
Connectivity concepts of an Arithmetic Graph 

1.Introduction 

Number theory is one of the oldest branches of mathematics which inherited rich contributions 

from almost all greatest mathematicians ancient and modern. The theory of congruences in 

Graph theory by Melvyn Bernard Nathanson in [3], paved the way for the emergence of a new 

class of graphs, namely Arithmetic Graphs. Inspired by the interplay between number theory 

and graph theory several researches in recent times are carrying out extensive studies on 

various arithmetic graphs in which adjacency between vertices is defined through various 

arithmetic functions. Vasumathi and Vangipuram defined the arithmetic graph in such a way 

that the adjacency between the vertices of same parity is considered in [6]. Suriyanarayana Rao 

and Sreenivasan.V  in [5] defined the arithmetic graph by excluding the condition of adjacency 

between the vertices of same parity. By the fundamental theorem of arithmetic, every positive 

integer greater than one can be uniquely represented as a product of primes (i.e) 𝑛 =

𝑝1
𝑎1 × 𝑝2

𝑎2 × … … × 𝑝𝑟
𝑎𝑟  where ai ≥ 1 . Here we discuss about the positive integer 𝑛 > 1 other 

than 𝑛 = 𝑝𝑎𝑖 where p is prime and ai ≥ 1 .  

2.Arithmetic graph 

Definition2.1. The arithmetic graph Vn is defined as a graph with its vertex set is the set 

consists of the divisors of n (excluding 1) where n is a positive integer and 𝑛 =

𝑝1
𝑎1 × 𝑝2

𝑎2 × … … × 𝑝𝑟
𝑎𝑟    where pi ′ s are distinct primes and ai ′ s ≥ 1 and two distinct vertices 

a, b which are not of the same parity are adjacent in this graph if (a, b) = pi , for some i , 1 ≤ i 

≤ r. The vertices u and v are said to be of same parity if both u and v are the powers of the same 

prime, for instance u = p 2 , v = p 3 . In this graph, vertex 1 becomes an isolated vertex. Hence, 

we consider arithmetic Vn graph without vertex 1. Therefore, each vertex of Vn is connected to 

some vertex in Vn . Clearly, Vn is a connected simple graph.  

Example 2.2. Consider an arithmetic graph G = V210 where 210 = 2 × 3 × 5 × 7. The vertex set 

V (G) = {2, 3, 5, 7, 2×3, 2×5, 2×7, 3×5, 3×7, 5×7, 2×3×5, 2×3×7, 2× 5×7, 3×5×7, 2×3×5×7}. 

Since (2, 2×3) = (2, 2×5) = (2, 2×7) = (2, 2×3×5) = (2, 2×3×7) = (2, 2×5×7) = (2, 2×3×5×7) = 

2 there exist edges between the vertex 2 and the vertices such as 2×3, 2×5, 2×7, 2×3×5, 2×3×7, 

2×5×7, 2×3×5×7. Also, since the (2 × 3, 2 × 3 × 7) = 2 × 3= 6≠ pi , 2 × 3 and 2 × 3 × 7 are non-

adjacent vertices. Similarly for the other vertices. This can be shown in Figure 2.1 



 

                                         Figure 2.1: Arithmetic Graph G=V210 

Theorem 2.3.[4]  If G = Vn is an arithmetic graph, where 𝑛 = 𝑝1
𝑎1 × 𝑝2

𝑎2 × … … × 𝑝𝑟
𝑎𝑟 , ai ≥ 

1 for  i ∈ {1, 2, . . . , r} , then the number of vertices of G can be calculated using the formula 

|𝑉| = ∏ (𝑎𝑖 + 1) − 1𝑟
𝑖=1  . 

Example 2.4. Consider the graph G = V210 where 210 = 2 ×  3 × 5×7 given in Figure 2.1. By 

Theorem 2.3 the number of vertices is |V210| = (1 + 1)(1 + 1)(1 + 1)(1 + 1) − 1 = 15. 

