A Hybrid intelligent Deep Learning Approach based on Denoising Sparse Autoencoder for Malicious URL detection

Manoj Kumar Prabakaran1
Department of Artificial Intelligence and Data Science, Mepco Schlenk Engineering College,
Virudhunagar, India.
Abinayadevi Chandrasekar2
Department of Computer Science and Engineering, Mepco Schlenk Engineering College, Virudhunagar,
India
Parvathy Meenakshi Sundaram3
Department of Computer Science and Engineering, Sethu Institute of Technology, Virudhunagar, India
ABSTRACT:
	Malicious URLs are a persistent and sophisticated problem on the Internet, as they are the source of Phishing, malware, ransomware and a variety of other threats. The traditional method of detecting malicious URLs is to generate blacklists that contain both completely hostile websites and genuine websites that have been compromised and reconfigured as hosts for unwanted content. However, blacklisting cannot prevent all harmful content from penetrating, especially if the malicious traffic originates from an unidentified source. Machine learning (ML) algorithms have shown to be effective in detecting malicious URLs, with high accuracy. Conversely, the complexity involved in manually extracting statistical based features from URLs and its inability to handle huge volume of data degrades the performance of ML based models in terms of malicious URL detection. Deep learning (DL) algorithms, on the other hand, can extract meaningful representations of the input automatically and are scalable to exponentially growing data. Considering the potential of DL algorithms, in this study we propose DSAE-DNN, a hybrid deep learning approach combining Denoising Sparse Autoencoder (DSAE) and Deep Neural Network (DNN) for malicious URL detection. DSAE-DNN first takes a raw URL string as input data and preprocesses the URL data into numerical vectors based on encoding schemes by converting each character of URL into Ascii values. Then we utilize DSAE to evaluate the URL vectors and automatically extract higher level abstract features of the URL. DSAE reconstructs the original URL vector under unsupervised training allowing the model to learn inherent features of the input vector. Finally, the extracted feature vectors present in the bottleneck layer of the DSAE model is fed in to a deep neural network model for classification. URL samples from the ISCX-URL-2016 URL dataset were collected to assess the model's performance in detecting phishing URLs. We crawled roughly around 70,000 URLs from the dataset for experimental purposes, which can be classified as benign or Phishing in general. Extensive experiments on the dataset showed that our method achieves 99.81 percent accuracy and an F1 score of 0.998, outperforming the traditional feature engineering-based methods. We utilized receiver-operating characteristic (ROC) curve analysis to demonstrate the efficacy of the proposed technique and validated that the model has the lowest false positive rate when compared to other autoencoder based approaches.

Keywords: URL, Machine learning, Deep learning, Denoising Sparse Autoencoder, Deep Neural Network

I. INTRODUCTION
Phishing has evolved into one of the most potent tools available to cyber thieves for exploitation of various types of cyber-attacks in the real world. As per the comprehensive study conducted by [1], the authors stated the definition of phishing as “A scalable act of deception whereby impersonation is used to obtain information from a target”. The attacker employs a variety of methods to either directly deceive the victim through a scam or indirectly deliver payload with the purpose of obtaining personal or confidential information from the victim [2]. [3] Since early 2020, when APWG was observing between 68,000 and 94,000 attacks per month, the number of recent phishing attacks has more than doubled. The number of malicious website URLs registered by APWG in July 2021 was 260,642, the largest monthly attack count in the organization's history. One of the most common ways to commit cybercrime is using malicious URLs. They host unwanted content and prey on naive individuals, making them victims of a variety of frauds. A user's first and most important step in surfing the Internet is to type a URL, and this simple action can lead to a number of assaults. The attacks were carried via using so-called malicious URLs. Every year, billions of dollars are lost as a result of this [4]. As a result, it's become critical to develop effective strategies for detecting fraudulent URLs quickly.
Traditionally, and most commonly, this detection is accomplished by employing blacklisting techniques. These are essentially anti-virus group’s list of URLs that are "known" to be harmful. Crowd sourcing tools are frequently used to collect them. While these techniques are rapid and are intended to have low False Positive rates, one major drawback is that they can't be completely comprehensive, and they particularly fail when dealing with newly generated URLs. Because new URLs are generated on a daily basis, this is a major constraint.
Machine learning algorithms, in addition to blacklist and rule-based solutions, are commonly utilized in phishing website detection. The reason for this is that fraudulent URLs or phishing webpages have some distinguishing traits from normal websites, and machine learning can help with this. Existing machine learning algorithms have well-known benefits, such as eliminating the need to collect blacklists and artificially build filter rules, increasing efficiency by adding automatic detection, and improving accuracy rate. Existing phishing website detection methods [5] - [7] leverage machine learning to extract statistical features from the URL and host, or to extract relevant features from the webpage, and then classify them.
	Although prior studies had a high detection rate, the identification of malicious URLs using feature engineering and machine learning had a number of flaws. i) Lack of ability to perceive and extract semantic patterns: Existing methodologies only evaluate the URL or extract features from a particular perspective, making it difficult to extract all of the phishing website's qualities. ii) Require a significant amount of manual feature engineering: Many of these approaches necessitate expert assistance in determining the task's most significant qualities. iii) Inability to cope with URLs that do not comply with the features that have been manually crafted i.e. Due to the shift in structure of today’s modern URLs, which are substantially shorter in length, the effect of lexical features in classification has been reduced inadvertently. iv) Handling massive amounts of data: As the amount of data grows, the performance of machine learning classifiers remains constant.
	While many technical issues impede the efficient implementation of machine learning techniques, one way to minimize the cost of establishing and maintaining machine learning techniques is to move beyond manual feature engineering, which is often regarded as the most time-consuming aspect of machine learning. In recent times, modern deep learning algorithms have been employed by various researchers [8] in which the features are automatically extracted from the raw URL instead of manual feature engineering,
	To overcome the existing challenges, we propose DSAE-DNN, a Deep Learning-based Malicious URL Detection solution. Recently researchers [19], [20], [21] have used different sorts of autoencoder models for selecting features from URLs in recent years. The classification results achieved using the features extracted by autoencoder models have been found to be more significant. Following their success, the proposed model incorporates a Denoising Sparse Autoencoder (DSAE) model for automatically extracting features from raw URL inputs.
	In our model, initially the raw URL inputs are encoded into numerical vectors using the URL encoding algorithm, which converts Unicode characters into Unicode values and other letters of the URL into their respective ASCII values. The input URL is turned into a fixed length numerical vector depending on padding technique after the first phase is completed. Then, in order to extract significant features from the input vector, the DSAE model is used to compress the original input vector and learn a higher-level representation of input characteristics. Following that, the extracted characteristics from the trained DSAE model's bottleneck layer are provided as input to a Deep neural network (DNN) classifier to predict the input URL. The proposed model employs DSAE model for automatic feature extraction of URL and Deep neural network for classifying the URL as either benign or malicious Our study's key innovation is combining an unsupervised training methodology by feeding raw URLs without labels to DSAE models in order to discover certain valuable patterns from the URLs, and then adopting a supervised fine tuning and classification using the DNN classifier. For effective classification of URL inputs, the features produced in the bottleneck layer of the DSAE model were provided as inputs to the DNN classifier. Experiments demonstrate that the proposed DSAE-DNN model is competitive in terms of various performance metrics in the ISCX-URL 2016 real-world dataset when compared to the traditional ML based models that employed hand crafted URL features.
To tackle the shortcomings of the traditional approaches, the proposed DSAE-DNN model includes the following contribution:
· The ability to create features without having to manually craft them. We use a deep learning technique to construct an auto feature extraction module, which can generate detection models without the need for manual feature engineering, as opposed to static URL analysis. Unlike most other methods, the deep learning method can deconstruct and reassemble URL samples to learn high-level features.
· The ability to learn a higher-level representation of input information. We use the denoising technique, which involves adding a certain type of noise to the original input in order to create a corrupted output. This stops the model from duplicating the supplied features directly. Additionally, sparsity constraints are applied to the DSAE model to ensure that only relevant characteristics are passed to the succeeding layers of the neural network, allowing the model to identify key features from the input.
· Detecting unknown threats and combating URL evasion technology. The model ceases the barrier of fixed human cognition to shallow malevolent characteristics because it does not employ artificial features. The developed model may indicate correlations among input features, implying that malicious URLs have more intrinsic properties. As a result, our approach shall detect previously unexplored malicious URL sample types.

