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ABSTRACT

We proposed an algorithm for the finest approximating solutions of second-order ordinary linear
differential equations based on the Galerkin technique by using Laguerre and Hermite polynomials. The
approach is to convert Dirichlet or mixed BCs, using the shooting method has been used in conjuction with the
secant and Runge-Kutta method. Accuracy and efficiency are dependent on the size of the set of polynomials
and the procedure in our case is simpler as compared to the methods such as spline and Bernstein polynomials
for solving differential equations. The accuracy of the three test problems is testified through L, and L, norms,
wherein solutions obtained using Hermite polynomials are better than Laguerre and as such better than the
solution obtained by any other numerical techniques. The visibility of solutions is depicted through tables and
graphs.
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I. INTRODUCTION

Finding an approximate solution to some genuine physical issues by the use of various numerical
techniques is the aim of numerical analysis, particularly in situations when analytical answers are either
impossible to find or extremely difficult to achieve, an entire solution to the boundary governing equation. One
may specify an initial value or a boundary value for the conditions.

Two-point Boundary Value Problems (BVPs) are a common way to define many scientific and
engineering problems. Examples include mechanical vibration analysis and spring vibration. This demonstrates
the critical importance that numerical techniques for approximating Two-point BVP solutions play across all
scientific and engineering domains. The shooting method, finite difference method, finite element method,
variational method (Weighted residual methods, Ritz method), and other numerical techniques have been used
to solve the two-point boundary value problems. These techniques are among the various approaches used to
approximate two-point BVPs in terms of differential equations.

The primary efforts in both variational and finite element approaches were to examine an approximate
solution as a linear combination of appropriate approximation functions and unknown coefficients [2]. The
Laplace decomposition method was used in [3] to solve second-order differential equations using Bernstein
polynomials. In [6], a parametric cubic spline solution of two-point BVPs was obtained. In [7], a Galerkin
method with cubic B-Splines was used to solve fourth-order BVPs by taking into account various cases on the
boundary condition. The numerical solution of second-order ODEs with Galerkin, Petrov-Galerkin,
Collocation, Least-square method [9], [10], [11], and the numerical solution of RLW equation using quadratic
B-Splines [12]. There are various numerical methods for solving pde are studied. For more details see [18], [20],
and [21]. Mathematics has a wide range of application see [19]. Many articles are related to mathematics
applications [22], [23].

The weighted residual method was the most widely used approach for Galerkin; in this study, we
employ the shooting method to compute the Neumann boundary conditions, incorporating the secant method as
well. With the boundary condition based on the Laguerre and Hermite polynomials basis, we employ the
Galerkin method methodology to provide numerical solutions for the second-order linear ordinary differential
equation.This type of problem can be done for pde. The formulation is derived. In this work, two sorts of



boundary conditions are currently being considered: Dirichlet boundary condition(first kind) and mixed
boundary condition(third kind). The structure of this document is as follows.

We go over the fundamental ideas of the Galerkin technique in Section II. The development of the
Galerkin approach is detailed in Section III, which also contains the primary results. Several numerical results
and comments are provided in Section IV. Section V has the conclusion.

1L GALERKIN METHOD

Russian mathematician Boris Grigoryevich Galerkin created the Galerkin technique in 1915. The
method's inception is typically linked to a 1915 paper that Galerkin wrote regarding the elastic equilibrium of
rods and thin plates. Integral equations, partial differential equations, and ordinary differential equations can all
have their solutions approximated using the Galerkin method.

