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Abstract:
Elliptical curve cryptography (ECC) is based on a public key cryptosystem based system that is an elliptic curve theory. Elliptic curve cryptography can be used to create smaller faster and more efficient cryptography keys. Elliptic-curve cryptography (ECC) is an approach to public-key cryptography based on the algebraic structure of elliptic curves over finite fields. ECC requires smaller keys compared to non-EC cryptography (based on plain Galois fields) to provide equivalent security. Elliptic curves are applicable for key agreement, digital signatures, pseudo-random generators and other tasks. Indirectly, they can be used for encryption by combining the key agreement with a symmetric encryption scheme. They are also used in several integer factorization algorithms based on elliptic curves that have applications in cryptography, such as Lenstra elliptic-curve factorization.
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[bookmark: _GoBack]Introduction: Since a lot of sensitive data such as credit card numbers and social security numbers are transmitted over the Internet during transactions. Securing electronic transaction becomes a very important issue. An efficient way to protect and secure the information is by using cryptography which can be used to provide and assure confidentiality and integrity of the transactions (Mackenzie, et al. 1996).
              The history of cryptography is long and interesting. It had a very considerable turning point when two researchers from Stanford, Whitfield Diffie and Martin Hellman, published the paper “New Directions in Cryptography” in 1976. They preface the new idea of public key cryptography in the paper.         
            Public-key cryptography and symmetric-key cryptography are two main categories of cryptography. The Well-known public-key cryptography algorithms are RSA (Rivest, et al. 1978), El-Gamal and Elliptic Curve Cryptography. Presently, there are only three problems of public key cryptosystems that are considered to be both secure and effective (Certicom, 2001). Table 1.1 shows these mathematical problems and the cryptosystems that rely on such problems. 
	
	Mathematical problem
	Detail
	Cryptosystem

	1
	Integer Factorization problem
(IFP)
	Given an integer n find its prime factorization
	RSA

	2
	Discrete Logarithm problem(DLS)
	Given integer g and h find x’ such that =gxmod n
	Diffie-Hellman(DH)

	3
	Elliptic curve discrete logarithmic problem(ECDLP)
	Given points P and Q on the curve find ‘x’ such that Q=xP
	Diffie-Hellman(DH)



                                       Table 1.1-Mathematical Problem

Providing an equivalent level of security with smaller key size is an advantage of ECC compared to RSA. It is very efficient to implement ECC.ECC obtains lower power consumption, and faster computation. It also gains small memory and bandwidth because of its key size length (Dormale, Bulens and Quisquater 2004), (Huang 2007). Such attributes are mainly fascinating in security applications in which calculative power and integrated circuit space are limited. Wireless devices and smart cards present a good example for the constrained devices with limited resources. Cryptography companies such as Certicom Corporation have already implemented ECC in their products for some commercial purposes which are RFID and Zigbee. This company has an agreement with NSA on a set of cryptographic algorithms called suite B. This suite uses Elliptic curves and works over the prime field.
1. Elliptic Curves over Real Numbers
First elliptic curves over real numbers are considered, because it is easier to get an insight of addition and multiplication over an elliptic curve when they are explained with more familiar real number curves.
An interesting feature of elliptic curve theory is that an algebra can be created over an elliptic curve. Having two points on an elliptic curve and adding them together, a third point, which is also on the curve, is produced as the result. Importantly for cryptography, it is very difficult to say which two points were added. In fact the difficulty of this problem grows exponentially with the key length . The Weierstrass equation2 is defined as
E : y2+a1xy+a3y = x3 +a2x2 +a4x+a6; 
where x and y are variables covering a plane. In future this is simply called an elliptic curve. Notice that x and y can be complex, real, integers or any kind of field elements . An elliptic curve ER : y2 = x3 +5x2 +4 over reals is presented in Figure 1. This curve will be later used for demonstrating elliptic curve algebra.
To create an algebra over an elliptic curve, addition must be defined and an identity element must be found. The identity element O¥ is the point that added to any point on a curve produces the same point as the result:
P+O= P:  When elliptic curves are discussed the identity element is usually called the point at infinity. That is because if elliptic curves over real numbers are considered, this point can be thought of as lying infinitely far up the y-axis . Equation  can also be presented in the following form:
PP+(-P) = O:   An elliptic curve over real numbers may be defined as the set of points (x,y) which satisfy an elliptic curve equation of the form:
y2 = x3 + ax + b, where x, y, a and b are real numbers.
Each choice of the numbers a and b yields a different elliptic curve. For example, a = -4 and b = 0.67 gives the elliptic curve with equation y2 = x3 - 4x + 0.67; the graph of this curve is shown below:
If x3 + ax + b contains no repeated factors, or equivalently if 4a3 + 27b2 is not 0, then the elliptic curve
 y2 = x3 + ax +b can be used to form a group. An elliptic curve group over real numbers consists of the points on the corresponding elliptic curve, together with a special point O called the point at infinity.