Theorem 2.5. Let Vn be an arithmetic graph with 𝑛 = ∏ 𝑝𝑖
𝑎𝑖𝑟

𝑖=1 , for any vertex 𝑢 = ∏ 𝑝𝑖
∝𝑖

𝑖∈𝐵  

where B ⊆ {1, 2, 3, . . . r}, 1 ≤ αi ≤ ai , and B ′ ⊆ B, one has deg(u) = (|B − B′ | +∑ 𝑎𝑖𝑖∈𝐵′ ) 

∏ (𝑎𝑖 + 1)𝑖∉𝐵  − δ1|B| − ( ∑ 𝑎𝑖 − 1)𝑖∈𝐵′  δ1B′, where B is the number of distinct prime factors in a 

chosen vertex u, B′ is the number of prime factors having power 1 in chosen vertex u, empty 

summation equals zero and δ is the Kronecker’s delta function defined by δij = {
0 𝑓𝑜𝑟 𝑖 ≠ 𝑗
1 𝑓𝑜𝑟 𝑖 = 𝑗

 

Note 2.6. For an arithmetic graph the vertices are divisors of n, hence the degree of all types 

of vertices say primes, power of primes, product of primes, product of powers of primes can 

be calculated using the formulae given in Theorem 2.5.  

Theorem 2.7. Let G = Vn be an arithmetic graph where 𝑛 = 𝑝1
𝑎1 × 𝑝2

𝑎2 , then 

 ∆(G) = {
[𝑎𝑗(𝑎𝑖 + 1) − 1] − |𝑎𝑗 − 1| 𝑓𝑜𝑟 𝑎𝑗 ≥ 𝑎𝑖 ≥ 2

𝑎𝑖 + 𝑎𝑗 𝑓𝑜𝑟 𝑎𝑖 𝑜𝑟 𝑎𝑗 = 1
 



 δ(G) = {
2 𝑓𝑜𝑟  𝑎𝑖 , 𝑎𝑗 > 1 

1 𝑓𝑜𝑟 𝑎𝑖  𝑜𝑟 𝑎𝑗 = 1
  . 

 Theorem 2.8.[4] Let G = Vn be an arithmetic graph where 𝑛 =  𝑝1  ×  𝑝2  ×  𝑝3  × · · · ×  𝑝𝑟 , 

then (i) ∆(G) = 2r−1  

       (ii)δ(G) = {
𝑟 𝑖𝑓 𝑟 ≥ 3
1 if 𝑟 =  2

 

Theorem 2.9. Let G be a Vn arithmetic graph, where 𝑛 = 𝑝1
𝑎1 × 𝑝2

𝑎2 × … … × 𝑝𝑟
𝑎𝑟, such 

that at least one of i ∈ {1, 2, . . ., r} does not equal one. Then,  

(i) ∆(G) = aj ∏ (𝑎𝑖 +  1) − 1𝑟
𝑖=1,𝑖≠𝑗  where aj is the maximum exponent of pi, i ∈ {1, 2, . . ., r}  

(ii)δ(G) = r. 

Results 2.10. 

1) It is identified that given arithmetic graph G = Vn, 𝑛 = 𝑝1
𝑎1 × 𝑝2

𝑎2  ; ai ≥ 1 are bipartite. 

2) The size of the arithmetic graph G = Vn, 𝑛 = 𝑝1
𝑎1 × 𝑝2

𝑎2 where a1, a2 ≥ 1 is determined 

using the formula 𝜖 = 4𝑎1𝑎2 −𝑎1 − 𝑎2.  

3)The diameter of an arithmetic graph is diam(G) ≤ 3 and its radius is radius(G) ≤ 2 .  

4)Arithmetic graph G = Vn, is Hamiltonian, if 𝑛 = 𝑝1
𝑎1 × 𝑝2

𝑎2 × … … × 𝑝𝑟
𝑎𝑟, 3 ≤ r ≤ 6 . 

5)All arithmetic graphs G = Vn is not a Eulerian graph. 

3.Connectivity Number of an Arithmetic graph G = Vn 

Connectedness plays an essential role in graph theory, the graph representing a communication 

network needs to be connected for communications to be possible between all nodes(vertices). 

Numerous networks such as transport networks, road networks, electrical networks, distributed 

computing, block chain network, telecommunication systems or networks of servers can be 

modelled by a graph. Many researchers are made to determine how well a network is connected 

or can be splitted for sake of effectiveness. Two classical measures that indicate how the graph 

G is reliable are the edge-connectivity κ′(G) and the vertex-connectivity or simply the 

connectivity κ(G) of G. The connectivity of G, written κ(G), is the minimum order of a vertex 

set S ⊂ V (G) such that G − S is disconnected or has only one vertex. 

