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Abstract 

Cancer is one of the life-threatening diseases with the projected global burden of 28.4 million cases by 2040. Despite of technological and pharmacological advancements, the survival rate of cancer patients specifically at advanced stages is still limited. This leads to the constant exploration of new pharmacological components or strategies to enhance the current treatment outcomes. Medicinal plants have always been the originator for new therapeutic agents, curative agents on their own, and synergistic agents to mitigate adverse effects of conventional therapy. These pharmacological actions of medicinal plants are highly attributed to their active phytoconstituents like polyphenols, alkaloids, tannins, saponins, terpenoids and many more. Alkaloids are nitrogen-based subfamilies of plant and microbial secondary metabolites that served as rich repositories of bioactive therapeutic molecules in multiple disorders. While a range of alkaloids such as atropine, codeine, morphine, physostigmine are established anti-cholinergic, cough suppressant, analgesic, and cholinesterase inhibitor respectively, other alkaloid molecules were reported to show cytotoxicity. Therefore, a lot of research is conducted worldwide to enhance their practical use through effective structural modifications underpinning the concerns associated with their toxicity, solubility, availability, and potency. Alkaloids have been reported to exert anti-cancer effect by inhibiting enzyme topoisomerase inhibition, mitotic arrest, protein synthesis suppression, and DNA polymerase along with generation of double-stand breaks. In-addition, alkaloids have also been demonstrated to exert chemopreventive, chemo-restorative, and apoptotic properties through modulation of several molecular signaling cascades and proteins. The present chapter aims to explore the in-depth anti-cancer properties and molecular mechanisms of action of alkaloids according to their biological origin. The chapter will provide most comprehensive and up to date information about the influence of alkaloids over cancer-specific mutant oncogenes, tumour suppressor genes, and their regulatory pathways which may be helpful in finding effective anti-cancer combinatorial treatment regimens.
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Introduction
Cancer is a life-threatening health problem with significant mortality across the world. The current mortality rate of cancer is estimated to be 7.6 million globally and is expected to be increased further to 13.1 million by 2030. (1) Although with the technological advancements prospective therapies are emerging quickly still, the effective cure seems far from reach. This leads to the constant exploration of new anti-cancer therapeutic agents from myriad of resources including natural products. Medicinal plants have always been the major resource for the new anti-cancer entities owing to its rich chemical diversity and approximately 49% of anti-cancer drugs are derived or derivatized from natural products (3). While vinca alkaloids, flavonoids, the camptothecins, phenylpropanoids, the epipodophyllotoxins, lactones, and the taxanes are widely used plant-derived antitumor agents, plant based antineoplastic agents like the combretastatin and homoharringtonine analogs are in advanced stages of drug development (Khan et al., 2020; Hematpoor et al., 2018). 
Among the several phytochemicals, plant based alkaloids holds an esteemed position in the development of anti-cancer therapeutics due to their higher specificity (Lu et al., 2012). Alkaloids of medicinal plants are usually nitrogenous secondary metabolites carrying a ring structure. They can be classified as pyrrole, indole, isoquinoline, and quinoline alkaloids based upon the position of nitrogen atoms (Figure 1). Originated from simple amino acid precursors, such as tyrosine, phenylalanine, tryptophan, ornithine, arginine, or lysine, approximately 12,000 different alkaloids have been documented from medicinal plants with a wide range of biological activities, including anticancer therapeutics (Debnath et al., 2018). Two plant derived alkaloids, vinblastine and camptothecin, a potent cell cycle inhibitor and a topoisomerase I inhibitor respectively are US Food and Drug Administration (FDA) chemotherapeutic agents (Choudhari et al., 2020). Alkaloids are further classified based upon their chemical structures, biosynthetic pathways, and biological activities (Figure 2) (Dey et al., 2020). This chapter will explore the most up-to-date information about the anti-cancer activity of plant based alkaloids along with their molecular mechanism of action and therapeutic value.  
Figure 1: Basic ring structure of alkaloids (Source: Tilaoui et al., 2021)
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Figure 2: Basic Classification of Alkaloids
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Anti-Cancer Mechanism of Plant based Alkaloids
Aconitum alkaloids
Aconitum alkaloids are characteristically C18-, C19-, and C20-diterpene alkaloids abundantly found in Aconitum and Delphinium species [1, 2, Li et al., 2021]. Aconitum alkaloids have been reported to exert ant- cancer effects against different cancer lines including MCF-7, HepG2, H460, HL-60, A-549, SMCC-7721, SW480, CT26, HeLa, SkMel25, SkMel28, MDA-MB-231, KB and KB-VIN, P388, Huh7, L02, Miapaca-2, PANC-1, TGF-β1-induced A549 cells, and K-562 cell lines (Li et al., 2021). The cytotoxic effect of these diterpenoid alkaloids over these cancer cell lines have been attributed to its stimulatory effect over variety of molecular targets and signaling pathways such as p38 MAPK-, B-cell lymphoma 2 (Bcl-2)-associated X (Bax) death receptor, mitochondrial and caspase-meditated apoptosis. In addition, molecular mechanism of aconitum alkaloids has included inhibition of G1/S cell cycle regulators, Bcl-2, CCND1, NF-κB signaling pathway [109, 111, 112, 113].
Berberine
Berberine is a bioactive alkaloid available in several medicinal plants including Berberis species, Phellodendron chinense C. K. Schneid., Hydrastus canadensis, Arcangelisia flava (L.) Merr., Pellodendron chenins, and Coptis rhizomes [7, 8]. This quaternary amine isoquinoline alkaloid has been extensively explored for its anti-cancer activity in multiple cancer cell lines. 