[image: https://www.certicom.com/content/dam/certicom/images/uploaded/ec2_0.gif]

2.Elliptic Curve Groups over F2m: The number of points on E(F2m)() is denoted by #E(F2m). The Hasse Theorem states that:
2m+1-22m#E(F2m) 2m+1+22m:
	There are finitely many points on a curve over F2m .
 Elements of the field F2m are m-bit strings. The rules for arithmetic in F2m can be defined by either polynomial representation or by optimal normal basis representation. Since F2m operates on bit strings, computers can perform arithmetic in this field very efficiently. 

An elliptic curve with the underlying field F2m is formed by choosing the elements a and b within F2m (the only condition is that b is not 0). As a result of the field F2m having a characteristic 2, the elliptic curve equation is slightly adjusted for binary representation: 
y2 + xy = x3 + ax2 + b 
The elliptic curve includes all points (x,y) which satisfy the elliptic curve equation over F2m (where x and y are elements of F2m ). An elliptic curve group over F2m consists of the points on 
the corresponding elliptic curve, together with a point at infinity, O. There are finitely many points on such an elliptic curve. 
	 An Example of an Elliptic Curve Group over F2m:
	
	
	



	As a very small example, consider the field F24, defined by using polynomial representation with the irreducible polynomial f(x) = x4 + x + 1. 
The element g = (0010) is a generator for the field . The powers of g are: 
g0 = (0001) g1 = (0010) g2 = (0100) g3 = (1000) g4 = (0011) g5 = (0110) 
g6 = (1100) g7 = (1011) g8 = (0101) g9 = (1010) g10 = (0111) g11 = (1110) 
g12 = (1111) g13 =(1101) g14 =(1001) g15 = (0001) 
                                                         In a true cryptographic application, the parameter m must be large enough to preclude the efficient generation of such a table otherwise the cryptosystem can be broken. In today's practice, m = 160 is a suitable choice. The table allows the use of generator notation (ge) rather than bit string notation, as used in the following example. Also, using generator notation allows multiplication without reference to the irreducible polynomial 
f(x) = x4 + x + 1. 
Consider the elliptic curve y2 + xy = x3 + g4x2 + 1. Here a = g4 and b = g0 =1. The point (g5, g3) satisfies this equation overF2m : 
y2 + xy = x3 + g4x2 + 1 

(g3)2 + g5g3 = (g5)3 + g4g10 + 1 

g6 + g8 = g15 + g14 + 1 

(1100) + (0101) = (0001) + (1001) + (0001) 

38(1001) = (1001) 

The fifteen points which satisfy this equation are: 

(1, g13) (g3, g13) (g5, g11) (g6, g14) (g9, g13) (g10, g8) (g12, g12) 

(1, g6) (g3, g8) (g5, g3) (g6, g8) (g9, g10) (g10, g) (g12, 0) (0, 1) 





3.Construction of finite field of order 28   table for GF(28):
Construction of finite field of order 28 (GF(28)with the irreducible polynomial(x)=x8+x4+x2+x+1.Let a be a point in this polynomial then a8=a4+a3+a2+1.
As α is a primitive element of GF(28),every element x of GF(28) may be expressed as a0+a1α+a2α2+a3α3+a4α4+a5α5+a6α6+a7α7 aiGF(28),0i.It is represented as 8-tuple (a0,a1,a2,a3,a4,a5,a6, a7).By this terminology we have α0=(1,0,0,0,0,0,0,0),α1=(0,1,0,0,0,0,0,0)α2=(0,0,1,0,0,0),α3=(0,0,0,1,0,0,0,0),α4=(0,0,0,0,1,0) α5=(0,0,0,0,0,10,0,) α6=(0,0,0,0,0,0,1,0),α7=(0,0,0,0,0,0,0,1)
And α8=α 4+α3 +α2+1=(10,1,1,1,0,0,0,0),we get α9= α5+α4+α3+α=(0,1,0,1,1,1,0,0)The other powers of α are computed similarly with the following table.

