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Abstract: The purpose of this study is to investigate the nature of dual solutions and their stability of the magnetized Casson fluid flow through an annular gap with the effects of heat transfer phenomenon. An uniform magnetic field is applied in the normal direction of the fluid flow. The suitable similarity transformation and the MATLAB routine bvp4c solver scheme are employed to solve the governing equations. The stability analysis is executed to characterize the stable and physically tractable solutions. The outcomes of the non-dimensional factors on velocity, temperature distributions are exhibited graphically. Also, the skin friction coefficient and Nusselt number are scrutinized in tabular form. From the discussion, we have come out that the Casson fluid parameter and the Hartmann number accelerate the velocity of the fluid in different cases of present geometries. The Eckert number is used as temperature enhancing parameter. From the results, we have found that dual solutions exist up to certain region of the similarity variable and the first solution is stable and physically tractable over the second solution.   
Index Terms: Dual Solutions, MHD, Casson fluid, Heat transfer, Stability Analysis, Annular region.

Introduction:

	The significance of the non-Newtonian fluids (non-linear relationship between the shear stress and the rate of deformation) due to their appropriate applications in the engineering sciences, industrial processes, medical sciences etc., are advanced than the Newtonian fluid in the recent times. The Casson fluid is a special kind of non-Newtonian fluid which need an yield stress to express their constitutive equations and it behaves like an elastic solid. This type of fluid flow has multifarious realistic applications such as food processing, bio-engineering operations, fuel cell, fiber technology and nuclear reactors etc. Jelly, Tomato sauce, Honey and human blood etc are some real life examples of the Casson fluid. Again, the impact of magnetic field on the fluid flow has been widely recognized by engineers and scientists because of the imperative applications such as MHD pump and  MHD horizontal multistage pump etc. Fluid motion over stretching/shrinking surfaces  with the heat transfer phenomena have many implications in several industrial processes. Also, the fluid flow through  this present geometry has occurred in many practical technology-driven  applications such as in the assembly of oil and gas, electrochemical cells, fluid viscometers and hydraulic equipment etc. 
	Crane [1] was the first author who has investigated the nature of fluid flow due to the stretching/shrinking surface. After that, a huge amount of research works of different fluids flow due to this type of geometries are available in different research areas from the several decades. In the recent times, many authors (Tamoor et al. [2], Debnath et al. [3], Dey and Hazarika [4] and Mahdy and Ahmed [5]) have investigated the impact of MHD on boundary layer flows of different fluids. Nagaraju and Garvandha [6] have inspected the thermally stratified viscous fluid flow with the influence of magnetic field through a circular pipe. 


	Nomenclature:


        Casson fluid parameter                                                    Prandtl number                


        curvature parameter                                                         plastic dynamic viscosity


  characteristic velocity (m s-1) and length (m)            radii of inner and outer cylinders (m)                          


        density of the fluid (Kg m-3)                                             stream function     


  dimensionless velocity                                             surface temperature of the inner and outer  
                                                                                                          cylinders (K)                                                         


   dimensionless temperature                                                similarity variable


        dimensionless time variable                                             skin friction coefficient


        dynamic viscosity (Kg m-1 s-1)                                       specific heat at constant pressure (J Kg-1 K-1)                                                          


      Eckert number                                                                   temperature of the fluid (K)                                          


        electrical conductivity                                                        time (s)


     Hartmann number                                                              thermal conductivity (W m-1 K-1)


         kinematic viscosity (m2 s)                                                 unknown eigen value



     local Reynolds number                                                velocity along directions (m s-1)                           


    local Nusselt number                                                        velocity at surface (m s-1)                                                                                                                                     


       magnetic field strength (Ns C-1 m-1)                                 yield stress                                                                                                                                                                                         