Definition 3.1. The connectivity or vertex connectivity κ(G) is the number of vertices of a 

minimal vertex cut. A graph is called k − connected or k − vertex connected if its vertex 

connectivity is k or greater. Any graph G is said to be k-connected if it contains at least k 

vertices, but does not contain a set of k −1 vertices whose removal disconnects the graph and 

κ(G) is defined as the largest k such that G is k − connected. Thus κ(G) = 0 if G is either trivial 

or disconnected. All non-trivial connected graphs are 1 − connected. 

 Definition 3.2. An edge cut of G is a set of edges whose removal renders the graph G 

disconnected. The edge-connectivity κ ′ (G) is the size of a smallest edge cut. A graph is called 

k − edge − connected if its edge connectivity is k or greater. All non-trivial graphs are one edge 

connected. 



Theorem 3.3. For an arithmetic graph G = Vn, 𝑛 = 𝑝1
𝑎1 × 𝑝2

𝑎2   where 𝑝1 and 𝑝2  are distinct 

primes, then κ(𝑉𝑛)  =  κ ′ (𝑉𝑛)  = {
1 𝑓𝑜𝑟 𝑎𝑖 = 1&𝑎𝑗 > 1

2 𝑓𝑜𝑟 𝑎𝑖 > 1; 𝑖 = 1,2
 

Theorem 3.4. For an arithmetic graph G = Vn, 𝑛 = 𝑝1
𝑎1 × 𝑝2

𝑎2 × … … × 𝑝𝑟
𝑎𝑟where pi , i = 1, 

2, . . . , r, r > 2 are distinct primes and ai = 1 for all i = 1, 2, . . . , r, κ(Vn) = κ ′ (Vn) = r 

Theorem 3.5. For an arithmetic graph G = Vn, 𝑛 = 𝑝1
𝑎1 × 𝑝2

𝑎2 × … … × 𝑝𝑟
𝑎𝑟 where 

𝑝1,𝑝2, … 𝑝𝑟 are distinct primes and ai′ s ≥ 1 for all i = 1, 2, 3, . . . , r and r > 2 then κ(𝑉𝑛) = κ ′ 

(𝑉𝑛) = r. 

Proof. We prove the theorem by considering the following four cases 

 Case (i) All the ai’s, i = 1, 2, 3, . . . r is equal to one. By Theorem3.2., the result follows. 

 Case (ii) Some of the ai’s are equal to one and the others are greater than 1. Consider the vertex 

set of Vn as V (Vn) = {p1, p2, . . . , pr, p1 × p2, . . . , 𝑝1
𝑎1 × 𝑝2

𝑎2 × … … × 𝑝𝑟
𝑎𝑟}. Let the last 

vertex be 𝑝1
𝑎1 × 𝑝2

𝑎2 × … … × 𝑝𝑟
𝑎𝑟 say v1, where ai ’s are the maximum powers of the given 

distinct primes. By the definition of an arithmetic graph, we see that the only vertices which 

are adjacent to v1 are p1, p2, . . ., pr.  Hence d(v1) = r. Also, the minimum degree of Vn occurs at 

the vertex v1. That is, δ(Vn) = r = d(v1). Hence, κ(Vn) = κ ′ (Vn) ≤ δ(Vn) = r. But the removal of 

r vertices adjacent to v1 makes the graph disconnected. Hence, we obtain the result κ(Vn) = r. 

The edge connectivity κ ′ (Vn) = r is same as Theorem 3.2. 

 Case(iii) All the ai ’s are equal and greater than 1. Here also consider the last vertex of V (Vn), 

say 𝑝1
𝑎1 × 𝑝2

𝑎2 × … … × 𝑝𝑟
𝑎𝑟 where the ai’s are the maximum power of given distinct primes. 

By the definition of an arithmetic graph, it is clear that p1, p2, . . . , pr are the only vertices which 

are adjacent to the vertex 𝑝1
𝑎1 × 𝑝2

𝑎2 × … … × 𝑝𝑟
𝑎𝑟 . The remaining proof is similar to case 

(ii). 

 Case (iv) All the ai’s are distinct and greater than one. Consider the last vertex in the vertex 

set of Vn, say 𝑝1
𝑎1 × 𝑝2

𝑎2 × … … × 𝑝𝑟
𝑎𝑟where the ai’s  are the maximum power of the given 

distinct primes. By the definition of an arithmetic graph, this vertex is adjacent to exactly r 

vertices namely p1, p2, . . . , pr. Suppose it is adjacent to any other vertex except pi then, it 

contradicts the definition of an arithmetic graph. The remaining proof is similar to case (ii). 