	i
	ai
	42
	10101101
	85
	01101011
	128
	10100001
	171
	11001101
	214
	10011111

	i
	ai
	42
	10101101
	85
	01101011
	128
	10100001
	171
	11001101
	214
	10011111

	0
	10000000
	43
	11101110
	86
	10001101
	129
	11101000
	172
	11011110
	215
	11110111

	1
	01000000
	44
	01110111
	87
	11111110
	130
	01110100
	173
	01101111
	216
	11000011

	2
	00100000
	45
	10000011
	88
	01111111
	131
	00111010
	174
	10001111
	217
	11011001

	3
	00010000
	46
	11111001
	89
	10000111
	132
	00011101
	175
	11111111
	218
	11010100

	4
	00001000
	47
	11000100
	90
	11111011
	133
	10110110
	176
	11000111
	219
	01101010

	5
	00000100
	48
	01100010
	91
	11000101
	134
	01011011
	177
	11011011
	220
	00110101

	6
	00000010
	49
	00110001
	92
	11011010
	135
	10010101
	178
	11010101
	221
	10100010

	7
	00000001
	50
	10100000
	93
	01101101
	136
	11110010
	179
	11010010
	222
	01010001

	8
	10111000
	51
	01010000
	94
	10001110
	137
	01111001
	180
	01101001
	223
	10010000

	9
	01011100
	52
	00101000
	95
	01000111
	138
	10000100
	181
	10001100
	224
	01001000

	10
	00101110
	53
	00010100
	96
	10011011
	139
	01000010
	182
	01000110
	225
	00100100

	11
	00010111
	54
	00001010
	97
	11110101
	140
	00100001
	183
	00100011
	226
	00010010

	12
	10110011
	55
	00000101
	98
	11000010
	141
	10101000
	184
	10101001
	227
	00001001

	13
	11100001
	56
	10111010
	99
	01100001
	142
	01010100
	185
	11101100
	228
	10111100

	14
	11001000
	57
	01011101
	100
	10001000
	143
	00101010
	186
	01110110
	229
	01011110

	15
	01100100
	58
	10010110
	101
	01000100
	144
	00010101
	187
	00111011
	230
	00101111

	16
	00110010
	59
	01001011
	102
	00100010
	145
	10110010
	188
	10100101
	231
	10101111

	17
	00011001
	60
	10011101
	103
	00010001
	146
	1011001
	189
	11101010
	232
	11101111

	18
	10110100
	61
	11110110
	104
	10110000
	147
	10010100
	190
	01110101
	233
	11001111

	19
	01011010
	62
	01111011
	105
	01011000
	148
	01001010
	191
	10000010
	234
	11011111

	20
	00101101
	63
	10000101
	106
	00101100
	149
	00100101
	192
	01000001
	235
	11010111

	21
	10101110
	64
	11111010
	107
	00010110
	150
	10101010
	193
	10011000
	236
	11010011

	22
	01010111
	65
	01111101
	108
	00001011
	151
	01010101
	194
	01001100
	237
	11010001

	23
	10010011
	66
	10000110
	109
	10111101
	152
	10010010
	195
	00100110
	238
	11010000

	24
	11110001
	67
	01000011
	110
	11100110
	153
	01001001
	196
	00010011
	239
	01101000

	25
	11000000
	68
	10011001
	111
	01110011
	154
	10011100
	197
	10110001
	240
	00110100

	26
	01100000
	69
	11110100
	112
	10000001
	155
	01001110
	198
	11100000
	241
	00011010

	27
	00110000
	70
	01111010
	113
	11111000
	156
	00100111
	199
	01110000
	242
	00001101

	28
	00011000
	71
	00111101
	114
	01111100
	157
	10101011
	200
	00111000
	243
	10111110

	29
	00001100
	72
	10100110
	115
	00111110
	158
	11101101
	201
	00011100
	244
	01011111

	30
	00000110
	73
	01010011
	116
	00011111
	159
	11001110
	202
	00001110
	245
	10010111

	31
	00000011
	74
	10010001
	117
	10110111
	160
	01100111
	203
	00000111
	246
	11110011

	32
	10111001
	75
	11110000
	118
	11100011
	161
	10001011
	204
	10111011
	247
	11000001

	33
	11100100
	76
	01111000
	119
	11001001
	162
	11111101
	205
	11100101
	248
	11011000

