On Some typical kind of Continuity in Soft Topological Space
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ABSTRACT
In this paper we have made an attempt to make results on some typical kind of continuous functions of Soft J Open and Soft J Closed sets in Soft Topological spaces.  This study also describes the characterization of continuity with reference to our Soft J Open sets in Soft Topological Spaces.
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 INTRODUCTION 

		Soft set hypothesis was proposed by Molodtsov [4] in 1999 to manage vulnerability in a parametric way. A Soft set is a defined group of sets, instinctively Soft on the grounds that the limit of the set relies upon the boundaries. One idea of a set is the idea of dubiousness.  Molodtsov [6] proposed Soft set as a totally nonexclusive numerical instrument for displaying vulnerabilities. There is no restricted condition to the depiction of articles.  One of the critical benefits of soft topological spaces lies in their capacity to deal with complex frameworks with deficient or problematic information. They can display questionable conditions, rough thinking, and manage fractional data in a more regular and natural way contrasted with customary topological spaces.


PRELIMINARIES

Definition 2.1:[6] A  set  on the universe  is deﬁned by the set of ordered pairs , where  such that  for all . Hence  is called an  set . The value of  may be , some of them may be , some may have non empty intersection.
Definition 2.2: [2]
1. A  set  over  is called as a  Set denoted by  or  if for all , . 
1. A  set  over  is called as an  Set denoted by  or  if for all , 
Definition 2.3:[6] Suppose  be a collection of  sets over  with a fixed set  of parameters. Then,  is called a  on  if 
1.  belongs to . 
1. The artbitrary union of  sets in  is again in . 
1. The finite intersection  sets in  is again in . 
The term  is called . The members of  are called  sets in  and complements of them are called  sets in .
Definition 2.4:[3] A  set  of a   is known as a  set if  when  and  is .  stands for the set of all .
Definition 2.5.[3] A   of a  space  is known as a  set if its complement is a  set.  stands for the set of all  sets.
Definition 2.6. [1,5] A map  is called a 
1.  if the  of every  set in  is  in .
1.  if the  of every  set in  is  in .
1.  if the  of every  set in  is  in .
1.  if the  of every  set in  is  in .
1.  if the  of every  set in  is  in .
1.  if the  of every  set in  is  in .
1.  if the  of every  set in  is  in .
1.  if the  of every  set in  is  in .
1.  if the  of every  set in  is  in .
1.  if the  of every  set in  is  in .
1.  if the  of every  set in  is  in .
1.  if the  of every set in  is  in .
1.  if the  of every  set in  is  in .
 if the  of every  set in  is  in .
Result 2.7.[6] 
0. Each one of the  set remains .
0. Each one of the  remains .
0. Each one of the  set remains .
0. Each one of the  remains .
0. Each one of the  set remains .
0. Each one of the  set remains .
0. Each one of the  set remains .


 FUNCTIONS

Deﬁnition 3.1: A map  is known as  if the  of each one of the  set in  is both  and  (i.e ) in .
Theorem 3.2: Each one of the  map is .
Proof: Let  be  and  be a  set in . Thereon  is  in . Since  is ,  is  in . By Result 2.7,  is .
Remark 3.3: It is observed from the subsequent illustration that the reverse implication of the above theorem is incorrect.
Example 3.4: Let  Define  and  as  and . Consider the Soft topologies  where  and  are described this way:  and  where  and  are described this way:  and . Precisely the mapping  is Soft totally J continuous. The  set  defined as  is a  set in . But  is not  in . Hence  is not .
Theorem 3.5: Each one of the  map is .
Proof: Let  is  and  be  set in . Since  is ,  is  in . Then  is  in . Thereupon  is .
Remark 3.6: It is observed from the subsequent illustration that the reverse implication of the above theorem is incorrect.
Example 3.7: Let  Define  and  as  and . Consider the Soft topologies  where  and  are described this way:  and  where  is described this way: . Let  be a  mapping. Precisely  is  but not , because  is not  in .
Theorem 3.8: Each one of the  map is .
Proof:  is . Let  be a  set in . Then  is  in . Also,  is  in . Thus  is .


 FUNCTIONS

Deﬁnition 4.1: A map  is known as  if the  of each one of the  set in  is  in .
Example 4.2: Let  Define  and  as  and . Consider the  topologies  where  and  are deﬁned as  and  where  is described this way: . Let  be a  mapping. Precisely  is .
Proposition 4.3: If  is  then it is .
Proof: It is verified by Result 2.7, that each one of the  set is  in .
Proposition 4.4: If  is  then it is .
Proof: It is verified by Result 2.7, that each one of the  set is  in .
Proposition 4.5: If  is  then it is .
Proof: It is proved by Result 2.7, that each one of the  set is  in .
Result 4.6: It is observed from the subsequent illustration that the reverse implication of the above propositions 4.3, 4.4, 4.5 are incorrect.
Example 4.7: Consider the  set  in Example 4.2. Here,  is not   ( closed, ) in . Hence  is  but not  (, ).
Remark 4.8:  and  are independent. It is observed from the subsequent illustration.
Example 4.9:
1. Let  Define  and  as  and . Consider the  topologies  where  and  are described this way:  and  where  and  are described this way: . Precisely the mapping  is . The inverse-image of the  set ,  is not a  set in . Hence  is not .
2. Let  Define  and  as  and . Consider the   where  and  are deﬁned as  and  where  is described this way: . Let  be a  mapping. Precisely  is . The  set  defined as  is  in  but its   is not  in . Hence  is not .