In a nutshell, our approach improves the quality of online malicious URL detection by automating the feature extraction process, akin to teaching the model to learn features on its own. We also have a high detection rate when we encounter new samples that do not appear in the test data set.
The following is the rest of the paper: In Section 2, we present the relevant work. The approach used in our proposed framework is then explained in Sect. 3. The details and outcomes of the experiment are presented in Section 4. Section 5 delves into the novelty as well as the outcomes. Finally, in Section 6, the conclusions are presented.

II. RELATED WORK
	In this section, we elaborate the existing solutions adopted to detect phishing websites using machine learning, including both conventional and deep learning methods. Machine learning-based phishing website detection is the recent hotspot in cyber security. The quality of the extracted features does have a big impact on the results of machine learning approaches. The current focus of study is on how to identify and choose more effective features prior to processing. Before delving into the existing studies that have been offered in the literature to identify phishing, it is critical to learn certain URL nomenclature. The basic format of a URL is discussed in Section 2.1, while the rest of the chapter examines existing phishing detection methods.
A. Structure of an URL
	The basic structure of an URL is depicted in Fig.1. URL is abbreviated as Uniform Resource Locator. A URL is the address of a specific unique resource on the Internet. Each valid URL, in principle, refers to a single resource. A URL is made up of several parts, some of which are required and others which are optional. The scheme is the first part of the URL, and it specifies the protocol that the browser must use to request the resource. The authority, which includes both the domain and the port and is separated by a colon, comes next. The domain identifies the Web server that is being accessed. The port is the technical "gate" that allows users to access the web server's resources. The path to the resource on the Web server is the third part of the URL. The path is followed by two more arguments that are being sent to the server. Those parameters are a list of key/value pairs with ‘&’ symbol separating them. Before returning the resource, the Web server could use those arguments to perform additional tasks.
[image:]
Fig.1 Basic structure of an URL