Krishna et al. [7] have put their ideas about the influence of  chemically stratified MHD flow over stretching sheet. Okedayo et al. [8] have examined the MHD flow with the effects of the heat transfer by accounting cylindrical pipe which is filled with porous medium. Eldesoky et al. [9] have investigated the effects of magnetic field and thermal transmission of fluid flow by assisting catheterized wavy tube. Recently, Gireesha and Sindhu [10] have investigated the significance of MHD boundary layer flow through annular microchannel with porous medium. Barman et al.[11] have examined the fluid flow through the annular gap between the concentric cylinders and offered many practical applications related to this present model. Again, Eldesoky et al. [12] have investigated the interface between compressibility and particulate suspension on peristaltically constrained flow due to planner channel. In the recent time, many researchers such as Shafee et al. [13], Ahmed et al. [14] and Ahmed et al. [15] have examined the flow behaviours within a tube and channel walls of different fluids like hybrid nanofluid and micropolar fluid etc. Sadaf and Abdelsalam [16] have investigated the characteristic of hybrid nanofluid with different flow parameters by considering wavy non-unoform annular region.  
	Due to the lack of information about the smoothness of the surface, length of the geometries,  shrinking and moving surfaces, some irregular behaviours of fluid flow are observed which are occurred with the change of time. To control this type of instability of the flow, many researchers have spent their time with this type of problems and got two solutions, one is dependent on time and the another one is independent on time. Markin [17] was the first author who has investigated the dual solutions and their stability. After that, many researchers (Weidmann et al.[18], Zaib et al. [19], Adnan et al.[20] and Ishak et al.[21] etc) have investigated the stability analysis on the dual solutions of the Newtonian and non-Newtonian (Casson fluid and nanofluid etc) fluids with heat transfer due to the different surfaces and put their importance of these fluid model in the various scientific fields.  In the recent times, Dey and Borah [22,23] have investigated the dual solutions of viscous fluid flow over exponentially shrinking cylinder and their nature of flow. Mishra et al.[24] have investigated the hydromagnetic flow and their stability on the dual solutions over stretching/shrinking surface. 
	This present work is all inspired by the above literatures and its immense relevance in different physical fields. We have studied the MHD Casson fluid flow through an annular gap between the concentric cylinders by assisting the MATLAB routine bvp4c solver scheme. Due to the contracting surfaces of the outer/inner cylinders of this model, the existence of dual solutions and their stability analysis are investigated together with heat transfer phenomena. The results are discussed pictorially and the stable/unstable flow are analysed by using the concept of the normal mode method.  Based on our knowledge, we have confirmed that the dual (steady and unsteady) solutions and their stability analysis of this fluid model through the annular region of the concentric cylinders is not established till now. From the literature review, we have seen that lots of studies have focused on various aspects of the topic or subject area, none of them deal with this particular research  idea. So, we are unable to make comparison our work with existing literatures.         
Mathematical Formulation:


	We have considered the hydromagnetic two-dimensional steady and  incompressible Casson fluid flow with heat transfer through an annulus. During the entrance part of the annular region, the flow is behaving like a boundary layer flow until it reaches to fully developed flow (where flow properties are independent of the direction of ). So, we mainly concentrate on the boundary layer region. The geometry of this present problem is shown in Fig.1. Here, we have considered the following three cases:
i. 



the inner cylinder of radius of this annulus characterized  with the shrinking velocity such that the constant signifies shrink at the surface of the inner cylinder and  the prescribed temperature at the surface, 
ii. 


the outer cylinder of radius  characterised with the shrinking velocity with  the surface temperature of the outer cylinder and 
iii. both the cylinder are shrank at the respective surface.



The relationship of their radii and wall temperatures are given by  An uniform magnetic field is applied in the transverse direction of the flow.   
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Fig. 1 Flow Diagram
	Following the theory of boundary layer approximations, the governing equations of this present problem are:

                                                                                                                           (1)

                                                                                        (2)

                                                        (3)




where, are the velocity components along the flow direction and radial direction respectively.  is responsible for the Casson fluid such that its value represent the Newtonian fluid. are the kinetic viscosity, density of the fluid, electrical conductivity, specific heat at constant pressure, thermal conductivity and temperature of the fluid respectively. 