Example 3.6. Consider an arithmetic graph G = V2310 where 2310 = 2 × 3 × 5 × 7 × 11, given 

in Figure 3.1. The set S = {2, 3, 5, 7, 11} is a minimum vertex cut so the cardinality of the set 

S is a connectivity number κ(G) which is equal to 5. Also, the removal of the set of edges say 

F = {2 × 3 × 5 × 7 × 11 2, 2 × 3 × 5 × 7 × 11 3, 2 × 3 × 5 × 7 × 11 5, 2 × 3 × 5 × 7 × 11 7, 2 × 

3 × 5 × 7 × 11 11} makes the graph disconnected, since F is a minimum edge cut, cardinality 

of F is the edge connectivity number. Thus, we have κ′(G) = 5 

 



 

                                              Figure 3.1: Arithmetic graph G = V2310 

Remark 3.7. The arithmetic graph Vn is a maximally connected graph 

4. The connectivity number of complement of an arithmetic graph 

In this section, we identified the connectivity number for complement of an arithmetic graph 

G = Vn, where n is a product of two primes, product of powers of two primes, product of r 

primes, product of powers of r primes. 

Definition 4.1 Let G be a graph, The complement 𝐺̅ of a graph G is the graph with vertex set 

V (𝐺̅) such that two vertices are adjacent in 𝐺̅ if and only if they are not adjacent in G 

Theorem 4.2 For an arithmetic graph G = Vn, 𝑛 = 𝑝1
𝑎1 × 𝑝2

𝑎2 where aj > 1; 𝑖 ≠ 𝑗 , κ (𝐺̅) = 

aj – 1 

Theorem 4.3 For an arithmetic graph G = Vn, 𝑛 = 𝑝𝑖
𝑎𝑖 × 𝑝𝑗

𝑎𝑗where aj ≥ ai ≥ 2, κ (𝐺̅)  = ai + 

aj – 1 

Example 4.5 Consider the graph G = V36, 36 = 22 × 32 given in Figure 4.1. The set S1 = {2, 

3} is a minimum vertex cut, and the Figure 4.2 shows the complement of an arithmetic graph 

V36 and the set S2 = {22 , 3, 32} is the minimum vertex cut of G. Thus κ (𝐺̅)  = 3 which 

satisfies the value of ai + aj − 1 = 2 + 2 − 1 = 3 

 



 

                                     Figure 4.1: Arithmetic Graph G=V36 

 

 

                                    Figure 4.2: Arithmetic graph 𝐺̅ = 𝑉36
̅̅ ̅̅  



Theorem 4.6 For an arithmetic graph G = Vn, 𝑛 =  𝑝1  ×  𝑝2  ×  𝑝3  × · · · ×  𝑝𝑟, r > 2, κ (𝐺̅)  

= (2r − 4) /2. 

Proof. Let G = Vn be an arithmetic graph. The vertex set V (G) = V (𝐺̅) = {𝑝1, 𝑝2, . . . , 𝑝𝑟, 

p1×p2, . . . , p1×pr, . . . , pr−1×pr, p1×p2×p3, . . . , 𝑝1  ×  𝑝2  ×  𝑝3  × · · · ×  𝑝𝑟}. By Theorem 

2.2.4, the maximum degree of the graph G is ∆(G) = 2r−1 . The vertices which are of having 

maximum degree is pi × pj ;i, j ∈ {1, 2,. . . , r}, 𝑖 ≠ 𝑗. Hence the number of vertices having 

maximum degree is rC2. These rC2 vertices will have minimum degree in 𝐺̅. Thus, there are 

rC2 set of minimum vertex cuts. Also, the minimum degree δ(𝐺̅) = |V (G) − 1| − ∆ (G) = (2r − 

4) /2. Thus d (pi × pj ) = (2r − 4) /2. So we have κ(𝐺̅) = (2r − 4) /2. 

Theorem 4.7 For an arithmetic graph G = Vn, 𝑛 = 𝑝1
𝑎1 × 𝑝2

𝑎2 × … … × 𝑝𝑟
𝑎𝑟 , r > 2 and at 

least one of ai , i ∈ {1, 2, . . . , r} does not equal to one, κ(𝐺̅) = ∏ (𝑎𝑖 + 1) + 𝑎𝑗 − 2𝑟
𝑖=1,𝑖≠𝑗  

where aj is the maximum exponent of pi , i ∈ {1, 2, . . . , r}.  
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