One of the weighted residuals methods is the Galerkin Method. The primary goals of both FEM and
variable techniques were to find an approximate solution in the form of a linear combination of appropriate
approximations and unknown coefficients. For a vector space of functions V, if § = {1;(x)};2; be the basis of
V, a set of linearly independent functions, any function f (x) € V could be uniquely written as a linear
combination of basis as:

f) =X7Z1¢Y; (D

Assume that the differential equation's approximate solution D (u) = L(u(x)) + f(x) = 0, on the
boundary B(u) = [a, b] is in the form:

u(x) = Uy () = Zj21 ;) + o (x) 2

Where L is a differential operator, f is a given function, ¥;(x)’s are finite number of basis functions, and ¢; are
unknown coefficients for j = 1,2,3, ..., N. Uy (x) is the approximate solution, while u(x) is the precise answer.
Vichnevetsky was the one who first introduced the phrase "weighted residuals method". Therefore, the
weighted residual approaches are shown using the generalized inner product that follows:

f: w; (R(x, ¢;) dx = 0 (3)

Where, the method known as the weighted-residual method uses R(x, cj) = D(UN (x)) - (L(UN (x))) + f(x)
and w;(x) as a collection of linearly independent functions. These weight functions can differ from the
approximate functions 1; in general.

The weighted-residual method's particular name is called the Galerkin method if, as in equation (3), 1;(x) =
w; (x). The Galerkin technique, which finds the approximate solution of two-point boundary value problems, is
one of the weighted residual methods in which the approximate function is the same as the weighted function.

1II. PROPOSED METHOD

This section covers the Galerkin method's application to second-order linear differential equations, as
well as the shooting method's use of secant and Runge-Kutta methods to convert Dirichlet or mixed boundary
conditions to Neumann boundary conditions.

Consider a second-order linear differential equation of the form

;—:(p(x)Z—Z)+q(x)u—r(x) =0,a<x<b O]

With the boundary conditions,
aou(a) + ayu'(a) = ¢ %)
Bou(b) + yu'(b) = ¢, (6)

Where @, By, @1, B1, €1, ¢, are constant and p(x), g(x), r(x) are continuous functions.
The solution of the differential equation (4 — 6) is approximated as



u(x) = Uy(x) =Xl i N > 1 (7

Substituting (7) into (4), the Galerkin weighted residual equations are:

f; [:z_: (P(x) dU_"’) +q)Uy(x) — T(x)] P;(x)dx =0 ®)

dx

Simplifying, we obtain

i“:p(x)d

 dy; b
Ty q(x)wi(x)wx)] dx = [ TGOwi ) dx + GOV B) = i @p@U'y @
j=1 a

Or in matrix notations,

Y Kijo =F )

Where, K;; = J [p(0) 2222 4 (), (e ()] dx and

b
F; = j ()Y (x) dx + 9 (b)p(IU'y (b) — Yi(@)p(a)U'y(a)

K;; gives the stiffness matrix, we obtain the values of the parameters ¢;'s by solving the system (9) and then
substitute into (7) to get the approximate solution Uy (x) of the desired BVP (4 — 6).
The values of U’y (a) and U’y (b), which are roughly equal to u'(a) and u'(b), respectively— u being
the exact solution of the BVP—must be known in order to solve equation (9) above.
Consider BVP with
e Mixed boundary condition:

u(@) = c,u'(b) =c, (10)
And
e Dirichlet boundary condition:

u(a) = ¢, ulb) =c, (11)

Since u'(a) is not supplied in the mixed type boundary condition and u'(a) and u'(b) are not given in
the Dirichlet boundary condition, it is not possible to apply the aforementioned approach directly in this
situation. The BVP must be transformed into a boundary value problem of the Neumann type. Several numerical
techniques are used to do the conversion.

Consider solving the BVP
%(p(x)j—z)+q(x)u—r(x) =0,a<x<bh (12)
With Dirichlet boundary condition
u(a) =c,ulb) =c,

In order to solve for u'(a) and u'(b), we must assume that u(b) = c,. To determine u'(a) such that
u(b) = ¢,, assume u'(a) = u,, and use the R-K technique for second order to solve for u(b). Denote the
estimated solution u,, in the ODE after obtaining a value using the guess, and expect that u,, (b) = c;. If not,
try solving using the R-K technique with a different estimate for u’(a). This procedure can be methodically
repeated until the option fulfills u(b).