Berberine was found to exhibit cytotoxic effect in different breast cancer cell lines like MDA-MB-231, MDA-MB-468, HCC1937, HCC70, HCC38, BT-20, HCC1143 and BT-549, and MCF-7/ADR. The primary mechanisms through which berberine showed cytotoxicity in these cell lines include up-regulation of G1 and -G2/M phase cell cycle arrest and apoptosis with simultaneous inhibition of cell proliferation and expression of cyclin D1, cell migration, phosphorylation, and pro-inflammatory cytokines (IL-1α, IL-1β, TNF- α and IL-6) In-addition, studies also revealed that berberine exert anti-cancer effect on breast cancer cell lines by promoting accumulation of the LC3II protein, reducing autophagosomes formation, and reversing doxorubicin resistance (Rauf et al., 2021). Overall, the pro-apoptotic mechanism of berberine involves down-regulation of MTDH, AKT/ERK pathway, NLRP3 and NF-κB inflammasome pathway and up-regulation of AMPK and mitochondrial apoptotic pathway. On the contrary, the anti-proliferative and anti-invasion mechanism of berberine in breast cancer cell lines include stimulation of EGFR/ERK and EGFR/AKT signaling pathways and suppression of AP-1 and PCNA expression. In colon cancer cell lines, HT29 and HCT116, berberine exhibited cytotoxic response due to the promotion of LncRNA CASC2 expression, caspase-3 activity and apoptosis with simultaneous suppression of Bcl-2 expression [56, 60]. Researchers also documented multi-targeted anti-cancer activity of berberine on pancreatic cell lines (PANC-1, MiaPaCa-2, AsPC-1, BxPC-3, PANC-28, BxPC-3). Berberine incur inhibitory actions on DNA synthesis, G1 phase of cell cycle, proliferation of cancer cells, PARP, NANOG, POU5F1, SOX2 and Rad51 expression, citrate metabolism, and mitochondrial function. Studies also indicated promotion of apoptosis and caspase-independent cell death behind the anti-cancer activity on pancreatic cell lines (Rauf et al., 2021).  Inhibition of cell growth, migration, and invasion with stimulation of apoptosis and cell cycle arrest have been revealed to be the primary mechanisms of action of berberine in lung cancer cell lines A549, H1650, H1299, and H1975 (Zheng et al., 2018a, Zheng et al., 2020, Fan et al., 2018, Kumar et al., 2020, Chen et al., 2019). While triggered apoptosis is achieved by up-regulating the Bcl-2/Bax signaling pathway, tumor suppressor genes (p21 and p53) mRNA and protein and down-regulating VEGF/NF-κB/AP-1 signaling pathway, the anti-proliferative and anti-invasion action is executed by targeting PI3K/AKT and ROS/AMPK signaling pathways as well as regulating the interaction of HOTAIR and miR-34a-5p expression. In gastric cancer cell lines SNU-5, AGS, SGC7901, MKN45, BGC823, and MGC 803, berberine administration were reported to attenuate MMP-1, -2, -3, and -9, survivin and STAT3, Bcl-xL, C-myc, and cyclin-D1 expression along with inhibition of PI3K/AKT/mTOR signaling pathways. In-addition, modulation of MAPK-signaling pathways and miR-203/Bcl-w apoptotic axis also contributes in the cytotoxic potential (Rauf et al., 2021).  Berberine was reported to be cytotoxic against human hepatoma cancer cell lines HepG2, Hep3B, BEL-7404, Huh-7, and NU-182 in a dose dependant manner. The main maolecular mechanisms of berberine against these cancer involved inhibition of cyclin D1 and SLC1A5 expression as well as glutamine uptake along with modulation of tumorigenesis-related gene expression. G1 phase cell cycle arrest is also noticed in liver cancer cell lines on berberine treatment [83, 86]. Overall, the pro-apoptotic mechanisms of berberine in liver cancer cells involved suppression of SLC1A5, c-MYC, PI3K/AKT, p38 MAPK/ERKCOX2, and HIF-1α expression as well as translation of NF-κB, p65 and β-catenin, regulation of the AKT/FoxO3a signaling pathway, iPLA2/LOX-5/LTB4 pathway and PHLPP2-AKT-MST1 axis. On the contrary, the anti-proliferative action of berberine includes targeting of ERK1/2 and GPT1 axis and up-regulating miR-22-3p expression. Inhibition of STAT3 activation and induction of caspase and apoptotic response has been indicated as the main molecular mechanism of berberine in oral cancer cell lines KB, C666-1, HONE1, and HK1 [91-93]. In bone cancer cell lines Saos-2 and MG-63, berberine exerted anti-cancer effect caspase associated inflammatory axis and triggering apoptotic response in a dose dependant manner [95, 96]. Berberine treatment was reported to induce autophagy and suppress caspase-1/IL-1 inflammatory signaling axis in U251 and U87 glioblastoma cancer cell lines [103, 107]. Potential connections between berberine and MAPKs elucidated the role of suppressed ERK1/2, Ki-67, and the epidermal growth factor receptor (EGFR) expression resulting in the decreased glioblastoma tumor growth (Sun et al. 2018, Liu et al. 2015). In this cancer type, this natural compound showed pro-apoptotic response by triggering Bax/Bcl-2 proteins, procaspase-9, caspase-3 and -9, and the poly(ADP-ribose) polymerase (PARP) cleavage. Berberine administration also induces ER stress, release of intracellular Ca (2+), and disrupted mitochondrial membrane potential with consequent increase of ROS production (Eom et al. 2010, Chen et al. 2009). The anti-proliferative mechanism of berberine in glioblastoma was mainly due to G1 arrest and apoptosis (Eom et al. 2008). In-addition, berberine has also been reported to suppress N-acetyltransferases – 1 (NAT-1) drug-metabolizing enzyme which remains over-expressed in several cancers including glioblastoma. The up-regulated enzyme response leads to chemotherapy resistance in cancer (Wang et al. 2002). Dose dependant anti-cancer response of berberine was also documented on skin cancer cell lines A375.S2, A431, and B16 by inhibiting MMP1, MMP13, uPA, p-PI3K, p-AKT, and Ras expressions with consequent promotion of RAR-β and RAR-ϒ expressions. In-addition, berberine also inhibited cell proliferation and induced apoptic response in skin cancer cell lines [110-112]. Berberine has also been reported to exert antiendometrial cancer properties through inhibition of proliferation, migration, and invasion and modulation of miR-101/COX-2/PGE2 and PI3K/Akt signaling pathways [116, 117]. In a dose dependant fashion, berberine treatment down-regulated the VEGF and HIF-1