The significant boundary conditions for the above cases are: 
i. for the case of shrinking inner cylinder

                                                                                                  (4)
ii. for the case of shrinking outer cylinder

                                                                                                     (5)
iii. both the cylinders are shrinking

                                                                                           (6)
The following similarity transformations [which must satisfy the continuity equation (1)] are adopted to alter the related non-linear governing equations into a new set of solvable systems.  

                                                                 (7)
Implementing the equation (7) into the equations [(2) & (3)], we have achieved the following set of equations:

                                                              (8)

                            (9)
The relevant boundary conditions become:

                                                                                          (10)


                                                                                          (11)


                                                                                          (12)

The boundary conditions [(10)-(12)] represent all the considering cases of this problem. are the curvature of the cylinders, the Hartmann number, the Prandtl number and the Eckert number respectively. 
	The following physical quantities of interest observed in this problem are skin friction coefficient and the Nusselt number that are very important in different physical fields like engineering sciences and geo-physics etc. The quantities are defined as the following way: 

                                                                      (13)  
Using the similarity transformation (7) in (13), we have got the following expression for these quantities: 

                                                                   (14)

where, is the local Reynolds number.
Flow Stability:


The flow stability is carried out to distinguish the stable and physically achievable solution. Many researchers (Markin [17] and Weidmann et al.[18] etc) have examined the flow stability and put their conclusions that the upper branch (first) solution is stable and physically realizable. To differentiate flow stability of this fluid model, the unsteady form of equations (2) and (3) are considered by adding in equations (2) and (3) respectively. The following similarity transformations are utilized to revolutionize the unsteady governing equations into a set of solvable system. 

                                                 (15)
Substituting equation (15) into the time dependent flow governing equations, the we have got the subsequent  set of equations.  

                                           (16)

      (17)
The associated boundary conditions for this problem are:

                                                                                        (18)

                                                                                           (19)

                                                                                         (20)
	For the check of  flow stability, the following perturb equations which are taken from Normal Mode Method are considered:

                                                                                                                     (21)







where, is the unknown eigen value parameter.are steady flow solutions and  small relative to the steady flow solutions which are determined by setting  i.e., the small related solutions taken in the forms  Hencein equations (16) and (17) reflects the initial decay or growth of the solution of equation (21). In this respect, we have to solve the following linearized eigen value problems which are obtained by Substituting (21) into equations (16) and (17) and used the case 

                                  (22)

               (23)
The boundary conditions became:

                                                                                                          (24)






This eigen-value problem gives  an infinite set of  eigen-values  . The stability of the steady flow solution is based on the least eigen value If the least eigen- value then an initial escalation of complexity on the flow is observed and the flow becomes unstable in nature. On the other hand, the positive smallest eigen-value recognizes an initial lie down of disturbances on the flow and it provides stable and achievable flow solution. Following Harish et al. [25] and Junoh et al. [26], the boundary condition is reduced to for calculating  the eigen-values 
Methodology: 
	Following Sastry [27]and Dey and Chutia [28], the “MATLAB routine bvp4c solver technique” is executed to solve the equations [(8), (9), (22) and (23)] with the relevant boundary conditions for all the cases of this present investigation. It gives the solutions by taking finite difference codes. It needs three basic functions such as (i) initial guess solutions, (ii) system of first order equations and (iii) boundary conditions of the problems. Here, we have introduced the following  new variables which switch the resultant equations into its system of first order equations: 


Then we have achieved  the following new system:













and the boundary conditions for all the cases are attached into their format. 
Discussion of the results:

 In this study, we have focused on the existence of dual solutions during fluid flow through the annular gap (in the boundary layer region formed in the entrance region) of the concentric cylinders and these exist up to a certain regions of dimensionless similarity variable . The flow behaviour and the heat transfer phenomena of the Casson fluid motion are discussed graphically for the different flow parameters. Here, the solid lines represent the first solutions, independent of time and the dash lines denote the second solutions, dependent on time. The flow over the shrinking surface helps to form dual solutions. We have discussed the results of this problem in the following cases: 
Case-I : When the outer cylinder is stationary with the shrinking inner cylinder of the concentric cylinders: 