[image: ]
Lemma 4.10: The following properties hold for the  subsets  of a space .
1.  and  if  is  in .
2.  then .
Proof: The proof is obvious.
Theorem 4.11: For a  mapping  the subsequent properties are equivalent. Assume that  is closed under any union and  is closed under any intersection.
1.  is .
2. The  of a  set  of  is .
3.  for each one of the  subset of  of .
4.  for each one of the subset  of .
Proof:
 It is evident.
 Let  be any  subset of . Suppose . Then by lemma 4.10, there exists  such that . Thus  and . Therefore,  and . Thereon  for every  subset of  of .
 Let  be any  subset of . Then by (3) and Lemma 4.10,  and then .
 Let  be any  subset of . Therefore, by hypothesis and by Lemma 4.10, . So, . This reveals that  is  in . Hence  is .
Result 4.12: The composition of two  functions need not be  and it is observed from the subsequent illustration.
Example 4.13: Let and Define  and  as  and . Consider the  topologies  where  and  are described this way: ,  where  is described this way:  and  where  and  are described this way: . Let  and  be two  mappings. Precisely  and  are  but their composition is not  because  is not  in .
Proposition 4.14: If  is  and  is  then their composition  is .
Proof: Let  be a  set in . Since  is   is  in . Because  is ,  is  in . So  is .
Proposition 4.15: If  is  and  is  then their composition  is .
Proof: Let  be a  set in . Since  is   is  in . Since  is   is  in . Thus  is .
Proposition 4.16: If  is  and  is  then their composition  is .
Proof: Let  be a  set in . Since  is   is  in . Since  is   is  in . By Result 2.7,  is  in . Thus  is .
Proposition 4.17: If  is  and  is  then their composition  is .
Proof: Let  be a  set in . Since  is   is  in . Since  is ,  is  in . By Result 2.7,  is  in . Thus  is .
Theorem 4.18: Let  be any family of . If  is  then  is  for each , where  is the  of  onto .
Proof: It has been verified by the combination of facts that  is continuous.
Theorem 4.19: If  is a  and  is a map such that their composition  is , then  is .
Proof: Let  be a  set in . Since  is a ,  is  in . Because  is  and ,  is  in . Thereon  is .
Theorem 4.20: If  is  and  is  then  is .
Proof: Let  be an arbitrary  of  and  be a  set of  containing . Since  is , there exists a  set  in  containing  such that . Now,  is a  set in  containing  and  is . Therefore, by Theorem 4.11 there exists  such that . Then . Hence  is .
Proposition 4.21: If  is  and  is   is .
Proof: Let  be a any  set in . Since  is ,  is  in . Since  is   is  set in . Because each one of the  set is ,  is  set in . Thus  is .
Theorem 4.22: If  and  be any two maps then 
1.  is  if both  and  are .
2.  is  if  is  and  is .
Proof:
1. Let  be a  set in . Since  is ,  is  in . Because  is   is  in . So,  is .
2. Let  be a  set in . Since  is   is  in . Since  is   is  in . So,  is .
Theorem 4.23: If  and  be any two  then
1.  is  if  is  and  are .
2.  is  if both  and  are .
3.  is  if  is  and  is .
4.  is  if  is  and  is .
5.  is  if  is  and  is .
Proof:
1. Let  be a  set in . Since  is   is  in . Since  is   is  in . So,  is .
2. Let  be a  set in . Since  is   is  in . By Result 2.7, is  set in . Because  is also ,   is  in . Thus  is .
3. Let  be a  set in . Since  is   is  in . Since  is   is  in . Thus  is .
4. Let  be a  set in . Since  is   is  in . By Result 2.7,  is  set in . As  is ,  is  in . So,  is .
5. Let  be a  set in . Because  is   is  in . Since  is   is  in . Thus  is .
Theorem 4.24: If  and  be any two  maps then
1.  is  if  is  and  are .
2.  is  if both  and  are .
3.  is  if  is  and  is .
Proof:
1. Let  be a  set in . Since  is   is  in . Since  is   is  in . Thus  is .
2. Let  be a  set in . Since  is   is  in . By Result 2.7,  is  set in . Now,  is also , then  is  in . Thus is .
3. Let  be a  set in . Since  is ,  is  set in . Since  is   is  in . So,  is .
Theorem 4.25: If  and  be any two  maps then
1.  is  if  is  and  are .
2.  is  if  is  and  is .
Proof:
1. Let  be a  set in . Since  is   is  set in . By Result 2.7,  is  set in . Since  is   is  in . Thus  is .
2. Let  be a  set in . Since  is   is  in . Since  is   is  in .Thus  is .
Theorem 4.26: Let  and  be any two maps then their composition  is  if  is  and  is .
Proof: Let  be a  set in . Since  is   is  in . Since  is   is  in . Thus  is .
Theorem 4.27: If  is  and  is  then their composition  is .
Proof: Let  be a  set in . Since  is   is  in . Since  is   is  in . Thus  is .
Theorem 4.28: If  is  and  is  then their composition  is .
Proof: Let  be a  set in . Since  is   is  in . Since  is   is  in . Then by Result 2.7,  is  in . Thus  is .
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Figure 4.1. Relationship between Soft contra J continuous function and some
existing Soft continuous functions