 expressions, androgen receptor signaling, and cellular testosterone synthesis in prostate cancer cell lines LNCaP, DU-145, 22Rv1, PC3M, and PC3 [118-120]. A dose dependant growth restriction response was noticed in thyroid cancer cell lines 8505C and TPC1 upon berberine treatment. Berberine exerted anti-proliferative activity on thyroid cancer cells by promoting apoptosis, cell cycle arrest at G0/G1 phase, caspase -3 activity, and p-27 expression. A simultaneous decrease in cell cycle regulation was also reported [121 - 123].
Figure 3: Molecular Mechanism of Berberine in different cancer cell lines (Source: Rauf et al., 2021)
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Evodiamine
Evodiamine is a bioactive alkaloid isolated from Chinese herbal medicine Evodia rutaecarpa (1). The basic skeleton of evodiamine comprise of quinazolinocarboline group (12). The anti-cancer activity of evodiamine has been reported in different cancers including colon, gastric, oral, pancreatic, hepatocellular, lung, nasopharyngeal, leukemic T lymphocyte, glioblastoma, osteosarcoma, prostate, bladder, urothelial, breast, cervical, ovarian, and melanoma cancer cells (reviewed by Luo et al., 2021). Evodiamine exerted cytotoxic response over these cancer cell lines by targeting enzyme topoisomerase, inhibiting cancer cell proliferation, acting on transient receptor potential cation channel subfamily V member 1 (TRPV1), inducing apoptosis, attenuating the aryl hydrocarbon receptor (AhR), reducing migration/invasion and inhibiting metastasis (16, 37). The pro-apoptotic mechanisms of evodiamine include inhibition of the mTOR signaling pathway, STAT3 signaling pathway, PI3K/AKT and PI3K/Protein Kinase C (PKC) pathway, and Bcl-2 expression (reviewed by Luo et al., 2021). In-addition, apoptosis induction is also driven by inducing Bax, caspase -3, -8, and -9, shatterproof 2 expression, and generation of reactive oxygen species, nitric oxide (51-53). Evodiamine exerted anti-proliferative effect by promoting cell cycle arrest at G2/M phase, Cdc2 phosphorylation, cyclin B1 and p21 expression, and peroxisome proliferator‑activated receptor γ (PPARγ) signaling pathway with simultaneous suppression of cyclin D1, cyclin A and Cdc25C expression (reviewed by Luo et al., 2021). The anti‑metastasis and anti‑invasion effects of evodiamine have been attributed to the down-regulation of MMP‑2 and MMP-9 expression, NF‑κB/p65 nuclear translocation and acetylation, and ERK1/2 activation (69, 70). In-addition, evodiamine have been reported to promote autophagy, inhibit angiogenesis, NF‑κB‑regulated gene products, hypoxia‑inducible factor‑1α (HIF‑1α) expression, and Wnt and Notch signaling pathways (reviewed by Luo et al., 2021).
Figure 4: Molecular Mechanism of Evodiamine in different cancer cell lines (Recreated figure from Luo et al., 2021)
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 Withanolides
Withanolides are one of the popular plant based alkaloids reported for their anti- cancerous activities since last two decades (Verma and Kumar, 2011; Dar et al., 2019). Till date, 12 different types of withanolides have been isolated from Withania somnifera plant possessing a 6-membered extensively oxygenated lactone ring responsible for its anti-cancer activity (Gaurav et al., 2016; Kaul et al., 2016; Kumar et al., 2015). A wide range of cytotoxic studies showcased the in-vitro cytotoxic potential of different withanolides (reviewed by Singh et al., 2021). Table 1 demonstrates the molecular mechanism of action of withanolides in different cancer lines. Similarly, the anti-cancer efficacy of withanolides has also been evaluated on animal models. In fibrosarcoma containing Balb/c nude mice treatment of withanolides resulted in reduced tumour growth and enhanced apoptosis due to increased expression of p53 transcription factor (Widodo et al., 2007). Male golden Syrian hamster model of oral carcinoma demonstrated reduced micronucleus frequency and improved phase II detoxication agents upon withanolides treatment (Panjamurthy et al., 2009). Wistar rats model of skin cancer demonstrated absence of p53+ foci in histopathological findings (Mathur et al. 2004). Numerous studies have reported about the efficacy of withanolides in suppressing cancer stem cells. While Kim and Singh (2014) documented the suppression of breast cancer stems cells in MMTV-neu mice on withanolides treatment, Kakar et al. (2014) and Ting et al. (2016) revealed anti-metastatic and reduced tumor growth of ovarian and gastrointestinal cancer through inhibition or elimination of cancer stem cells (CSCs) respectively. The latter also documented the suppression of Notch signaling pathways in anti-cancer activity of withanolides in ovarian cancer. Withanolides exerted anti-invasion and anti-metastatic response on MDA-MB-231 cells of mammary cancer by inhibiting neighbouring CD44high/CD24low cancer stem cells (Khazal, 2015). Withanolide-D is reported to trigger programmed cell death in multiple myeloma-cancer stem cells (MM-CSCs) and RPMI 8226 cells (Issa et al., 2017).  The pro-apoptotic mechanism of withanolides is well elucidated and it is reported that this natural alkaloid works on both intrinsic and extrinsic apoptotic pathways (Figure 5). Withanolides treatment targets the intrinsic apoptotic pathway by activating caspases-3 and caspases-9, cytochrome c release from mitochondria with consequent disruption of mitochondrial potential, Bax and Apaf-1 (apoptotic protease activating factor-1) expression. On the contrary, the extrinsic apoptotic pathway is triggered through activation of caspase-8 and consequently the cell surface death receptors TNFR-1/Fas. Withanolides administration is reported to trigger the breakdown of Bid, a member of Bcl-2 protein which serves as a connecting event between intrinsic and extrinsic pathway. Another connecting factor is NF-kB. Withanolides facilitates NF-kB breakdown and preventing its binding with DNA leading to triggered caspase-3 mediated cleavage and apoptosis.
Table 1: Molecular mechanism of action of withanolides in different cancer lines
	Cancer Type
	Cell Line
	Mechanism of action
	Citation

