follows:
Support(X) = (Number of Transactions Containing X) / (Total Number of Transactions)
4.4	Other Data mining methods :
Some of the key data mining methods that can be applied to IoT data are Anomaly Detection , Regression Analysis , Sequence Pattern Mining , Sentiment Analysis , Feature Selection and Dimensionality Reduction,  The choice of method depends on the specific objectives, characteristics of the IoT data, and the insights sought from the analysis. Different combinations of these methods may be used to extract actionable insights, improve decision-making, and optimize IoT systems and applications[11].
4.4.1	Anomaly Detection: Anomaly detection methods aim to identify abnormal patterns or outliers in IoT data that deviate significantly from expected behavior. Anomalies can indicate potential faults, security breaches, or other irregularities. Techniques such as statistical analysis, machine learning-based outlier detection, or deviation from expected models can be applied for anomaly detection in IoT data.
4.4.2	Regression Analysis: Regression analysis is used to understand the relationships between variables in IoT data and make predictions about numerical or continuous outcomes. It helps in modeling and predicting the behavior of IoT systems, such as predicting energy consumption based on various environmental factors or forecasting future sensor readings.
4.4.3	Sequence Pattern Mining: Sequence pattern mining techniques are used to discover temporal patterns and dependencies in sequential IoT data. This is particularly relevant for IoT applications that involve time-series data, such as analyzing the sequence of sensor readings or event occurrences. It helps in understanding temporal relationships and predicting future events based on historical sequences.
4.4.4	Sentiment Analysis: Sentiment analysis, also known as opinion mining, focuses on extracting subjective information from IoT data, such as user feedback, social media posts, or customer reviews. Sentiment analysis techniques can be applied to understand the sentiment, opinions, and emotions expressed in textual data associated with IoT devices, services, or user experiences.
3.4.5	Feature Selection and Dimensionality Reduction: IoT data can often have a large number of variables or dimensions. Feature selection and dimensionality reduction methods help identify the most relevant features or reduce the dimensionality of the data while preserving important information. This simplifies the data representation, reduces computational complexity, and improves the performance of data mining algorithms.
5. IoT and Data mining Application :
5.1	Customer Tracking and Footfall Analysis
Customer tracking and footfall analysis in retail settings involve the use of various algorithms to process data collected from IoT sensors, beacons, or other tracking devices. These algorithms help in understanding customer movement, behavior, and foot traffic patterns within a store. Here are some commonly used algorithms in customer tracking and footfall analysis:
Wi-Fi Tracking : Wi-Fi tracking involves monitoring the signals emitted by Wi-Fi-enabled devices (e.g., smartphones) as they move within a store. Proximity-based algorithms use the signal strength and time of arrival to estimate the device's location and track customer movement. Trilateration and fingerprinting techniques are often employed to triangulate the customer's position within the store based on the strength of Wi-Fi signals from multiple access points [12].
Bluetooth Low Energy (BLE) Beacon : BLE beacons are small, battery-operated devices that transmit signals to nearby smartphones and devices. Received Signal Strength Indicator (RSSI) is commonly used to estimate the distance between the beacon and the customer's device. Trilateration or multilateration techniques use the signals from multiple beacons to determine the customer's location and track their path.
Computer Vision and Video Analytics: Computer vision algorithms analyze video footage from cameras placed in the store. Object detection and tracking algorithms identify and track individuals as they move through the store. Heatmap generation techniques use the collected data to create visual representations of foot traffic and popular areas within the store.
Infrared (IR) Sensors: Infrared sensors can be installed at various locations in the store to detect the presence of customers. Counting algorithms analyze the data from IR sensors to count the number of people entering and leaving th e store, helping in footfall analysis.
Radio-Frequency Identification (RFID) Tracking: RFID tags or sensors can be attached to shopping carts or products, allowing the system to track their movement. RFID-based algorithms analyze the data to understand customer behavior and interactions with specific products or sections of the store.
Particle Filters and Kalman Filters: Particle filters and Kalman filters are probabilistic methods used for tracking the position of customers over time. These filters predict the likely position of a customer based on previous observations, sensor data, and the system's dynamics.
Time-Series Analysis: Time-series analysis methods, such as autoregressive integrated moving average (ARIMA) or seasonal decomposition of time series (STL), are used to analyze footfall patterns over time.This helps retailers identify recurring patterns, seasonal variations, and trends in customer foot traffic.
5.2	Smart Cities:
Smart cities leverage the power of the Internet of Things (IoT) to enhance the quality of life for residents, improve resource management, and optimize urban infrastructure. Here are some examples of IoT applications in smart cities:
Smart Energy Management: IoT sensors and meters can monitor energy consumption in real-time, allowing authorities to optimize energy distribution, detect faults, and implement demand-response strategies. Smart grids enable efficient energy usage and integration of renewable energy sources [13].
Intelligent Transportation Systems: IoT-enabled sensors and cameras in traffic lights, roads, and vehicles can collect data on traffic flow, parking availability, and road conditions. This data can be analyzed to optimize traffic management, reduce congestion, and enhance transportation efficiency.
Waste Management: IoT sensors in garbage bins can monitor fill levels and optimize waste collection routes. This minimizes unnecessary collection trips and reduces costs. Additionally, smart waste management systems can detect and report incidents such as fires or leaks.
Environmental Monitoring: IoT sensors can measure air quality, noise levels, temperature, humidity, and other environmental parameters. This data helps monitor pollution levels, identify hotspots, and support urban planning initiatives for creating healthier and sustainable environments.
Smart Lighting: IoT-based lighting systems can adjust brightness levels based on real-time conditions and occupancy. This improves energy efficiency and enhances public safety by providing well-lit areas during specific hours or in response to movement.
Public Safety and Surveillance: IoT sensors, cameras, and analytics can be used for real-time monitoring of public spaces, detecting suspicious activities, and facilitating emergency responses. This enhances public safety and enables more effective law enforcement [14].
Smart Parking: IoT-based parking systems can provide real-time information about available parking spaces, guiding drivers to the nearest vacant spots. This reduces traffic congestion and helps optimize parking resource utilization.
Water Management: IoT sensors can monitor water quality, detect leaks, and manage water distribution networks more efficiently. This helps conserve water resources, reduce wastage, and enhance the reliability of water supply.
Smart Governance: IoT applications can enable smart governance initiatives, such as digital citizen services, smart infrastructure management, and real-time data-driven decision-making. This enhances the overall efficiency and transparency of city administration.
Urban Planning and Infrastructure Optimization: IoT data combined with data mining techniques can provide valuable insights for urban planners to optimize infrastructure development, resource allocation, and land use planning. This promotes sustainable and intelligent growth.
5.3	Smart building :
IoT (Internet of Things) technology has been widely adopted in the development of smart buildings, enabling advanced automation, optimization, and energy efficiency. IoT applications in smart buildings:
Energy Management: IoT devices can monitor and control energy consumption in smart buildings. Sensors and smart meters can collect real-time data on electricity usage, lighting, HVAC systems, and other utilities. This information can be analyzed to optimize energy usage, detect inefficiencies, and implement energy-saving measures automatically.
Lighting Control: IoT-enabled lighting systems can adjust brightness and color based on occupancy, natural light levels, and user preferences. Smart lighting systems can be controlled remotely and can incorporate motion sensors to turn lights on and off automatically, reducing energy waste and enhancing user comfort.
HVAC Optimization: IoT sensors and actuators can monitor temperature, humidity, and occupancy in different zones of a building. This data can be analyzed to optimize heating, ventilation, and air conditioning (HVAC) systems in real-time, ensuring comfort while minimizing energy consumption.
Security and Access Control: IoT-based security systems enhance building safety and access control. Smart cameras, motion sensors, and door/window sensors can detect and alert any suspicious activities. Access control systems can use IoT devices such as smart cards or biometric authentication to grant or deny access to authorized personnel [15].
Occupancy Monitoring: IoT sensors can monitor occupancy levels in various areas of a building, such as offices, meeting rooms, and common spaces. This data can be used to optimize space utilization, identify underutilized areas, and make informed decisions on facility management and resource allocation.
Predictive Maintenance: IoT sensors embedded in equipment and systems can continuously monitor their performance, collecting data on variables like temperature, vibration, and energy usage. By analyzing this data, predictive maintenance algorithms can identify potential failures or performance degradation in advance, allowing proactive maintenance and minimizing downtime.
Smart Metering: IoT-based smart meters enable real-time monitoring of water, gas, and electricity consumption in individual units or across a building. This data can be used for accurate billing, identifying anomalies or leaks, and promoting energy-saving practices among occupants.
Environmental Monitoring: IoT sensors can measure air quality, temperature, humidity, and other environmental parameters. This information can be utilized to maintain a healthy and comfortable indoor environment, optimize ventilation systems, and detect and address potential issues such as high levels of pollutants or inadequate air circulation.
Table . 1 	IoT Application, Objectives and Data mining algorithms :
	IoT Application
	Objective
	Raw Data Source
	Data Mining Algorithms