	The impact of the Casson fluid parameter on the fluid motion is shown in Fig. 2. The increasing values of  reduce the viscous force of the fluid which helps to enhance the speed of the fluid during time-independent solution. But, an opposite nature is observed during time dependent solution. Physically, it can be interpreted that at a particular instant of time, the Casson fluid parameter accelerate the fluid motion but with the variation of time, fluid motion experiences retardation with the enhancement of Casson fluid parameter. Also, the temperature of the fluid is reducing with improving values of  [see Fig. 3] during steady case. But, it has the ability to enhance the temperature of the fluid during time dependent case. The curvature parameter helps to accelerate the fluid motion in both the cases (figure 4). From Fig. 5, it is perceived that the curvature parameter helps to reduce the temperature of the fluid motion in both the cases. It is also perceived that the thickness of the thermal boundary layer of the first solution is thicker as compared to the second solution. Physically it can be interpreted that the fluid flow in 2nd case reaches its thermal equilibrium stage sooner than first case. Impacts of Hartmann number on velocity and temperature profiles are depicted by Fig. 6 and Fig. 7. Speed of fluid motion diminishes with The reason behind this phenomenon is that developing values of enhances the resistance of the fluid over the surface and hence the velocity of the fluid enhances.  From Fig. 7, it is observed that the Hartmann number  helps to cool down the fluid motion during both time dependent and independent cases. Thus, the Hartmann number plays an important role to control the thermal transmission of the fluid between the annular region of the cylinders. But, the Eckert number plays a role to enhance the temperature of the fluid during both time-dependent (second solution) and time-independent (first solution) cases [ see Fig. 8]. The Eckert number is the relation between flow kinetic energy and thermal enthalpy. The kinetic energy enhances for developing values of  Again, it is well known fact that temperature is defined as average kinetic energy, so increasing values of   helps to make system warm.  
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Fig. 2 Velocity distribution for incremental values of Casson fluid parameter  when and inner cylinder is shrinking
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Fig. 3 Temperature distribution for incremental values of Casson fluid parameter  when and inner cylinder is shrinking
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Fig. 4 Velocity distribution for incremental values of curvature parameter when and inner cylinder is shrinking
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Fig. 5 Temperature distribution for incremental values of curvature parameter  when and inner cylinder is shrinking
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Fig. 6  Velocity distribution for incremental values of Hartmann number  when and inner cylinder is shrinking
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Fig. 7 Temperature distribution for incremental values of Hartmann number  when and inner cylinder is shrinking
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Fig. 8 Temperature distribution for incremental values of the Eckert number  when and inner cylinder is shrinking

Case-II: When the inner cylinder is stationary with the shrinking outer cylinder of the concentric cylinders: 




	The Fig. 9 is depicted to examine the nature of fluid motion for various values of the Casson fluid parameter when the outer cylinder is shrinking. It reflects that the fluid is accelerated in both the cases. Again, it is seen that the fluid motion is accelerated in time independent than the unsteady one. For the temperature distributions of the fluid with Casson fluid parameter ( ), is depicted in Fig. 10 and the behaviour confronts with the Fig. 3. Again, growth in curvature parameter of the cylinder helps to control the motion of the fluid during time independent case, but acceleration in fluid motion is seen during time dependent solution [see Fig. 11]. Impact of the curvature of the cylinders on temperature distribution of the Casson fluid is depicted by Fig. 12. From this figure, it is observed that system cools down (during steady and unsteady cases). Thus the parameter helps in controlling the temperature of the system. The figures 13 and 14 are demonstrated to show the influence of the Hartmann number  on the velocity and temperature fields respectively and the results confronts with the figures 6 and 7 respectively. Again, the influence of the Eckert number on the temperature of the fluid for this case [see Fig. 15] is same with the case of shrinking of inner cylinder.  It is also seen from Fig. 15 that Eckert number influence on fluid’s temperature during time-dependent case (second solution) is more than the first solution.    
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Fig. 9 Velocity distribution for incremental values of Casson fluid parameter  when and outer cylinder is shrinking
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Fig. 10 Temperature distribution for incremental values of Casson fluid parameter  when and outer cylinder is shrinking
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Fig. 11  Velocity distribution for incremental values of curvature parameter when and outer cylinder is shrinking
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Fig. 12  Temperature distribution for incremental values of curvature parameter when and outer cylinder is shrinking
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Fig. 13 Velocity distribution for incremental values of the Hartmann number  when and outer cylinder is shrinking
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Fig. 14 Temperature distribution for incremental values of the Hartmann number  when and outer cylinder is shrinking
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Fig. 15 Temperature distribution for incremental values of the Eckert number  when and outer cylinder is shrinking
Case-III: When both the cylinders of the  concentric cylinders are shrinking:








	The Fig. 16 imitates the velocity of the fluid with . It is perceived that the velocity of the fluid during steady case is much accelerated than the unsteady case. It can be pointed out that the increasing values of the Casson fluid parameter () accelerate the motion of the fluid during both the cases. But, it is used to protect the system from burning as it helps to reduce the temperature of the system during time independent and time-dependent cases [see Fig. 17]. The Fig. 18 and Fig. 19 reflect the velocity and temperature distributions of the fluid with the improving values of curvature parameter . From both the figures, it is noticed that the influence of curvature parameter on the velocity and temperature fields are same with Case-II. The Fig. 20 and Fig. 21 are depicted to show the influence of the Hartmann number on the velocity and temperature of the Casson fluid respectively. From these figures, it is perceived that velocity of the fluid during both the solutions accelerate with  The region behind this phenomenon is already discussed in Case-I. The effects of on temperature field of the fluid are remain same with Case-I and Case-II. The influence of  Eckert number on the temperature of the fluid is demonstrated in Fig. 22. From this figure, we have concluded that the Eckert number is used as enhancement of fluid’s temperature. Again, the maximum variation of fluid’s temperature is noticed during time-dependent case (second solution) with The reason behind this physical attribution is already discussed in Case-I and Case-II.   
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Fig. 16 Velocity distribution for incremental values of Casson fluid parameter  when and both inner and outer cylinders are shrinking
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Fig. 17 Temperature distribution for incremental values of Casson fluid parameter  when and both inner and outer cylinders are shrinking
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Fig. 18 Velocity distribution for incremental values of curvature parameter when and both inner and outer cylinders are shrinking
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Fig. 19 Temperature distribution for incremental values of curvature parameter when and both inner and outer cylinders are shrinking
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Fig. 20 Velocity distribution for incremental values of Hartmann number  when and both inner and outer cylinders are shrinking

[image: ]


Fig. 21 Temperature distribution for incremental values of Hartmann number  when and both inner and outer cylinders are shrinking
[image: ]


Fig. 22 Temperature distribution for incremental values of the Eckert number  when and both inner and outer cylinders are shrinking


All the figures in the above cases visualize the dual solutions of this problem and assure the boundary conditions asymptotically. Again, it is observed that the first solutions appear near the surface of the annular gap and hence it can be achievable practically than the second solutions. The stable and unstable flow solutions are observed in this flow model. To characterise the instability of the dual solutions, a table of smallest eigen values for various values of  is included for the three cases. If the smallest eigen values are happened to be positive then an initial decay of disturbances on the flow is observed and hence the flow become stable. Again, if the least eigen value is found to be negative then the flow will be unstable because it intensifies the initial disturbances on the flow. From the table-1, it is seen that the smallest eigen values for the first solutions are positive for all the cases and hence the first solutions are stable. But, in case of second solution for all the cases, the smallest eigen values are negative and hence an unstable flow is observed during time-dependent case. 


Table 1: Numerical values smallest eigen-value for various values of Casson fluid parameter when .
	