	Myeloid blood cancer
	HL-60; K562; MDS-L;  HL-60; THP-1; Jurkat; Ramos
	Apoptosis; activation of neutral-sphingomyelinase 2 and phosphorylation of JNK and p38MAPK signaling pathways; up-regulated expression of heme oxygenase-1 (HMOX1) and LC3A/B level; autophagy
	Malik et al., 2007; Senthil et al. 2007; Mondal et al., 2010; Okamoto et al., 2016

	Breast Cancer
	MDA-MB-231; MCF-7
	G2/M cell cycle arrest; inhibition of cyclin-dependent kinase (CDK I) and Cdc25B; activation of FOXO-3a transcriptional regulator of bim protein; apoptosis; DNA condensation & fragmentation; poly-(ADP-ribose)-polymerase enzyme inhibition; STAT 3 inhibition; Disrupted vimentin cytoskeleton; Anti-metastasis; phosphorylation of p53 and upregulation of ER-α; elevated phosphorylation of p38 MAPK, ERK and JNK; increased expression of autophagic factors such as p62/SQSTM1 (p62), LC3-I and LC3-II (microtubules associated protein 2-light chain 3); promotion of autophagosomes formation; prevention of autolysosomes formation, proteasomal degradation, self-engulfing; inhibition of fusion regulating proteins such as mitofusin 1, mitofusin 2, optic  trophyprotein 1 (OPA1) and dynamin-related protein 1 (DRP1).
	Stan et al., 2008a; Stan et al., 2008b; Lee et al., 2010; Thaiparambil et al. (2011); Hahm et al., 2011; Hahm et al., 2014; Ghosh et al., 2017; Sehrawat et al., 2019