B. Machine Learning based Approaches for Malicious URL detection
	Many researchers have proposed machine learning algorithms for phishing detection in recent years, with a massive database of phishing and trustworthy websites. In the recent past, several experts offered many unique features of various sorts of phishing websites from distinct viewpoints. Various machine learning-based phishing detection methods [9] - [13] that employed supervised classification algorithm to detect the genuineness of websites have been developed. The accuracy and results were determined on the feature sets chosen and the machine learning methods employed.
	For phishing detection, Gururaj and Goutham [9] proposed an effective machine learning approach. For classification, the model employed 30 statistically based URL and web page features. This study employed various machine learning models for classification. Random Forest classifier exceeds all the other tested ML methods models with an accuracy of 96.87 percent. The proposed methodology, however, may be exposed to zero-day attacks since the lexical properties of a URL may be easily decoded by hackers and a strategy shall be devised while assembling a malicious URL since the model is trained based on a fixed number of lexical based features.
	Ekta Gandotra and Deepak Gupta [10] proposed a methodology that identified a broad set of strong features that may be categorized into three: webpage, URL, and HTML-based features. The features in these categories were initially utilized to classify webpages individually. Following that, a technique was given in which all of the features were integrated for classification purposes. The results of the proposed approach suggested that the employed Random forest classifier produced an accuracy of 99.5% with low false positive and negative rates. The retrieved features are entirely dependent on URLs, and the detection speed is high due to the limited number of features. However, there was only a relatively small amount of experimental data.
	Barraclough et al. [11] developed a novel methodology that integrated blacklist-based, web content-based, and heuristic-based approaches, as well as machine learning algorithms with comprehensive features, to detect phishing attacks more accurately. The proposed method's performance was measured utilizing evaluation methods (metrics) based on Adaptive neuro-fuzzy inference system (ANFIS), Naive Bayes (NB), PART, J48, and JRip with features. The best performance was achieved by the PART classifier, which achieved 99.33 percent accuracy with a speed of 0.006 seconds. Despite the fact that the ML-based model worked admirably, it has a 0.66 percent error rate due to the problem of overfitting. Furthermore, all of the Legitimate URLs in the dataset are associated to banks, and some functionality was only available on e-banking websites, which appears to be highly imbalanced
	Mahdieh and Fatemeh [12] proposed an improved spotted hyena optimization algorithm (ISHO algorithm) for categorizing phishing websites by selecting appropriate features. Support vector machines were used to perform the classification task. The results indicated that the proposed model achieved a precision of 98.64 percent. While ISHO was used to choose the most essential features from a group of features, the classification results enhanced. The proposed model, on the other hand, retrieved data from a UCI repository that lacked the original URL, and no steps were taken to extract features from the URL.
	Saleem et al. [13] suggested a lightweight method for phishing website identification that takes into account the lexical properties of a URL. The researchers also used a feature reduction strategy based on correlation analysis, which resulted in the number of features being decreased to 7 out of 20 lexical features. Although this lightweight technique reduces training time and aids in faster URL detection, since the approach only consider a fixed number of lexical based features of a URL, the model will be vulnerable to different types of URLs, such as (short length URLs), which will not be easily recognized since these URLS do not fall under a traditional URL category.

C. Deep Learning based Approaches for Malicious URL Detection
	Apart from traditional machine learning based solutions that employed statistical based features extraction for effective phishing detection, many researchers have recently implemented deep learning-based phishing detection mechanisms for effective malicious URL detection. Through a hierarchical learning process, deep learning algorithms could extract high-level, complicated abstractions as data representations [15]. Instead of manually collecting URL features through complicated feature engineering, it can be utilized to automatically extract higher level abstract features from raw URLs. DL algorithms have been used in a variety of research [16] – [20] in the recent past for successful feature selection and classification.
	Wang et al. [16] proposed a fast-phishing website detection approach called PDRCNN (Precise Phishing Detection with Recurrent Convolutional Neural Networks) that relies only on the URL of the website. This was the earliest methodology to use deep learning model to detect phishing in context of cyber security issues. To extract global features from the input URL, a bidirectional LSTM network was used, and CNN was used to capture the significant components of the extracted features. The detection accuracy of PDRCNN was 97 %, while the AUC value was 99 %, which is significantly better than state-of-the-art techniques, however training the model took a long time. Moreover, the model is unconcerned with whether or not the related website to the URL being evaluated for training is currently active or not.
Ali and Ahmed [17] proposed a hybrid intelligent phishing website prediction using deep neural networks (DNNs) with evolutionary algorithm-based feature selection and weighting methods to enhance the phishing website prediction. To enhance the accuracy of phishing website prediction, the genetic algorithm (GA) was used to heuristically identify the most influential features and the best weights of website features. The incorporation of evolutionary algorithms to choose effective weights and attributes of URL is the research's key innovation. The model's detection accuracy is 89.5 %. The proposed model, on the other hand, has the following weaknesses: i) Lack of data sources and feature extraction technique ii) Using GAs for feature selection and weighting may take longer duration.
Yang et al [18] proposed a phishing detection mechanism that involves multidimensional features for classification. Deep URL features were extracted using CNN and LSTM, and these features were coupled with statistical features to generate a multidimensional feature for classification. The proposed model was quite effective at detecting malicious URLs, as evidenced by the results.
For phishing detection, Liqun et al [19] proposed a novel method that employs a non-inverse matrix online sequence extreme learning machine (NIOSELM). An Adaptive Synthetic Sampling (ADASYN) approach was employed to lessen the detection model's reliance on the majority class. In addition, to lower the size of the experimental dataset, an enhanced denoising auto-encoder (SDAE) was created. To balance the dataset and reduce dimensionality, the proposed model incorporates unique preprocessing techniques. The detection accuracy, on the other hand, was not effective when compared with the existing approaches.
Deepa et al. [20] proposed a novel approach for phishing detection based on convolutional autoencoders and deep neural networks. Convolutional autoencoders (CAE) were employed to extract raw URL information, and deep neural networks were used for classification. The results of the experiments have shown that using CAE for feature extraction is quite effective in identifying important features. The model has an accuracy of 89% in detecting phishing websites.
The models proposed in [19] and [20] used different types of autoencoder models for feature extraction and reduction, and the findings showed that autoencoders were effective at reflecting higher level representations of raw URL characteristics. Based on the above analysis, we take advantage of the Denoising sparse Autoencoder that extracts the abstract properties of the URL and feed those features into a deep neural network for successful identification of fraudulent URLs.
III. METHODOLOGY
	The main objective of our research is to propose a novel malicious URL detection model that can uniquely identify phishing URL websites in a real time environment. Hence our work focuses on constructing a neural network based framework that can automatically extract distinct features from the raw URLs and simultaneously classify the incoming URL based on the characteristics of the URL.
To extract real time raw URLs for experimentation, we have adopted ISCX-URL-2016 dataset since it comprises of wide variety of URLs classified under different category.
The features used in the field are diverse and derived from multiple sources. In the recent past, many of the research works consider static features of URL for security and cost reasons. Although, it is effective to analyze a suspicious URL based on statistical analysis, manual extraction of those features from the URL is a tedious and time consuming process.
Hence to overcome the aforementioned issue, Denoising Sparse Autoencoder (DSAE) has been employed to automatically extract higher level abstract features from URL. Also, in order to effectively classify the URLs, a deep neural network has been deployed at the end of DSAE. The steps involved in the proposed framework are as shown in Fig.2