	34
	01110010
	77
	00111100
	120
	11011100
	163
	11000110
	206
	11001010
	249
	01101100

	35
	00111001
	78
	00011110
	121
	01101110
	164
	01100011
	207
	01100101
	250
	00110110

	36
	10100100
	79
	00001111
	122
	00110111
	165
	10001001
	208
	10001010
	251
	00011011

	37
	01010010
	80
	10111111
	123
	10100011
	166
	11111100
	209
	01000101
	252
	10110101

	38
	00101001
	81
	11100111
	124
	11101001
	167
	01111110
	210
	10011010
	253
	11100010

	39
	10101100
	82
	11001011
	125
	11001100
	168
	00111111
	211
	01001101
	254
	01110001

	40
	01010110
	83
	11011101
	126
	01100110
	169
	10100111
	212
	10011110
	255
	10000000

	41
	00101011
	84
	11010110
	127
	00110011
	170
	11101011
	213
	01001111




A finite field of order 24it is also a subfield of order 28
	Table:
	I
	ai

	0
	00000000

	17
	10011000

	34
	01001110

	51
	00001010

	68
	10011001

	85
	11010110

	102
	01000100

	119
	10010011

	136
	01001111

	153
	10010010

	170
	11010111

	187
	11011100

	204
	11011101

	221
	01000101

	238
	00001011

	255
	00000001



Similarly the multiplication table for the GF(28) with the irreducible polynomial
Consider the Elliptic curve E28(a,b)
Y2+xy=x3+ax2+b
Let a=1,b=1    4a3+27b20
Hence E28(1,1) exists.
Y2+xy=x3+g17x2+1  . . . . . .. . .  .(I)
 Put x=0 y2=1
        Y=1
i.e. (0,1) is a point on the curve (I)
Y2+xy=x3+ax2+b
Y2=x3+ax2+b-xy
Y2=x3+x2+xy+1
_________________
Put x=a17
Y2=a51+a34+a17y+1
(00001010)+(01001110)+(a17y)+(00000000)
=(01000101)+a17y
a102+a17y
y2=a102+ya
_____________-
a238y2=(a85+y)
L.H.S=a238a34=a17
R=a34
a238a68=a85+a34
            =a51
x-1y2=x2+x+x-1)+y
a238y2=(a34+a119)+y  =a170+y
Y2=a187+a17y
__________________
Y2=a187+a17y
___________________
y2+xy=x3+a51x2+1
y2=x3+a51x2+xy+1
y2=a51+a51a34+a17y+1
  =a51(1+a34)+a17y+1
 =a51.a136+a17y+1
 =a204+a17y
a34=x3+a51x2+a17x+1
a34+1=x2(x+a51)+(a17x+1)
(x+1)(x2+x+1)+a17x(a34x+1)
Xy+y2=x3+Ax2+B
Xy+y2=x51+Ax34+B
Put B=1
a17y+y2=a51+Ax34+1=(00001010)+Aa34+1
put A=a51  xy=(00001010)+a85+1
(00001010)+(11010110)+(00000001)
=(11011101)=a204
a51+a153=a17
y2+a17y+a204=0
y2+(a51+a13)+a51a103=0
(y+a5()(y+a153)=0
Put x=a68
X3+a51x2+1=a204+a51a136+1
                    =a204+a187+1
Y2+xy=0    y2+a68y=0
Global public key elements:
E28(a51,1) Elliptic curve with parameters P(a51,1),Q=28.
Let G=point on the Elliptic curve whose order is large let (a17,a51)  y2+xy=x3+a51x2+1.
P((xp,yp)  then R=2P,a=a51
P=Q     xR=λ2+λ+a
            YR=xP2+(λ+1)xR
                 λ=a17+a51/a17=a17+a34
xR=(a17+a34)2+(a17+a34)+a51
     (a17+a34)(a17+a34+1)+a51
      =a85(a85+1)+a51
a170+a85+a51
=a238.
YR=a34+(a17+a34+1)a238
   =a34+(a85+1)a238
  =a34+a323+a238
=a34+a68+a238
=a34+a153
=a1877
2P=(a238,a187).
3P=P+2P  (a17,a51)+(a238,a187)
P≠Q
XR=λ2 +λ+xP+xQ+a
YR=λ(xP+xR)+xR+yP
=a187+a51/a238+a17
a85/a119	=a221
xR=a442+a221+a17+a238+a51
  =a187+221+a17+a238+a51
a51+a51=0
yR=a221(a17+0)+0+a17
a238+a17=a119
3P=(0,a119)
4P=2P+2P
 =(a238,a187)+(a238,a187)
 =λ=xP+yP/xP=a238+a187/a238=a238+a204=a85
XR=λ2+λ+a=a51
  YR=xP2+(λ+1)xR
a221+a136+a51=0
i.e 4P=(a51,0)
5P=4P+P
P
XR=λ2 +λ+xP+xQ+a
YR=λ(xP+xR)+xR+yP
XR=a306+a153+a51+a17+a51=a17+a17=0
YR=a153(a51+0)+0+0=a136
5P=(0,a136)
6P=5P+P=(0,a136)+(a17+a51) =(∞,∞) The points on the curve are 
P=(a17,a51)
2P=(a238,a187)
3P=(0,a119)
4P=(a51,0)
5P=(0,a136)
6P=(∞,∞)
Points are
P=(a17,a51)
2P=(a238,a187)
3P=(0,a119)
4P=(a51,0)
5P=(0,a136)
6P=(∞,∞)
Cryptosystem:
Eq(a,b) elliptic curve with parameters a and q where q is a prime or an integer of the form 2m
G point on elliptic curve whose order is large value n   let G=(a17,a51)     n=6