	Prostate Cancer
	PC-3; DU-145
	G2/M cell cycle arrest; inhibition of cdc-2 phosphorylation; activation of phosphorylated Wee-1, histone H3, p21 and Aurora B; Apoptosis; down-regulation of AKT signaling pathway and vimentin expression
	Roy et al. 2013; Suman et al., 2016; Nishikawa et al., 2015

	Human metastatic cancer
	Caski; SK-Hepl
	Inhibition of TGF-β and matrix metalloproteinase (MMP)-9
	Lee et al., 2013

	Colorectal Cancer
	HCT116; SW480
	G2/M cell cycle arrest; inhibition of Mad-2 and cdc-20; Apoptosis; anti-proliferative and anti-metastatic response; ; inhibition of Notch-1 signaling and the prosurvival pathway
	Das et al., 2014; Koduru et al., 2010; Choi and Kim, 2015.

	Lung Cancer
	A549; H1299
	Inhibition of phosphorylation of Smad 2/3 and NF-кB transcription factor; anti-proliferative action; suppression of P13K/Akt signaling pathway
	Aqil et al., 2018; Cai et al., 2014

	Liver Cancer
	Huh 7; MHCC97H; HepG2
	Autophagy; Apoptosis; Activation of  protein mortification; P13K/AKT signaling 
	Siddharth et al., 2019; Elzefzafy et al. 2019



Figure 5: Mechanism of apopotosis by one of the withanolides (Source: Singh et al., 2021)
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Piperine
Piperine (1-Piperoylpiperidine) is one of the most renowned dietary alkaloid of Piperaceae family (black, green, and white pepper) documented for plethora of pharmacological actions including anti-metastatic and anti-cancer activities (Figure) (Zheng et al., 2016; Lu et al., 2012). Piperine have been reported to exert anti-cancer activity through variety of mechanisms like promotion of apoptotic and anti-proliferation pathways, cell cycle arrest, triggering of detoxification enzymes, ER stress and autophagy, increased response for chemo and radiotherapy (Table) (Manayi et al., 2017). Piperine has been reported to target several effector proteins of both intrinsic and extrinsic pathways of apoptosis. The anti-metastatic and anti-angiogenic behavior of piperine has been attributed to the matrix metalloproteinases (MMPs) specifically, MMP-1, MMP-3, MMP-9, and MMP- 13 as well as epithelial-to-mesenchymal transition (EMT) (Chaffer et al., 2016; Kim et al., 2017; Shibue and Weinberg, 2017). In neuroblastoma, piperine is reported to inhibit anti-apoptotic protein, surviving as well as cell survival regulatory proteins such as NF-kB, c-Fos, CREB, and ATF2 (Muthukumar and Vanisree, 2011; Sattarinezhad et al., 2015). Suppression of enzyme EGFR tyrosine kinase and high affinity to G-quadruplex DNA are other chemopreventive actions of piperine documented in literature (Paarakh et al., 2015; Tawani et al., 2016). Piperine exerts anti-cancer activity due to its potent antioxidant behavior that too at very low concentrations. This bioactive alkaloid restored the redox homeostasis balance by inhibiting thiobarbituric reactive substances (TBARS) and enhancing depleted glutathione content, g –GT and Na+, K+-ATPase in chemically induced colon cancer (Khajuria et al., 1998). Apart being an effective antioxidant, piperine also acted as a potent pro-oxidant agent therefore driving ROS mediated cell death in many cancer types including hepatocellular carcinoma cells, human oral squamous cells, and HRT-18 rectal adenocarcinoma cancer cells (Gunasekaran et al., 2017; Siddiqui et al., 2017). The role of piperine in inhibiting signaling pathways that regulates cancer stem cells self-renewal and differentiation was demonstrated in breast CSCs (Kakarala et al., 2010; Kim et al., 2012). In breast CSCs, piperine regulated the balance between dividing and quiescent cells by inhibiting Wnt/β-catenin signaling pathway and key regulating proteins DKK-1, secreted frizzled-related protein 2 (sFRP2), B cell-specific Moloneymurine leukemia virus integration site 1 (Bmi-1) and cyclin-dependent kinase 6 (CDK6). Another mechanism through which piperine exerted anti-cancer effect involved inhibition of human umbilical vein endothelial cells (HUVECs) proliferation, migration, and tubule formation (Karar and Maity, 2011; Doucette et al., 2013). The molecular mechanism behind anti-angiogenic activity in breast cancer cells involves blockage of Akt phosphorylation with consequent inhibition of phosphoinositide-3 kinase (PI3K)/Akt and Vascular endothelial growth factor (VEGF) signaling (Doucette et al., 2013; Talib, 2017). Similar VEGF inhibitory response together with suppression of pro-inflammatory cytokines was also implicated in B16F10 melanoma cell-induced angiogenesis (Sunila and Kuttan, 2006). Piperine is also reported to inhibit p-glycoprotein (P-gp) and MRP-1 responsible for imparting multi-drug resistance in cancer cells. The P-gp inhibitory response was exerted by binding at the nucleotide binding domain leading to energy dependent efflux of drugs through P-gp (Singh et al., 2013).
Figure 6: Pharmacological targets of Piperine (Source: Tripathy et al., 2022)
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Table 2: Anti-cancer mechanism of action of piperine in in vitro and in vivo models
	Cancer Type
	Cell Line
	Mechanism of action
	Citation