A. Data Preprocessing
Although Deep learning models have the ability to extract features from raw data, the data needs to be preprocessed as in the case of phishing URL detection since the samples contain strings that are URL encoded Unicode values that are challenging to read and meaningless, hence it cannot be considered as ordinary text samples and are not appropriate for being denoted in the form of word vectors.
Thus, in data preprocessing stage, the Unicode characters in URL were converted into Unicode value and further letters into ASCII values. The transformed values were structured in the form of vectors to characterize individual URLs. Since every URL is not of the similar length, a zero-padding mechanism is adopted to balance the length of every numerical vector inputs based on the largest URL length.

[image:]
Fig.2 Steps involved in the Proposed DSAE-DNN Framework

B. Feature Extraction using Denoising Sparse Autoencoder (DSAE):
	In the recent past, many of the Researchers have employed traditional machine learning techniques to identify malicious URL. Although it is cheap and less time consuming, these techniques often need to manually extract the features which is tedious and could even allow the attackers to analyze these features and devise strategies to avoid being identified. Therefore, our work focuses on adopting a deep learning based methodology to automatically extract significant features from the URL.
To reduce the dimensionality of the input and extract higher level abstract features from a given set of URL, we developed an AutoEncoder (AE) model. AutoEncoder is a special type of feed forward neural network that encodes it input say X into a hidden representation say H and then decodes / reconstructs the input say X’ back from the hidden representation. AE learns a representation for a given set of input data, generally for dimensionality reduction, by training the network to disregard irrelevant data. Fig.3 represents the basic form of an Autoencoder model.
An autoencoder is a non-recurrent neural network similar to a single layer perceptron that contributes to a multilayer perceptron with three layers of interconnected neurons: an input layer, one or more hidden layers, and an output layer. In general, both the input and output layer has the same number of units. The core purpose of AE is to reconstruct its input values instead of predicting an output value for a given input value. As a result, the model is optimized to reduce the loss resulting from the difference between the original and reconstructed input. The model always tries to ensure that the input is as close as possible to the reconstructed input.
There are two possible ways of structuring an AE model. i) Setting the number of units in the hidden layer to be lesser than the number of units in the input layer. ii) Setting the number of units in the hidden layer to be greater than the number of the units in the input layer.
In the former case, for the input say Xi if the model is still able to reconstruct the input Xi^ perfectly from the hidden layer say H, then H is referred to as a loss–free encoding of the original input Xi. This type of AE models where, dimension (H) < dimension (Xi) is referred to as an under completer Autoencoder.
 In the latter case where, dimension(H) >= dimension (Xi) is referred to as an Over completer Autoencoder. In this case, the model could inadvertently learn a trivial encoding by simply copying Xi in to H and then copying H back in to Xi.
	Both undercomplete and overcomplete AE models lead to poor generalization since they fail to reconstruct the raw data as they get trapped falling into the task of copying the inputs rather than reconstructing them specially when there is an enormous data space.
 To overcome the issue of poor generalization, there is a need of regularizing the inputs. For regularization, certain form of noise shall be added to the inputs such that it restricts the model from blindly copying the original inputs.
Also, in order to learn significant latent representations of the input instead of redundant information, penalizing activations of hidden layers shall be done such that only a few nodes are stimulated to activate when a single input is fed into the network.
To achieve this, a Denoising Sparse Autoencoders (DSAE) model has been proposed to ensure lack of generalization and to extract meaningful patterns from raw URLs with lower dimensionality. These higher-level abstract features are then fed to our deep neural network model for multiclass classification of malicious URLs.

[image:]
Fig.3 Basic Structure of an Autoencoder model

Denoising sparse autoencoder (DSAE) is an enriched form of traditional autoencoder in which certain form of perturbation is added to the input and a sparsity penalty term is added as a loss function constraint. In comparison with traditional autoencoder, this enhancement shall yield more robust and abstract features.
The formal representation of the DSAE model is as follows. A corrupting operation is added before encoding phase to denoising sparse autoencoder in order to get more robust features from the original data. Suppose that original input is X, then the corrupting operation can be derived as per the following equation:

	Xcorr = X + noise_Factor * random_normal (N)
	(1)

where, Xcorr is the corrupted output, noise_Factor is the multiplier for a random normal number generated from Input samples to obtained the desired variance and random_normal(N) is a random number generator function with N input values as parameters. The corrupted output produces modified input feature elements from a Gaussian distribution of zero mean and unit variance.
Once the corrupting operation is concluded, the corrupted output, Xcorr have been used as the input to perform encoding and decoding phase consecutively.