The following algorithm will do this.
First, choose u, such that u,,_(b) = c,. ¥(u,) = u,, (b) —c,.
The estimate for u,



Step 2: Since the goal at this point is to just find (u,,) = 0, the secant approach can be applied.
Step 3: u,, computation

Assume that guesses 1, and u; yield the answers u,,(b) and u,, (b), respectively.

Step 4: Now, determine z, provided by utilizing the secant approach.

g () — wyetp (Uge—q)

7T [ IO

Following this sequence of iteration 3 u; such that
Uy, (b) = u(b) and u'y, (b) = u'(b) = x1(say)
Thus the Neumann condition

u'(a) = uy
u'(b) = 11

Conversion of the Domain of the BVP

An analogous BVP that is defined on [0,1] must be created from the given BVP that is defined on the
arbitrary interval [a, b]. Therefore, on [0,1] the approximation polynomial is defined. It is feasible to apply the
Hermite polynomial after transforming the BVP defined on the arbitrary interval [a, b] into an equivalent BVP
defined on [0,1] because the Hermite polynomial is defined on [0,1].
By letting x = (b — a)x + a, the BVP can be transformed into an equivalent issue on [0,1]. Equation (4) then
corresponds to the BVP

—d d
(ﬁpl(x)ﬁ) +q(Du—-—r(x)=00<x<1 (13)

ax
Subject to the boundary conditions

#ou(0) + —a,u'(0) = ¢, (14)

Bou(D) +—Bw' (1) = ¢ (15)

Where, py(x) = p((b — a)x + a), ¢,(x) = q((b — a)x + a) and 1y (x) =7r((b — @)x + a).

Iv. NUMERICAL RESULTS AND DISCUSSION

We presented three numerical experiments to demonstrate the flexibility of the numerical algorithm.
The accuracy and efficiency of the method are tested by the normed error of the above Galerkin approach, L,
and L, error measured based on the following formulae:

N
L, = Zluexact(xj) - uapprox.(xj)l
=0

Ly = maXOsjleuexact(xj) - uapprox.(xj)l (16)

The numerical outcomes are compared with the exact or approximate solutions. The results are
reported in tables and figure where computations are carried out on MATLAB R2018a.

Problem 1: Consider a one-dimensional heat conduction/convection equation

_d( du)+ =q;0<x<1
dx \Yax) THTD x



du
u(0) = u,, [a;+ B(u— u(x,)]x=1 =Qpatx=1
Where a and g are functions of x, and 3, ¢, U, and Q, are constants.
Case 1 By taking, a=1,c=1,u,=1,Q, = =0

—d%u

P +u=x%0<x<1

Subject to the boundary condition
u(0)=1u'(1)=0
The exact solution is

e*2e +1) e *(2e —e?)
U = -y Y ey T2

The aforementioned problem requires the use of a mixed boundary condition. Let uy = u’(0) = 0 be
the initial guess, and suppose that u’'(1) = 0. Now, make a guess based on the value of u'(1) = 0. The second
step is to solve the second-order differential equation using the Runge-Kutta method, where u''(x) =
f(x,u,u"). Therefore, u'”' (x) = f(x,w) for this. Given that f is not reliant on u'.

Given that x, = 0,x, = 1 and u(0) = 1 and take step size h = 0.05,u'(0) = 0.

R-K Method for the linear second-order ordinary differential equation:

1
uj+1 = u]' + hy’] + E(Kl + KZ)

’ ’ 1
uj+1 =uj +ﬁ(1<1 +3K2)

Where
h? h? 2 2 4 .
K, = 7f(xi,ui ), K, = 7f(xi +Zhy +§hu']- +;K1), forj=10,1,2,3,...,20.

This displays the outcome for the initial iteration in Table 2. Where in the ith step x = x;, u = u(x;)
and u’ = u'(x;). Referring to table 2, take u', (1) = 0.82480. But u’, (1) # u'(1)

Y(u,) = 'y, (0) — 0 = 0.82480.
Now we guess another value u; = 1. Referring to table 3, u", (1) = 2.36787.
Y(uy) =u',, (0) — 0 = 2.36787.