	Breast Cancer
	Mouse 4T1breast tumor model; human HER2- cell lines; MCF-7; TNBC
	Activation of caspase 3-mediated intrinsic
Apoptotic pathway; G2/M or G1/G2 phase cell cycle arrest;  suppression of cyclin D3, CDK4, E2F-1, cyclin B1, CDK1, and Cdc25C proteins; activation of p21; anti-metastatis through reduced expression of MMP-3 and MMP-9; inhibiting ERK1/2, SREBP-1 and FAS signaling; inhibiting cell migration by down-regulating epidermal growth factor (EGF)-induced MMP-9 expression, NF-kB and AP-1 activation, p38 MAPK, and Akt signaling; adjuvant for TRAIL-mediated cell death in both TRAIL-sensitive and TRAIL resistant triple-negative breast cancer cells; inhibition of surviving expression and p65 phosphorylation
	Lai et al., 2012; Do et al., 2013; Greenshields et al., 2015; Abdelhamed et al., 2014

	Prostate Cancer
	Nude xenograft mice model of androgen
Dependent (PC3) and androgen independent (LNCaP, DU145)
prostate cancer cells
	Reduced expression of phosphorylated STAT-3 and nuclear factor-kB (NF-kB), and androgen receptor (AR); Cell cycle arrest at G1; suppression of cyclin D1 and cyclin A; activation of p21 and p27; autophagy; enhanced LC3II expression

	Samykutty et al., 2013; Ouyang et al., 2013

	Lung Cancer
	Xenograft model of B16F10 mouse melanoma cells and PMA-induced invasiveness of human fibrosarcoma HT-1080 cells; benzo(a)pyrene induced lung carcinogenesis
	Anti-metastasis; Reduced DNA damage and DNA-protein crosslinks; anti-neoplastic transformation through the modulation of serum and tissue glycoprotein levels; reduced mitochondrial lipid peroxidation; increased  enzymatic and non-enzymatic anti-oxidant defense system; inhibition of phase-I drug metabolizing enzymes - NADPH-C reductase,
cyt-p450, and cyt-b5.
	Pradeep and Kuttan, 2002; Hwang et al., 2011; Selvendiran et al., 2006; Selvendiran et al., 2005

	Melanoma
	SKMEL-28 and mouse B16F0 melanoma cells
	Cell cycle arrest at G1; suppression of cyclin D1; p21 activation; ROS mediated DNA damage and disrupted calcium homeostasis; phosphorylation of H2AX at Ser139; DNA damage, activation of ataxia, telangiectasia, rad3-related protein (ATR), and checkpoint kinase 1 (Chk1) are activated leading to cell cycle arrest and subsequent apoptosis; radiosensitization and subsequent apoptosis
	Fofaria et al.,
2014; Tak et al., 2012; Rafiq et al.,
2015

	Colon cancer
	HT-29 colon carcinoma cell
	Cell cycle arrest at G1; suppression of cyclin D1 and D3, CDK4, CDK6, and survivin; inhibition of Akt and retinoblastoma protein (pRb) phosphorylation; activation of p21 and p27; suppression of mTORC1; autophagy; activation of ER stress by  promoting CHOP, GRP78, IRE1α, and JNK expression
	Yaffe et al., 2015; Moreau and Kaur, 2017



