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Abstract

We demonstrate the Banach contraction mapping theorem on vec-
tor S-metric space. We also give an example to explain our results.
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1 Introduction

Banach Contraction Principle(BCP) was derived firstly by S. Banach [2] in
1922. It has a vital role in fixed point theory and became very famous
due to iterations used in the theorem. Many researchers are proving new
results in various generalizations of metric spaces. S-metric space is one of
the generalizations in metric spaces. In 2012, S-metric space was defined
by Sedghi et al.[7]. We start with some definitions and results for vector
S-metric spaces.
Definition 1.[4] On a set ∁, a relation ⪯ is a partial order if it follows the
conditions stated below:
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(a) η1 ⪯ η1 (reflexive)

(b) η1 ⪯ η2 and η2 ⪯ η1 implies η1 = η2

(anti− symmetry)

(c) η1 ⪯ η2 and η2 ⪯ η3 implies η1 ⪯ η3

(transitivity)

∀ η1, η2, η3 ∈ ∁ .
The set ∁ with partial order ⪯ is known as partially ordered set (poset).
A partially ordered set (∁,⪯) is called linearly ordered if for η1, η2 ∈ ∁, we

have either η1 ⪯ η2 or η2 ⪯ η1.
Definition 2.[4] Let ∁ be linear space which is real and (∁,⪯) be a poset .
Then the poset (∁,⪯) is said to be an ordered linear space if it follows the
properties mentioned below:

(a) p1 ⪯ p2 =⇒ p1 + p3 ⪯ p2 + p3

(b) p1 ⪯ p2 =⇒ ωp1 ⪯ ωp2

∀p1, p2, p3 ∈ ∁ and ω > 0

Definition 3.[4] A poset is called lattice if each set with two elements has
an infimum and a supremum.
Definition 4.[4] An ordered linear space where the ordering is lattice is
called vector lattice.

Definition 5.[4] A vector lattice V is called Archimedean if inf{ 1

m
ϑ} = 0

for every ϑ ∈ V + where

V + = {ϑ ∈ V : ϑ ⪰ 0}.

Definition 6.[3] Let V be vector lattice and ℜ be a nonvoid set. A function
d : ℜ×ℜ → V is called vector metric on ℜ if it follows the conditions stated
below:

(a) d(ℏ1, ℏ2) = 0 iff ℏ1 = ℏ2
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(b) d(ℏ1, ℏ2) ⪯ d(ℏ1, ℏ3) + d(ℏ3, ℏ2)

∀ℏ1, ℏ2, ℏ3 ∈ ℜ

The triple (ℜ, d, V ) is called vector metric space.
Definition 7.[8] Let ℜ be a nonvoid set. A function S : ℜ×ℜ×ℜ → [0,∞)
is calles S-metric on ℜ if it follows the below conditions :

(a) S(♭1, ♭2, ♭3) ⪰ 0,

(b) S(♭1, ♭2, ♭3) = 0 iff ♭1 = ♭2 = ♭3,

(c) S(♭1, ♭2, ♭3) ⪯ S(♭1, ♭2, α) + S(♭2, ♭2, α) +

S(♭3, ♭3, α),

for all ♭1, ♭2, ♭3, α ∈ ℜ.
The pair (ℜ, S) is known as S-metric space .
Now, vector valued S-metric space is defined as follows:
Definition 8. Let V be vector lattice and ℜ be a nonvoid set. A function
S : ℜ×ℜ×ℜ → V is called vector S-metric on ℜ that satisfies the conditions
mentioned below:

(a) S(♭1, ♭2, ♭3) ⪰ 0,

(b) S(♭1, ♭2, ♭3) = 0 iff ♭1 = ♭2 = ♭3,

(c) S(♭1, ♭2, ♭3) ⪯ S(♭1, ♭2, α) + S(♭2, ♭2, α)+

S(♭3, ♭3, α),

for all ♭1, ♭2, ♭3, α ∈ ℜ.
The triplet (ℜ, S, V ) is called vector S-metric space.

Example 1 Let ℜ be a nonvoid set and V be a vector lattice. A function
S : ℜ× ℜ× ℜ → V is defined by

S(♭1, ♭2, ♭3) = |(♭1, ♭3)|+ |(♭2, ♭3)| ∀♭1, ♭2, ♭3 ∈ ℜ

then the triplet (ℜ, S, V ) is vector S-metric space.
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Definition 9. A sequence ⟨ϑn⟩ in vector S-metric space (ℜ, S, V ) is called
V -convergent to some ϑ ∈ V if there is a sequence ⟨µn⟩ in V satisfying µn ↓ 0

and S(ϑn, ϑn, ϑ) ≤ µn and denote it by µn
S,V−−→ ϑ.