Then find u, (By the secant method)

_ugp(ug) —wgp(ug) _
u, = D) — vy 0.534518

Referring to table 4, u',, (1) = 0.00000, u'(0) ~ —0.534518.

Thus, the Neumann boundary value problem is given by

—d%u
dx?

+u=x%0<x<1



u'(0) = —0.534518, u'(1) = 0. (17)

Assume for the moment that Uy is the approximate solution to equation (17) provided by the linear
combination of basis functions and unknown parameters.

Results have been shown for different values of x in Table 8 for n=4 and n=6 showing the
approximate solution with Hermite and Laguerre polynomials. Figurel and Figure2 show the exact and
approximate solution with Hermite and Laguerre polynomials.

Case 2. By taking, a = 1,c=—-1,g=e*,uy=1,Q0y=1and f =0

With mixed boundary condition
u@=Lu1) =1
The exact solution is given by:

3cos(x) e"sin(x)(cos(x) + sin(x)) sin(x)(3sin(1) + cos(1)?e + esin(1)? + 2)
2 2 * 2cos(1)
B e"cos(x)(cos(x) - sin(x))
2

ulx) =

The above problem is a mixed boundary condition to apply the above method, it needs to convert the given
boundary condition into Neumann boundary condition.

d?u
—W+u=—x;OSxS 1
u'(0) =6.2025,u'(1) =0 (18)

Then applying the above Galerkin approach.
Results have been shown for different values of x in Table 9 for n = 4 and n = 6. Also, Figure 3 and
Figure 4 show the exact and approximate solution with Hermite and Laguerre polynomials.

Case 3. By taking,a =1,c=x,g=x—1,uy;=1,Q;, =0and f§ =0

A, 1
——+txu=x-—
dx?
With mixed boundary condition

u@=Lu'(1)=0
In case 3 exact solution is easily not found, here we calculate the approximate solution by the above developed
Galerkin approach.
The above problem is a mixed boundary condition to apply the above method, it needs to convert the
given boundary condition into the Neumann boundary condition.

—d*u
W+xu=x—1,0$x$1
w'(0) = 0.88576,u'(1) = 0 (19)

Results have been shown for different values of x in Figure 5 and Figure 6 showing the approximate solution
with Hermite and Laguerre polynomials.

Problem 2: Consider the second-order linear ODE

d*u

W=u+x

With Dirichlet boundary condition
u(0)=1u(l) =2

The exact solution is given by:



3e—1 e(e—3) _,
u(x)=ez_le + P} e

In order to use the aforementioned method, one must use the shooting method to change the provided
boundary condition into a Neumann boundary condition.

Assume now that u(1) = 2 will determine the outcome. Let u, = u'(0) = 0 be the initial guess, and
hope that u(1) = u, (1) = 2. Applying the Runge-Kutta method to the second-order differential equation is the
next step. Assuming u(0) = 1, xy = 0,x,, = 1, and step size h = 0.05.

This displays the outcome for the initial iteration in Table 5. Using Table 5 as a reference, u, (1) = 1.7183.
But
Uy, (1) # u(l)

P(ug) = Uy, (1) — 2 = 1.7183 — 2 = —0.2817

Now we guess another value u; = 1. Referring to Table 6, u,, (1) = 2.8935. But u,,, (1) # u(1)
P(uy) = u,, (1) — 2 = 2.8935 — 2 = 0.8935.

Then find u, (by secant method)

- ueP(uy) — ugP(ug)
2 Y(uy) — P (ug)

Referring to Table 7, u,, (1) = 2.0000

= 0.2397

Y(uy) = u,,(1) —2 = 0.0000
= 1'(0) = 0.2397 and v/(1) ~ 2.08812

Thus the Neumann boundary value problem

d*u
Iz =u+x;0<x<1
u'(0) = 0.23972,u'(1) = 2.08812 (20)

Assume for the moment that Uy is the approximate solution to equation (20) provided by the linear
combination of basis functions and unknown parameters.