Sophorodine and oxymatrine
Sophorodine and oxymatrine are quinolizidine alkaloids extensively found in plants of Leguminosae family including Sophora flavescens Alt, Sophora alopecuroides L, Sophora viciifolia Hance (Zhang et al., 2016; Weng et al., 2016). It was first approved for cancer treatment by the regional agency of China (SFDA) for patients of malignant trophoblastic tumors who were intolerant to standard chemotherapy. Sophorodine was reported to exhibit anti-cancer activity on multiple cancer cell lines by targeting different mechanistic pathways like anti-proliferation, apoptosis, cell cycle arrest, pro-inflammatory cytokines, oxidative stress, ubiquitin proteosome pathway and many more (Table 3). Similarly, oxymatrine was also reported to target multiple cancer types through defined mechanisms. Treatment with oxymatrine were reported to inhibit bladder cancer cells growth by triggering apoptosis, caspase 3 and Bax/Bcl-2 activity, and cell cycle arrest at G0/G1 phase. The anti-proliferation of T24 bladder cells by oxymatrine were also caused due to down regulation of surviving and mutant p53 expression (Li et al., 2017). Growth of breast cancer cell lines MDA-MB-231 and MCF-7 were terminated by oxymatrine through stimulation of apoptosis, caspase 9 and 3, PARP and Bax/Bcl-2 activity, and cell cycle arrest at S phase (Wu et al., 2017). In cervical cancer cells CaSki, HeLa Siha, and C33A, oxymatrine exhibited anti-proliferative and anti-migration activity due to enhanced apoptosis, caspase -3, -9, cytochrome c release, PARP activity as well as cell cycle arrest at G0/G1 and S phase. A concomitant decrease in Bcl-2, Bcl-xL, IMPDH2, GTP, dGTP, and XMP expression was also reported (Pei et al., 2016; Li et al., 2014; Zhou et al., 2018). Oxymatrine showed potent reduction in cell viability of multiple colorectal cancer cell lines SW1116, HT-29, SW480, HCT116, RKO, and SW-620. The molecular mechanism of actions include cell cycle arrest at G0/G1 phase, apoptosis, increased expression of p53, mad1, p21, p27, E-cadherin and decreased expression of hTERT, cyclin D1, p-PI3K, p-Akt, pmTOR, p-p70S6K, NF-κB, p65, SNAIL, N-cadherin, EMT, TGF-β1, p-p38, p-Smad2, Smad2/3/4, PAI-1; α- SMA, FN, and MMP-9. In-addition, oxymatrine also inhibited migration and invasion of these colorectal cell lines (Liu et al, 2016; Liang et al., 2016; Wang et al., 2017; Manmuan et al., 2017). Reduced viability, migration, and invasion of gall bladder carcinoma cells GBC-SD and SGC-996 upon oxymatrine treatment was attributed to triggered apoptosis, Bax/Bcl-2 ratio, PTEN, and caspase 3 activity with down-regulated expression of p-Akt, MMP-2 and 9, mitochondrial membrane potential, and NF-κB p65 (Qian et al., 2018; Wu et al., 2014). Gastric carcinoma cells SGC-7901 and BGC823 showed suppressed growth, migration and invasion on oxymatrine treatment due to increased apoptosis, Bax/Bcl-2 ratio, p53, G1 phase arrest, caspase 9 and 3 with concomitant decrease in expression of survivin, cyclin D1, CDK4, CDK6, p-EGFR, p-Akt, p-MEK-1, p-ERK1/2; MMP-2, p-Cofilin, and p-LIMK (Song et al., 2007; Guo et al., 2015). Oxymatrine induced apoptosis and suppressed invasion in glioblastoma cells U251 and A172 at very low concentration (Liu et al., 2016). In hepatocellular carcinoma cell lines SMMC- 7721 and HepG2, treatment of oxymatrine together with 5-FU induced cell cycle arrest at G0/G1 phase, apoptosis, ROS generation, and expression of p21 and p27. A parallel decrease in cyclin D1 and p-ERK expression was also reported in same cell lines (Liu et al., 2016). Oxymatrine targets melanoma cells A375 by enhancing release of cytochrome c, caspase 9 and 3, PARP, and ROS. Depletion of endogenous GSH content with increased apoptosis was also involved (Zhang et al., 2010). In lung cancer cells A549, H1299, and HCC827 the major molecular mechanisms involved were elevated apoptosis, Bax/Bcl-2 ratio, caspase 9, - 8, -3, PARP, 8OHdG, p-H2AX, p21, and p27 with reduced migration, and expression of cyclin D1, p-EGFR, p-Akt, and p-ERK1/2 (Wang et al., 2015; Wang et al., 2016; Li et al., 2018; Zhou et al., 2018). Osteosarcoma cell lines MNNG/HOS, MG-63, and U2OS also showed reduced proliferation, invasion and migration on oxymatrine treatment through enhanced apoptosis, cell cycle arrest at G2/M and G0/G1 phases and release of cytochrome c, caspase 9, caspase 3, Bax, PTEN and p21. Reduction in mitochondrial membrane potential, Bcl-2, PI3K, p-Akt, cyclin D1, PCNA, and MMP-2 were also attributed behind the anti-cancer activity in osteosarcoma cell lines (He et al., 2017; Wei et al., 2014; Zhang et al., 2014). Similar molecular mechanisms were also reported for anti-proliferative, anti-invasive, and anti-migration activities of oxymatrine in ovarian, pancreatic, prostate, leukemia, laryngeal squamous cell carcinoma, nasopharyngeal cancer, esophageal cancer, synovial sarcoma, and hemangioma (reviewed by Halim et al., 2019).
Table 3: Molecular mechanism of action of sophorodine in different cancer lines.
	Cancer Type
	Cell Line
	Mechanism of action
	Citation