The Encoding function is defined as follows:
	h=g (W. Xcorr + b)
	(2)

Where, W and b are trainable parameters, function g() is a non-linear function and h represents the encoding output for the respective corrupted input.
The Decoding function is defined as follows:
	Xi^ = f (W’. h +c)
	(3)

Where, W’ and c are trainable parameters, function f() is a non-linear function and Xi^ denotes the decoding output.
Technically, denoising autoencoder simply corrupts the input data using a probabilistic process (P(Xcorr | Xi)) before feeding it to the network. This process of corruption will make the model become more robust since it is explored to corrupted data, it will not be able to memorize the input data as it is. Also, it no longer make sense for the model to copy the corrupted input Xcorr into h (Xcorr) and then into Xi^, since the reconstructed input is actually compared with the original input instead of the corrupted input such that the model will have the aptitude to capture the appropriate characteristics of the data correctly.
The developed model is trained to minimize a certain cost function that will ensure that the output Xi^ is as close as possible to the input Xi. Our proposed DSAE model’s cost function is expressed as follows:

	L(θ) = + 0.5 Trace(W.WT + W’TW’)
	(4)

where,
L(θ) - cost function,
Xi – Input vector
Xi^ - Reconstructed Input vector
W – Weight matrix associated with encoding function
W’ – Weight matrix associated with Decoding function
Here, the cost function consists of two parts. First part is the mean squared error loss function which is the average squared difference between the reconstructed and original input. The second part is a trace function of an orthogonalization factor typically being used to achieve the maximum amount of dissimilarity between the data samples. Typically, W.WT + W’TW’ returns a square matrix that is the same size as that of the number of neurons in the hidden layer units. Tracing is done to ensure there is minimum correlation between W and W’ and the diagonal sum of the matrix is minimized.
In Accordance with the loss value calculated by cost function, backpropagation algorithm shall be used for optimizing weights and biases. Further to level the optimization, a regularization term shall be added to the loss function. After adding the regularization term, the cost function is expressed as follows:

	Lr(θ)= L(θ) +
	(5)

In equation (5), L(θ) denotes the cost function as calculated in equation (4). In addition, Nl indicates the number of layers in the network and Hl denotes the number of units in hidden layers, and O (l+1) means the number of units in the output layer.
The purpose of adding the regularization term is to penalize the complexities of non-linearity that exist due to heavy interaction between one or more parameters used in the model. One way of penalizing the complexity, would be to add the squares of all the parameters to the cost function, however it might result in our loss getting so huge that the best model would be to set all the parameters to 0.
To prevent that from happening, we multiply the sum of squares with another smaller number. This number is called weight decay (⅄). Based on the experiments performed it has been understood that if the value of weight decay is quite large, then irrespective of the training time, the model never quite fits well enough whereas if the value of weigh decay is too small, it may still lead to overfitting. Hence several empirical experiments have been performed to select lambda to achieve the best fit value.
Although, adding weight decay parameter has a significant advantage, still the weight parameters have a lot of freedom to adjust accordingly in order to reduce the training error. This may in fact to lead to overfitting. Hence to restrict the freedom of parameters, a sparsity constraint ‘P’ is added to ensure that the average activation value of a neuron is close to zero as possible. This method can limit the number of regions in the hidden layer.
The average value of activation of a neuron l is given by,
	Pl^ =
	(6)

If the neuron l is sparse, then Pl^=0. Now, the sparsity term is calculated to make Pl^ as close to p as possible, where p is the sparsity constraint. In order to implement the sparsity constraint, the learned weights and biases should satisfy the following equation,
	Pl^= P
	(7)

The sparsity term is defined using Kullback-Leibler divergence as follows:
	Ω(θ)= + (1-P) log
	(8)

Now, the sparsity term is further added to the cost function defined in (5). Finally the cost function of our model has the formalization as shown in (9).
	Lsparse(θ) = +
0 .5 Trace (W.WT + W’TW’) +
+ + (1-P) log
	(9)

The final Cost function can be simply rewritten as,
	Lsparse(θ) = Lr(θ) + Ω(θ)
	(10)

The overview of our DSAE model is shown in Fig.4. In this structure, the input URL features that are preprocessed and represented in the form of vectors are being corrupted stochastically by adding Gaussian noise to the input. The corrupted input Features will be initially encoded and then correspondingly be decoded once again to the original input features. Also, to learn significant latent representations of the input URL features, penalizing activations of hidden layers have been done by adding sparsity constraints to the cost function such that the noise introduced in each layer and the sparsity term added leads to enhanced performance and faster training. The deployed DSAE model considerably minimizes the dimensionality of input features to improve detecting speed.

IV. PROPOSED DSAE-DNN MODEL
		The proposed DSAE-DNN framework is represented in Fig.5. Our model combines the features of Denoising sparse Autoencoder and Deep neural Network to effectively detect and classify Malicious URLs in a real time network environment. The model takes raw URLs as input and encodes them in the form of numerical vectors based on ASCII and Unicode based Encoding scheme.
		To reduce the dimensionality of the input and to extract significant features, an Auto Encoder based DSAE model have been used. A Deep Neural Network model is deployed along with the DSAE model for classification. The dimensionally reduced features in the bottleneck layer of DSAE model has been fed as the input to the DNN classifier for training the model. Our research work suggests that the higher-level abstract features extracted using DSAE predominantly helps DNN model in effectively detecting and classifying malicious URLs.