Results have been shown for different values of x in Table 10 for n = 4 and n = 6. Also, Figure 7 and Figure 8
show the exact and approximate solution with Hermite and Laguerre polynomials.

In Problem 1 and Problem 2, we have given mixed and Dirichlet boundary conditions. According to
our Galerkin approach, mixed and Dirichlet boundary condition needs to convert into Neumann boundary
condition. A comparison table and graph have been shown for error analysis. After comparison, we see that
Galerkin approach with Hermite basis function gives a better result than Laguerre basis functions. There is a
drawback of this method with Laguerre basis function that, sometimes stiffness matrix close to singular as
increases the degree of basis function, then does not work well.

In Table 1 the maximum error occurred in Problem 1 and Problem 2 with Laguerre basis function that Hermite
basis functions.



Table 1: Computed L, —error and L, —error

Problems L, — error L, —error L, — error L, —error
(Laguerre poly.) (Laguerre poly.) | (Hermite poly.) (Hermite poly.)
Problem 1 (Case 1) 5x107* 2.5x1077 3x10™* 1.2 x 1077
Problem 1 (Case 2) 8x107* 3.55 x 10°° 1x10~* 2.24 x 1078
Problem 2 9x107* 2.10 x 1072 4.6 x1073 1.12 x 1072
Table 2 Table 3 Table 4
x u u’ x u u’ x u u’
0.00000 | 1.00000 | 0.00000 0.00000 | 1.00000 | 1.00000 0.00000 | 1.00000 | -0.53452
0.05000 | 1.00125 | 0.04998 0.05000 | 1.05127 | 1.05123 0.05000 | 0.97451 | -0.48521
0.10000 | 1.00500 | 0.09983 0.10000 | 1.10516 | 1.10484 0.10000 | 0.95145 | -0.43736
0.15000 | 1.01123 | 0.14944 0.15000 | 1.16179 | 1.16071 0.15000 | 0.93075 | -0.39111
0.20000 | 1.01993 | 0.19866 0.20000 | 1.22127 | 1.21873 0.20000 | 0.91232 | -0.34658
0.25000 | 1.03109 | 0.24739 0.25000 | 1.28370 | 1.27880 0.25000 | 0.89606 | -0.30392
0.30000 | 1.04466 | 0.29548 0.30000 | 1.34918 | 1.34082 0.30000 | 0.88189 | -0.26327
0.35000 | 1.06062 | 0.34281 0.35000 | 1.41781 | 1.40469 0.35000 | 0.86970 | -0.22478
0.40000 | 1.07893 | 0.38925 0.40000 | 1.48968 | 1.47032 0.40000 | 0.85937 | -0.18860
0.45000 | 1.09953 | 0.43466 0.45000 | 1.56487 | 1.53763 0.45000 | 0.85080 | -0.15490
0.50000 | 1.12237 | 0.47891 0.50000 | 1.64347 | 1.60653 0.50000 | 0.84384 | -0.12383
0.55000 | 1.14740 | 0.52185 0.55000 | 1.72555 | 1.67695 0.55000 | 0.83837 | -0.09557
0.60000 | 1.17453 | 0.56335 0.60000 | 1.81119 | 1.74881 0.60000 | 0.83423 | -0.07030
0.65000 | 1.20371 | 0.60325 0.65000 | 1.90045 | 1.82204 0.65000 | 0.83128 | -0.04821
0.70000 | 1.23483 | 0.64142 0.70000 | 1.99341 | 1.89658 0.70000 | 0.82935 | -0.02949
0.75000 | 1.26782 | 0.67768 0.75000 | 2.09013 | 1.97236 0.75000 | 0.82827 | -0.01434
0.80000 | 1.30256 | 0.71190 0.80000 | 2.19067 | 2.04933 0.80000 | 0.82786 | -0.00299
0.85000 | 1.33897 | 0.74389 0.85000 | 2.29508 | 2.12741 0.85000 | 0.82791 | 0.00437
0.90000 | 1.37691 | 0.77348 0.90000 | 2.40343 | 2.20657 0.90000 | 0.82822 | 0.00748
0.95000 | 1.41627 | 0.80052 0.95000 | 2.51576 | 2.28674 0.95000 | 0.82858 | 0.00611
1.00000 | 1.45692 | 0.82480 1.00000 | 2.63212 | 2.36787 1.00000 | 0.82875 | 0.00000