	Gastric cancer
	MGC-803; MKN45; Tumor related macrophages; SGC7901 and AGS
	Apoptosis; reduced expression of HMGB3 protein; pro-inflammatory activity by enhanced expression of iNOS, IFN-β, IL-12α and reduced expression of ArG-1, CD206, IL-10; inhibiting macrophage-mediated immunosuppression through the TLR4/IRF3 signaling pathway; suppressing proliferation, migration, invasion, and colony formulation
	Binggang et al. 2003; Xu-Dong and Xin-Yu, 2018 

	Colon cancer
	SW620; SW480; SW480 xenograft model
	Apoptosis; anti-proliferation; G0/G1 cell cycle arrest; enhanced expression of PARP, caspase -3, -7, and -9 ; anti-neoplastic activity by modulating MAPKAPK2
	Lei and Xu-Hui, 2008; Liang et al., 2012; Wang et al., 2019

	Brain Cancer
	U87MG; D283Med cells
	G2/M cell cycle arrest; Apoptosis; ROS production and GSH depletion; decreased expression of p27, Survivin, E2F1, CDK2, Bcl-2, Livin, FoxM1, NF-κb, and AP-1; enhanced expression of caspase-3/8, Smac, p53, p38-MAPK, and c-JNK; inhibition of ubiquitin-proteasome Pathway

	Wang, Sun, and Chen, 2015; Yue et al., 2017

	Pancreatic cancer
	Miapaca-2,  PANC-1 xenograft model; capan-1
	Anti-proliferation; S phase arrest; mitochondrial-associated apoptosis; enhanced phosphorylation of
JNK and ERK; increased ROS generation; suppressed cell invasion ability by down-regulating the expression levels of MMP-2 and MMP-9.
	Xu et al, 2017; Ren et al., 2016

	Liver Cancer
	HepG2; BRL-3A; lenvatinib-resistant hepatocellular carcinoma (LR HCC); HepG2 LR xenograft model
	Anti-proliferation; Apoptosis; modulation of PTEN/PI3K/AKT, Caspase-3/-9, and MMP-2/-9; enhanced expression of PARP and Bax; reduced expression of Bcl-2; suppression of ETS-1, VEGFR2, and downstream RAS/MEK/ERK axis expression; anti-angiogenesis
	Wang, Wang, and Chang, 2017; Qui et al., 2018; Zhao et al., 2021

	Lung Cancer
	A549 cells
	Apoptosis; increased ROS generation; cell cycle arrest at G2/M phase; enhanced expression of caspase-3/8; reduced expression of surviving, bcl-2, CDK-2, adhesion molecule CD44 and matrix metalloproteinase MMP-2/9 
	Li et al., 2015

	Anti-tumor activity
	SW480 grafted tumor; Lewis Lung  Carcinoma (LLC), S 180, U 14 and esophageal carcinoma
(ECA) grafted tumors
	Inhibition of VEGF and p53 expression; Apoptosis; suppression of TOPO1 enzyme; G1/G2 cell cycle arrest
	Qi-rui et al., 2010; Li et al., 1987; Xue-Mei et al., 2006



Conclusion
Cancer continues to be the deadly disease with significantly associated mortality. The conventional therapeutic modalities like chemotherapy, immunotherapy and radiotherapy have restricted positive outcomes with factors like drug resistance and adverse drug reactions hampering their efficacy. This leads to the search of anti-cancer compounds with high specificity, efficacy, and low toxicity that eventually get underpinned at plant based alkaloids. While many of the existing anti-cancer compounds in the market are already derived from plant based alkaloids, the trajectory for the search of new anti-cancer drugs from plant based alkaloids is still in progress. This is elucidated by the recent disclosure of efficacy of berberine against colorectal and breast cancer in clinical trials. This chapter highlighted the molecular mechanism of action of few plant based alkaloids which targets dynamically at various signaling cascades. Apart from the aforementioned alkaloids, a huge repository of plant based alkaloids existed in literature for anti-cancer activity but with undefined molecular mechanism of action therefore providing good scope of development of new anti-cancer agents from plant based alkaloids with good specificity, efficacy, and low toxicity.
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