[image:]
Fig.4 Overview of Denoising Sparse Autoencoder (DSAE) model

A. Unsupervised training
The model is trained in an unsupervised fashion. The proposed DSAE model consists of an input layer, a hidden layer and output layer, where the size of the input is 1368 units. Those input features are being corrupted by adding Gaussian noise to the input data. Those corrupted input data are being fed into the encoding layer of the model where a non-linear encoding function is applied for compressing the input features. The encoded input features are then passed into a hidden layer, referred to as the bottleneck layer, comprising of 525 hidden units.
The features from the hidden layer are being decoded using a non-linear decoding function and fed to the output layer comprised of 1368 units. The output layer produces a reconstructed version of the original input values.
In this process of forward propagation, an input is fed into the model and a reconstructed version of the input is produced as the outcome. Based on the output produced, a cost function is evaluated based on the difference among the reconstructed and the original input data.
The cost function is calculated as described in section 3.2. Through back propagation mechanism, the DSAE model is trained to minimize its cost function such that model yields to a minimal reconstruction error. This pre-training phase helps the model in achieving minimal reconstruction error and at the same time producing a higher-level representation of the original input features. The bottleneck layer of the model that consists of the compressed abstract representation of the input URL is being fed to the deep neural network classifier for training.
Both the DSAE and the classifier were trained simultaneously. For training the models, 80% of the input URL samples were used for training the models and 20% of the samples were used for testing the classifier. The number of training epochs is 25. Simply, the features from the bottleneck layer of DSAE model were given as inputs to the DNN classifier and being trained accordingly. The Noise factor, sparsity parameter p, and the weight decay, were chosen to be 0.5, 0.05 and 0.3 respectively.

[image:]
Fig.5 Proposed DSAE-DNN Framework

B. Supervised training and Classification
The Deep neural network model comprises of the following set of layers namely an input layer, 3 hidden layers and anA output layer where the unit sizes are 525, 256, 128, 64 and 5, respectively. The batch size is set to 64. At each and every layer, Rectified Linear Unit (ReLU) function is used as an activation function. After the pre-training process, in order to fine-tune the parameters a supervised training is performed for the last 10 epochs while the parameters of the DSAE are frozen.
Log softmax function is used as the output activation function to calculate the probability of each class of the nulticlass URL inputs.
Generally, Softmax function is defined as follows:
	σ(Zi) =
	(11)

In the above equation, exponential function is applied to each element Zi of the input vector Z and normalizes those values by dividing by the sum of all these exponentials. The purpose of applying softmax function is to normalize the outputs. The output value of softmax function is the probabilistic representation of each class. Although, softmax function helps in normalizing any value by applying an exponential function, in certain cases while dealing with larger numbers, applying Log softmax function is advantageous over softmax function for its improvised gradient optimization and numerical performance. Hence, log softmax function has been applied as the output activation function for classifying malicious URL inputs.
Mathematically, Log softmax function is the logarithm of softmax function and can be expressed as,
	log
	(12)

	Applying the logic of log = log x – log y then the equation (12) becomes,
	log
	(13)

Log softmax function outputs a log probability on a logarithmic scale for each and every label. Finally the loss function is calculated based on Negative Log-Likelihood Loss (NLL) function. Since the probabilistic values range between 0 and 1and the logarithm of those values tend to be negative. NLL function implies a negative connotation on those values to make it become positive.
The NLL loss can be expressed as follows,
	L (f(X), Y) = - ln f(X)Y
	(14)

Where X is the input and Y is the target value.
Towards minimizing the loss function, NLL function helps in deriving a better output. Approximation of Maximum likelihood estimation yields negative log likelihood.
Adam optimizer is used to update the parameters based on the computed gradients and the learning rate value is set to 0.001.
Once the training phase is completed, the DNN classifier is finally tested against the test data samples for classification. The proposed framework incorporates DSAE model to obtain high-level and abstract features and DNN algorithm for classifying Malicious URLs.
The results obtained have proven that the proposed DSAE-DNN model outperforms the existing AI based solutions for Multiclass classification of malicious URLs.

V. EXPERIMENTAL RESULTS
A. Dataset Description
	Our work explores ISCX-URL-2016 URL dataset for collecting various kinds of URLs in order to train and test the model for effectively detecting and classifying malicious URLs. This dataset is a publicly available benchmark dataset	issued by Canadian Institute for Cyber Security. Around 36000 URL samples along with their lexical features and merely 1.6 million raw URL samples categorized as benign and different forms of malicious URLS are available in the dataset. Our study focuses on experimenting only raw URL samples from the dataset. The dataset is composed of various categories of URLs that can be broadly classified into 2 types namely Benign and Malicious URL samples. Malicious URL samples are further subcategorized into four categories namely malware, spam, defacement and phishing. For our study, we have extracted around 70000 samples out of which around 35000 samples are taken from Benign category and another 35000 samples are congregated from the four malicious subcategories i.e. Around 12,000 from spam URL category, 10,000 samples from phishing URL category, 11000 from malware and 45000 from defacement category.
B. Design of Experimentation
	To evaluate the proposed model, the following experimental design has been adopted. a) Evaluating the performance of our model in detection of malicious URLs. This process involves binary classification experimentation among two classes of URLs, Benign and Malicious URLs. Those URLs that are not categorized as benign URLs are considered as malicious for this experimentation. b) Experimenting the model with relavant AutoEncoder (AE) based deep learning frameworks combining different AE models with deep neural network classifier to assess the performance of the proposed Auto Encoder based DNN model. Various metrics such as False Positive rate (FPR), False Negative Rate (FNR) and time taken per epochs. C) Comparing the performance of the model against the existing models that employed traditional lexical based feature analysis approach for phishing URL detection based on various performance metrics such as precision, recall, F1 score and Accuracy.
	Our DSAE-DNN model was implemented using pytorch framework, which is an open source library for building both machine learning and deep learning models. All the experiments were conducted using Google Colab Pro environment that provides quicker access of GPUs and TPUs acceleration and allows more space for data in memory and disk.
C. Metrics used for Evaluation
	The following parameters were used to assess the performance of the model for each experiment: Confusion matrix(CM), Classification accuracy, precision, recall, F1 score, training and testing time.
	Confusion matrix creates an N x N matrix that describes the complete performance of the model in terms of both binary and multi class classification, where N is the number of classes to be predicted. For each and every class, the matrix produces the number of correctly and incorrectly identified number of samples by the model. CM is constructed based on the total number of samples being correctly identified as well as the total number of samples incorrectly identified by the model. To achieve this task, four important metrics were considered namely True Positive (TP), True Negative (TN), False Positive (FP) and False Negative (FN). The confusion matrix is depicted in table 1.
	Here, TP represents that model’s ability to correctly identify benign samples as benign. TN indicates that the model is able to identify a phishing URL as phishing. FP suggests that the model predicts a phishing URL incorrectly as benign URL. FN means that the model incorrectly reports a benign URL as phishing. The proportion of accurately classified URL data to the total number of predicted URL data determines the model's classification accuracy. Accuracy of the model is given by,
Accuracy =
	