Table 5 Table 6 Table 7
x u u' x u u' x u u'
0.0000 1.0000 0.0000 0.0000 | 1.0000 1.0000 0.0000 | 1.0000 0.2397
0.0500 1.0013 0.0513 0.0500 | 1.0513 1.0525 0.0500 | 1.0133 0.2913
0.1000 1.0052 0.1052 0.1000 | 1.1053 1.1102 0.1000 | 1.0292 0.3461
0.1500 1.0118 0.1618 0.1500 | 1.1624 1.1731 0.1500 | 1.0479 0.4043
0.2000 1.0214 0.2214 0.2000 | 1.2227 1.2415 0.2000 | 1.0697 0.4659
0.2500 1.0340 0.2840 0.2500 | 1.2866 1.3154 0.2500 | 1.0946 0.5313
0.3000 1.0499 0.3499 0.3000 | 1.3544 1.3952 0.3000 | 1.1229 0.6004
0.3500 1.0691 0.4191 0.3500 | 1.4263 1.4809 0.3500 | 1.1547 0.6736
0.4000 1.0918 0.4918 0.4000 | 1.5026 1.5729 0.4000 | 1.1903 0.7510
0.4500 1.1183 0.5683 0.4500 | 1.5837 1.6713 0.4500 | 1.2299 0.8327
0.5000 1.1487 0.6487 0.5000 | 1.6698 1.7763 0.5000 | 1.2736 0.9190
0.5500 1.1833 0.7332 0.5500 1.7614 1.8883 0.5500 1.3218 1.0101
0.6000 1.2221 0.8221 0.6000 1.8588 2.0076 0.6000 1.3747 1.1063
0.6500 1.2655 0.9155 0.6500 1.9623 2.1343 0.6500 1.4326 1.2077
0.7000 1.3138 1.0137 0.7000 | 2.0723 2.2689 0.7000 1.4956 1.3146
0.7500 1.3670 1.1170 0.7500 | 2.1893 24117 0.7500 1.5641 1.4274
0.8000 1.4255 1.2255 0.8000 | 2.3136 2.5630 0.8000 1.6384 1.5461
0.8500 1.4896 1.3396 0.8500 | 2.4458 2.7232 0.8500 1.7188 1.6713
0.9000 1.5596 1.4596 0.9000 | 2.5861 2.8927 0.9000 1.8057 1.8031
0.9500 1.6357 1.5857 0.9500 | 2.7352 3.0719 0.9500 1.8993 1.9420
1.0000 1.7183 1.71183 1.0000 | 2.8935 3.2613 1.0000 | 2.0000 2.0882
Table 8: Compute absolute error in the scientific notation of Case 1
x Exact Absolute Absolute Absolute Absolute
solution error(n=4) error(n=6) error(n=4) error(n=6)
(Laguerre poly.) | (Laguerre poly.) | (Hermite poly.) | (Hermite poly.)

0.0 1.0000 0x107° 0x10°° 6x107° 0x10~°

0.1 0.9555 3x107* 4x107* 4.9 x 1073 0x1075

0.2 0.9151 1x107* 3x107* 4.2x1073 1x107*

0.3 0.8838 0x1075 1x10* 2.7 x 1073 2x107*

0.4 0.8605 3x107* 1x107* 9.7 x 1073 0x10-°

0.5 0.8445 3x107* 1x107* 1.35x 1072 1x107*

0.6 0.8345 3x107* 1x10~* 1.23 x 1072 0x1075

0.7 0.8294 1x107* 2x107* 7x1073 2x107*

0.8 0.8279 2x10™* 3x107* 3x107* 3x107*

0.9 0.8282 7x107* 5x10~* 3.2x 1073 1x107*

1.0 0.8288 0x10* 4x107* 2x1073 2x107*




Table 9: Compute absolute error in the scientific notation of Case 2

x Exact Absolute Absolute Absolute Absolute
solution error(n=4) error(n=6) error(n=4) error(n=6)

(Laguerre (Laguerre (Hermite (Hermite

poly.) poly.) poly.) poly.)