User A key generation:   Select private nA    na<n
i.e nA=2
calculate public key PA=nAXG
		       2(a17,a51)
                                 =(a238,a187)
User B key generation:
Select private key nB nB<n
i.e             nB=1
calculate public key PB    i.e PB=nBXG=1(a17,a51)
  
calculation of secret key by user A
				K=nAXPB=2(a17,a51)
			               =(a238,a187)
Calculation of secret key by user B:
			K=nBXPA
			=1(a238,a187)
			=(a238,a187)
The two calculations in this produce the same result, because
 nAX PB=nAX(nBXG)=nBX(nAXG)=nBXPA
    nAXPB=nBXPA.		
E28(a34,a187) elliptic curve with parameters P(a34,a187) G is point on the elliptic curve whose order is very large 
Let (a34,a187) 
Y2+xy=x3+a51x2+1
L.H.S=A374+A221
          =a85	
R.H.S= a102+a51+68+1 
          =a	85
L.H.S=R.H.S
P=Q
P(xP,yP) then R=2P
XR=λ2+λ+a
YR=xP2+(λ+1)
λ=a187
XR=a221
YR=a34
2P=(a221,a34)
3P=2P+P= a221,a34)+(a34,a187)
PQ here 
XR=λ2+λ+xP+xQ+a ,    YR=λ(xP+xR)+xR+yP
λ=a170		
xR=0
yR=1
3P=(0,1)
4P=2P+2P
(a221,a34)+(a221,a34)
λ=a187
xR=a221
yR=a238
4P=(a221,a238)
5P=4P+P=(a221,a238)+(a34,a187)
λ=a187
xR=a34
yR=a153
5P=(a34,a153)
6P=2(3P)=3P+3P=(0,1)+(0,1)
λ=
xR=∞
yR=∞
Similarly another cryptosystem is given with the following points on the curve
Y2+xy=x3+ax2+b
a=a51
P=(a34,a187)
2P=(a221,a34)
3P=(0,1)
4P=(a221,a238)
5P=(a34,a153)
6P=(∞,∞)
Cryptosystem:
Let n=6
G=(a34,a187)
User A key generation: select private key nA nA<n
i.e nA=4
calculate public key PA=nAXG=4(a34,a187)
			=(a221,a238)
User B key generation:
Select private key nB  nB<n
nB<n
i.e nB=5
calculate public key PBi.e PB=nBXG=5(a34,a187)=(a34,a153)
calculate of secret key by user A:
k=nAXPB=4(a34,a187)
		=(a221,a34)
Calculation of secret key by user B:
	K=nBXPA=5(a221,a238)
		=(a221,a34)	
		The two calculations in this produce the same result, 
because nAX PB=nAX(nBXG)=nBX(nAXG)=nBXPA
    nAXPB=nBXPA.	In this paper, an introduction of ECC operations over binary field, prime field and their mathematical operations is explained. With clear examples, how the field operation level work over both fields (Binary, Prime) are shown. Then, higher level operations (ECC operations) are discussed. The process of adding point to another point and point doubling in order to produce a new point is explained .We explained the construction of finite field of order2 8  .This paper gives the cryptosystem over the binary field of order 28
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