The term precision can be defined as the ratio of URL samples accurately identified as benign to the total number of URL samples actually being identified as benign.
Precision =
	

Table.1 Confusion Matrix
	
	Original input class

	Predicted output class
	
	Benign
	Phishing

	
	Benign
	TP
	FP

	
	Phishing
	FN
	TN

	The term recall refers to the ratio of correctly identified benign samples to the total number of benign samples in the dataset.	
Recall =

	The F1 score is denoted as the harmonic mean of both the precision and recall and is given by,
F1 score = 2 *

	

VI. Performance Evaluation and Analysis

A. Performance of DSAE-DNN model
	For evaluating the performance of the model in phishing URL detection, URL samples were collected from ISCX-URL-2016 URL dataset. Around 1.5 million URLs were included in this dataset, which are grouped into five broad categories: benign, defacement, malware, spam, and phishing. We crawled roughly 70,000 URLs for testing purposes, which can be divided into two categories: benign and Phishing. In our experiment, the URL data crawled from defacement, malware, spam and phishing dataset are combined into a single category and referred to as phishing URLs. Hence, for training and testing the model, around 35000 benign and 35000 phishing URLs were taken into account.
	The performance in detecting and classifying malicious URLs heavily rely on the number and type of feature inputs being fed to the classifier model. Our work adapts DSAE model to extract higher level abstract features from the given raw URL. Features from the bottleneck layer of the trained DSAE model will be fed to the classifier for fine tuning and classification.
	The working principle of DSAE model as described in section 3.2 suggests that the model tries to reconstruct the original input samples by adding noise to the original input. Cost function will be calculated for each iteration in which the mean difference between the original and reconstructed output will be evaluated. Cost function of the DSAE model depends on the following factors namely noise factor (NF), weight decay, sparsity constraint and sparsity penalty term. 	Several empirical experiments were carried out to choose the optimal value for weight decay and sparsity constraint which resulted in minimal loss value after certain number of iterations.
Table.2 demonstrates the different range of values that were taken into account for experimentation of loss value. Fig.6 shows the loss value obtained for different hyper parameter values. Based on the results, our model have chosen the noise factor value to be 0.5, weight decay to be 0.3 and sparsity constraint to be 0.05, since the combination of these values produced a very minimal loss value after 25 epochs.

Table.2 Hyperparameter values for optimal loss calculation
	Hyperparameters
	Values for experimentation

	Noise Factor (NF)
	0.2, 0.5, 0.7

	Weight Decay (⅄)
	0.05, 0.1, 0.15, 0.2, 0.25, 0.3

	Sparsity constraint (P)
	0.01, 0.02, 0.03, 0.04, 0.05

During the training phase, since both the DSAE and DNN are trained simultaneously, the loss value was calculated for the DNN classifier based on the difference between the actual and predicted value. The learning rate was set to 0.001 and Adam optimizer was chosen for optimizing the loss function. The loss value obtained through the DSAE and DNN were combined to together to calculate the total loss value.

[image: C:\Users\Dell\Desktop\Desktop 07.1.2\paper 2022\metrics\performance evaluation\roc noise factor 0.2.png] [image: C:\Users\Dell\Desktop\Desktop 07.1.2\paper 2022\metrics\performance evaluation\roc optimal.png]
 (a) Noise factor of 20% (b) Noise factor of 50%