0.0 1.0000 6x107* 1.1 x 1073 1x1073 0x1075
0.1 1.5547 1.2x 1073 8x107* 6.6 x 1073 1x107*
0.2 2.1451 1x1073 5x107* 6.2x 1073 0x107°
0.3 2.7013 3x107* 3x107* 2.6 1073 0x 1075
0.4 3.2163 4x 107 1x10~* 1.3x 1073 0x107°
0.5 3.6834 8x107* 0x 1075 3.4 %1073 1x107*
0.6 4.0961 6x10* 3x10™* 2.9x1073 1x107*
0.7 4.4486 0x 1075 4x10™* 1x107* 0x1075
0.8 4.7353 7 x 10~* 5x10~* 3.6 x 107* 0x107°
0.9 4.9510 1.1x 1073 6x107* 5.5x 1073 1x107*
1.0 5.0912 0x 1075 7 x10~* 1.8 x 1073 1x107*

Table 10: Compute absolute error in the scientific notation of Problem 2

X Exact Absolute Absolute Absolute Absolute
solution error(n=4) error(n=6) error(n=4) error(n=6)
(Laguerre (Laguerre (Hermite (Hermite
poly.) poly.) poly.) poly.)
0.0 1.0000 4x1073 8x 1073 0x 1075 0x10°
0.1 1.0258 3.1x1072 5.6 x 1073 3x 107 3x107*
0.2 1.0697 1.9 x 1073 9x107* 2% 107 4x1073
0.3 1.1229 1.11x 1071 3.5 x 1073 43 %1073 45x%x1073
0.4 1.1903 8.1x 1073 5.5x 1073 45x%x 1073 46x1073
0.5 1.2736 9.1 x1073 6.9 x 1073 4,6 x 1073 4.4 %1073
0.6 1.3747 7.7 x 1073 7.8 x 1073 4.4 %1073 43 %1073
0.7 1.4956 45x%x 1073 8.1x 1073 4x 1073 4.1%x1073
0.8 1.6384 5x 107 7.7 x 1073 3.1x 1073 3.2x 1073
0.9 1.8057 1.9 x 1073 6.7 x 1073 1.8x 1073 1.8x 1073
1.0 2.0000 3x107* 5x 1073 0x 1075 0x1075
T,
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Figure 1. Graph of exact and approximate solution of case 1 with Hermite and Laguerre polynomials

(n=4)
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Figure 2. Graph of exact and approximate solution of case 1 with Hermite and Laguerre polynomials

(n=6)
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Figure 3. Graph of exact and approximate solution of case 2 with Hermite and Laguerre polynomials
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(n=6)
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Figure 5. Graph of exact and approximate solution of case 3 with Hermite and Laguerre polynomials
(n=4)
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Figure 6. Graph of exact and approximate solution of case 3 with Hermite and Laguerre polynomials
(n=6)
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(n=4)
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V. CONCLUSION

In this work, we have developed the Galerkin approach to approximate the solution of second-order
mixed and Dirichlet BVPs. It is observed that increases the accuracy of the approximate solution after
converting the mixed and Dirichlet BVPs into Neumann BVPs. We also notice that the approximate solutions
coincide with the exact solutions even though a few of the polynomials are used in the approximation which is
shown in Table 8, Table 9, and Table 10. In order for this method to produce better results as the number of
Hermite polynomials increases and for the Runge-Kutta method to be used with a modest step size. Accuracy
will be better as increase the value of n with the Hermite polynomial but in the case of the Laguerre
polynomial, the stiffness matrix is close to singular as n increases in maximum problems.
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