	Smart Home  
	Enhance convenience and energy efficiency, improve security and automation
	Sensors (motion, temperature, light), smart devices, energy meters
	Association rule mining, clustering, sequence mining, anomaly detection

	Industrial IoT
	Improve operational efficiency, predictive maintenance, real-time monitoring
	Sensors, machinery data, production logs
	Decision trees, anomaly detection, clustering, predictive modeling

	Smart Agriculture
	Optimize irrigation, crop monitoring, pest control
	Soil sensors, weather data, crop health sensors
	Decision trees, clustering, anomaly detection, predictive modeling

	Smart Healthcare
	Remote patient monitoring, early disease detection, personalized treatment
	Wearable sensors, medical devices, patient records
	Classification, sequence mining, anomaly detection, predictive modeling

	Smart Transportation
	Traffic management, vehicle tracking, fleet optimization
	GPS devices, traffic sensors, vehicle sensors
	Clustering, decision trees, anomaly detection, predictive modeling

	Smart Energy Management
	Energy consumption optimization, demand response
	Smart meters, sensors, weather data
	Association rule mining, clustering, anomaly detection, predictive modeling

	Environmental Monitoring
	Air quality monitoring, pollution control
	Air quality sensors, weather data
	Classification, anomaly detection, clustering, predictive modeling

	Smart Retail
	Customer behavior analysis, inventory management, personalized marketing
	RFID tags, beacons, point-of-sale data
	Association rule mining, clustering, classification, predictive modeling

	Smart Cities
	Urban infrastructure management, resource optimization
	Sensors (traffic, waste, parking), public data
	Clustering, anomaly detection, decision trees, predictive modeling

	Wearable Devices
	Fitness tracking, health monitoring
	Wearable sensors, biometric data
	Classification, sequence mining, anomaly detection, predictive modeling




6. Summary and research issues in IoT Applications :

[bookmark: _GoBack]Based on the comprehensive review of the literature, Table: 1  provide a concise compilation of the diverse objectives pursued in IoT infrastructure, the associated data sources, and the specific data mining algorithms employed for knowledge extraction. The findings presented in this article offer significant support and empowerment to researchers and developers striving to create interactive environments for various potential IoT applications. By integrating IoT with cloud-assisted data mining technologies, bolstered by advanced sensors and actuators, the once passive environment can undergo a radical transformation into an intelligent and proactive domain. Moving forward, we will delve into a summarized and itemized discussion of the open research issues, taking into account the perspectives of different IoT applications.

· To protect IoT devices and networks from data breaches, unauthorized access, and other cyber threats.
· To create standards and frameworks to enable smooth communication and data exchange among IoT devices from different manufacturer. 
· To designe scalable architectures, protocols, and techniques to support the expanding IoT ecosystem efficiently.
· To optimize power consumption in IoT devices to prolong their battery life and reduce the environmental impact.
· Ensuring high-quality service provision in dynamic and sometimes unreliable network conditions was an active area of research.
· To implement the concept of edge computing, which involves processing data closer to the source.
· To develop advanced data analytics and machine learning algorithms to extract valuable insights from the massive amount of data generated by IoT devices
· To frame legal and policy frameworks to address the issues of data ownership, liability, and compliance with data protection laws.
· To investigate ethical guidelines  and frameworks to ensure responsible IoT deployment.
· To develop eco-friendly IoT devices and sustainable practices for manufacturing, usage, and disposal

7. Conclusion
The paper provided a well-structured and comprehensive examination of data mining algorithms, such as classification, clustering, and association analysis, in the context of IoT applications. These algorithms were systematically summarized and tabulated, alongside an identification of open research issues. Through descriptive analysis, we explored the utilization of data mining technologies in diverse IoT applications, including Smart Cities, Smart Building, and Smart Home. The application of data mining facilitates the conversion of raw data into valuable knowledge, thus elevating the complexity and intelligence within the vast data-producing landscape of IoT. Additionally, we presented a detailed overview of the  IoT Application, Objectives and Data mining algorithms in table.1  Furthermore, knowledge discovery enhances system performance by offering more pertinent and advanced service recommendations.
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