Definition 10. A sequence ⟨ϑn⟩ in vector S-metric space (ℜ, S, V ) is known
as V -Cauchy sequence if there is a sequence ⟨µn⟩ in V satisfying µn ↓ 0 and
S(ϑn, ϑn, ϑn+q) ≤ µn holds for all q and n.
Definition 11. If each V -Cauchy sequence in ℜ is V -converges to a limit in
ℜ then vector S-metric space (ℜ, S, V ) is called V -complete .
Lemma[8] For vector S-metric space (ℜ, S, V ),

S(ϑ, ϑ, µ) = S(µ, µ, ϑ) ∀µ, ϑ ∈ ℜ.

2 Main Results

Theorem 1 Let (ℜ, S, V ) be a vector S-metric space which is complete and
V be Archimedean. Suppose the mappings f : Y → Y satisfies

S(fℏ, fℏ, fϑ) ⪯ qS(ℏ, ℏ, ϑ) ∀ℏ, ϑ ∈ ℜ

where q ∈ [0, 1) is constant. Then f has fixed point in ℜ which is unique
and for any ϑ0 ∈ ℜ, iterative sequence ⟨ϑm⟩ defined by ϑm = fϑm−1, for all
m ∈ N, V -converges to fixed point of f .
Proof Let ϑ0 ∈ ℜ and sequence ⟨ϑm⟩ defined by ϑm = fϑm−1 for m ∈ N.Then
we have

S(ϑm, ϑm, ϑm+1) = S(fϑm−1, fϑm−1, fϑm)

⪯ qS(ϑm−1, ϑm−1, ϑm) ⪯
. . . ⪯ qmS(ϑ0, ϑ0, ϑ1)
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Thus for m, p ∈ N

S(ϑm, ϑm, ϑm+p) ⪯ 2S(ϑm, ϑm, ϑm+1) +

2S(ϑm+1, ϑm+1, ϑm+2) +

· · ·+
S(ϑm+p−1, ϑm+p−1, ϑm+p)

⪯ 2S(ϑm, ϑm, ϑm+1) +

2S(ϑm+1, ϑm+1, ϑm+2) +

· · ·+
2S(ϑm+p−1, ϑm+p−1, ϑm+p)

⪯ 2(qm + qm+1 + · · ·+ qm+p−1)

S(ϑ0, ϑ0, ϑ1)

⪯ 2qm+p−1(1 + q + q2 + . . . )

S(ϑ0, ϑ0, ϑ1)

⪯ 2
qm+p−1

1− q
S(ϑ0, ϑ0, ϑ1).

⟨ϑm⟩ is a V -Cauchy sequence because V be Archimedean. Then by V -completeness

of ℜ, there exist ϑ ∈ ℜ such that ϑm
S,V−−→ ϑ. So there exist ⟨bm⟩ in V such

that bm ↓ 0 and S(ϑm, ϑm, ϑ) ⪯ bm. Since

S(fϑ, fϑ, ϑ) ⪯ 2S(fϑm, fϑm, fϑ) +

S(fϑm, fϑm, ϑ)

⪯ 2qS(ϑm, ϑm, ϑ) +

S(ϑm+1, ϑm+1, ϑ)

⪯ 2qbm + bm+1

⪯ 2(q + 1)bm,

then S(fϑ, fϑ, ϑ) = 0, i.e. fϑ = ϑ.

We can also verify the following theorem as above.

Theorem 2 Let (ℜ, S, V ) be a vector S-metric space which is complete and
V be Archimedean. Suppose the mappings f : ℜ → ℜ satisfies

S(fℏ, fℏ, fϑ) ⪯ {a1S(ℏ, ℏ, fℏ) + a2S(ϑ, ϑ, fϑ)

+a3S(ℏ, ℏ, fϑ) + a4S(ϑ, ϑ, fℏ)
+a5S(ℏ, ℏ, ϑ)}
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for all ℏ, ϑ ∈ ℜ, where a1, a2, a3, a4 and a5 are positive and a1+a2+a3+a4+
a5 < 1. Then f has fixed point in ℜ and for any ϑ0 ∈ ℜ, iterative sequence
⟨ϑm⟩ defined by ym = fϑm−1, m ∈ N, V -converges to fixed point of f .

Example 2 Let V = R2
+ with coordinatewise ordering and let

ℜ = {(0, ϑ) ∈ R2 : 0 ⪯ ϑ ⪯ 1}∪

(ϑ, 0) ∈ R2 : 0 ⪯ ϑ ⪯ 1}.

The mapping S : ℜ× ℜ× ℜ → V is defined by

S((ℏ, 0), (ℏ, 0), (ϑ, 0)) = (
4

3
|ℏ− ϑ|, |ℏ− ϑ|)

S((0, ℏ), (0, ℏ), (0, ϑ)) = (|ℏ− ϑ|, 2
3
|ℏ− ϑ|)

S((ℏ, 0), (ℏ, 0), (0, ϑ)) = (
4

3
ℏ+ ϑ, ℏ+

2

3
ϑ)

Then ℜ is vector S-metric space which is complete.
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