First Case (inner cylinder is shrank)
	


	
Eigen-Value 

	
	
	First Solution
	Second Solution

	
	1.0
1.2
1.4
	0.8808
0.8731
0.8676
	-0.4104
-0.4132
-0.4155

	Second Case (outer cylinder is shrank)
	1.0
1.2
1.4
	0.9496
0.9376
0.9162
	-0.0021
-0.0023
-0.0049

	Third Case (inner and outer cylinders are shrank)
	1.0
1.2
1.4
	0.9951
0.9866
0.9844
	-0.0510
-0.1028
-0.1554







	The physical quantities of interest such as shear stress and rate of heat transfer at the surface are tabulated numerically in Table-2 and Table-3 for all three cases. From the Table-2, it is noticed that the skin friction coefficient of the first solution for the first case enhances but in case of time-dependent solution, it experiences reduction for different values of the Casson fluid parameter. On the other hand, both the solutions of the skin friction coefficient enhance in all the cases for incremental values of A highly impact of the curvature parameter  on the skin friction coefficient is observed in Table-2 for all the cases. For the Case-I and Case-III, both the skin frictions (steady and unsteady cases) increases with  But, it reduces the shear stress at the surface in the second case. Again, the Casson fluid and curvature parameters have a vital role to increase the heat transfer rate at the surface [see Table-3]. That is both the solutions of the Nusselt number for all the cases enhances with different values of  



Table-2. Numerical values of skin friction coefficient for various values of the Casson fluid and curvature parameters when 
	




	



	Case-I
	Case-II
	Case-III

	
	
	Skin friction coefficient

	
	
	First solution
	Second solution
	First solution
	Second solution
	First solution
	Second solution

	0.5
	
1.0
	0.7182
	0.3524
	-0.1735
	-0.7062
	0.6311
	-0.1854

	0.8
	
	0.7285
	0.2350
	-0.1426
	-0.6087
	0.6675
	-0.1531

	1.0
	
	0.7330
	0.1736
	-0.1308
	-0.5633
	0.6811
	-0.1476

	
1.0
	0.5
	0.5976
	-0.1599
	-0.0944
	-0.3950
	0.5689
	-0.2829

	
	0.8
	0.6796
	0.2161
	-0.1437
	-0.6011
	0.6168
	-0.1845

	
	1.0
	0.7182
	0.3524
	-0.1735
	-0.7062
	0.6311
	-0.1854






Table-3. Numerical values of Nusselt number for various values of the Casson fluid and curvature parameters when 
	



	



	Case-I
	Case-II
	Case-III

	
	
	Nusselt number

	
	
	First solution
	Second solution
	First solution
	Second solution
	First solution
	Second solution

	0.5
	
1.0
	0.4766
	0.1700
	0.5977
	0.2057
	0.3983
	-0.4699

	0.8
	
	0.4812
	0.1520
	0.6136
	0.3229
	0.4286
	-0.2658

	1.0
	
	0.4833
	0.1420
	0.6191
	0.3639
	0.4389
	-0.1975

	
1.0
	0.5
	0.1619
	-0.5790
	0.3868
	-0.2960
	0.3983
	-0.4649

	
	0.8
	0.3782
	-0.0583
	0.5333
	0.0396
	0.2876
	-0.7315

	
	1.0
	0.4766
	-0.1700
	0.5977
	0.2057
	0.3983
	-0.4699



Conclusions: 
	The overall conclusions of this investigation are highlighted in the following points:
a. From the stability analysis, it is observed that the dual solutions are occurred up to a certain region of the flow direction and the first solutions is stable in manner and physically attainable. 
b. All the flow parameters for the first case facilitate to enhance the motion of the fluid, but the Casson fluid parameter controls the speed of the fluid during the time dependent situation. In the case of temperature field of the fluid, all the parameters control the temperature of the fluid, but the Casson fluid parameter has an opposite influence on the time dependent temperature field of the fluid. 
c. For the second case, the Casson fluid and curvature parameters have the tendency to speed up the fluid, but the curvature parameter plays an important rule because it helps to manage the motion of the fluid. 
d. The same flow characteristics are seen for the different flow parameters in the third case with the second case.   
e. Enhancing values of the Eckert number rise the temperature of the fluid during all the cases.     
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