 [image: C:\Users\Dell\Desktop\Desktop 07.1.2\paper 2022\metrics\performance evaluation\ROC curve nf=0.7.png]
(c) Noise factor of 70%
Fig.6 Loss Value Optimization based on weight decay and sparsity constraint parameters
The model was trained with 70% of the URL samples from the dataset, and the remaining 30% was used to test the model's performance. Our experimental suggests that the model achieved an average accuracy of 99.81% with a precision and recall value of 99.85% and 99.82% and F1 score of 0.998. The performance of the model was stable across different folds of validation.
To analyze the performance of the model, False Positive rate (FPR) and False Negative Rate (FNR) were calculated. Based on the results, it was identified that the model had achieved a minimal false alarm rate of 0.283 and a slightly high false negative rate of 1.049.The learning curve based on classification accuracy is depicted in Fig.7. Based on the graph analysis, it has been figured out that validation accuracy of the model reaches it maximum in just 25 epochs and increases over 98.5 from 20 epochs onwards.
During the training phase, both the DSAE and DNN model work in tandem to achieve the optimal loss error. Both the models were optimized during each iteration producing higher level abstract features of the input in the bottleneck layer of DSAE which is parallel fed to the DNN model for predicting the output.
[image: C:\Users\Dell\Desktop\Desktop 07.1.2\paper 2022\metrics\accuracy\accuracy final.png]
 Fig.7 Accuracy curve of DSAE-DNN model
	As shown in Fig.8 minimized error value of 0.02 was achieved after 25 iterations which is the combined error value of both DSAE (MSE loss) and DNN (NLL loss) models. The hyper parameters needed to calculate the loss value were carefully adjusted at different experimentation levels to reach a minimalistic optimal loss value. After 20 epochs, the loss value becomes stable.
[image: C:\Users\Dell\Desktop\Desktop 07.1.2\paper 2022\metrics\loss curve\binary.png]
 Fig.8 Loss curve of DSAE-DNN model
The analysis of the loss curve suggests that there is only a minimal trade-off between the loss incurred during the training and testing phase, which makes the model suitable to handle zero-day attacks.
B. 4.4.2. Experimentation
	To evaluate the effect of the proposed algorithm, four classical autoencoder models, vanilla AutoEncoder, sparse autoencoder, Convolutional autoencoder and Denoising autoencoder were compared in this experiment. Each of these models was considered for feature selection technique and a DNN classifier is combined with them for classifying the URLs.
	The models used for experimentation were VAE-DNN, DAE-DNN, CAE-DNN and SAE-DNN. To highlight the efficacy of DSAE model in effective selection of high level abstract features from input URLs, various autoencoder based models were taken into consideration and adopted for feature selection phase. In this process, each autoencoder based models kind of extract significant features of the input during the training phase and along with that the DNN classifier is also trained with features from the bottleneck layer of the autoencoder model as in the same way the DSAE-DNN model is structured.
	ISCX-URL-2016 URL dataset was used for Experimentation. For a fair comparison, all of the tested models used the same train test split. 70% of the dataset was utilized to train the model, while the remaining 30% of the samples were used to test the model. Mean squared error loss function was adopted to calculate reconstruction error for all the models.
VAE-DNN model consists of an input layer, a hidden layer and an output layer. This is the basic form of an autoencoder model. Considering the DAE-DNN model, instead of feeding the original input to the hidden layer, certain form of random noise is applied to the original input to produce a corrupted input which is then fed into the hidden layer for compression. This model as well was organized as in the same way as that of VAE model with the minor difference being the fact that corrupted input is fed into the model for reconstruction instead of original input features.
 In case of Convolutional autoencoder model, it consists of a convolutional and a deconvolutional module for the process of encoding and decoding. Both convolution and max pooling operation have been applied for extracting higher level features from the input URL. The dimensionally reduced features in the convolved hidden layer were used as input for the DNN classifier.
In terms of Sparse autoencoder model, the model is structured in similar way to the vanilla and denoising autoencoder, but instead of introducing noise to the input feature, in this model original input samples were fed into the encoder for compression and decoded back to produce the reconstructed version of the input feature. The significance of SAE is that the model tries to optimize the cost function calculated based on the difference between the original and reconstructed input. It does that by simply adding a sparsity constraint value along with the loss function such that it penalizes the average activation value of every neuron input such that only specific neuron units are activated after each layer which leads to enhanced performance.
All these models were evaluated based on the following metrics namely precision, recall, F1 score and accuracy. For identifying the model ability in classifying URLs accordingly, a confusion matrix analysis has been produced. Further to compare the model in terms of detection rate, additional metrics such as True positive rate (TPR), True negative rate (TNR), False positive rate (FPR) and False negative rate (FNR) were used.
	Table.3 shows the confusion matrix for all experimented models to illustrate the performance of the models. The total number of samples in the testing set was 21000. The results suggest that our proposed model claims to have the highest number of true positive and true negative values. Also, in comparison to other models, our model has the least false negative and false positive results resulting in better classification of URL samples. Comparatively, AE-DNN model was the least performing model with higher number of false alarm rates and false negative rates as well.
	In order to analyze the model’s performance two important metrics namely classification accuracy and the training time consumed at each and every iteration were taken into consideration. These two metrics in coherence shall reveal important inference about the experimented model’s potentiality in real world application.	

Table.3 Confusion Matrix for all the Experimented models
[image:][image:]
(a) AE-DNN					(b) CAE-DNN

[image:][image:]
(c) DAE-DNN 			(d) SAE-DNN

[image:]
(e) Proposed DSAE-DNN
	
	From Table.4 and Table.5, the following conclusions can be inferred:
	Our proposed DSAE-DNN model delivers the highest classification accuracy among all the experimented models. Our model stands out tall in correctly identifying the number of benign/phishing samples among the total number of actual benign and phishing samples. The training time taken per epoch is 120 seconds which is quite high when compared to the traditional autoencoder based DNN (AE-DNN) model. Taking time as an analysis factor, it seems convolutional autoencoder works for a very long time in training itself due to the complicated structure of the model. In terms of F1 score value, SAE-DNN model is very close to the proposed model. This proves the fact that including sparsity constraints to optimize loss function results in better classification. Also, Denoising autoencoder based DNN (DAE-DNN) model have produced a considerably higher precision value which proves the fact that adding noise to the input clearly improvise the model’s ability in correctly identifying the appropriate samples. 	

Table.4 Precision, Recall , F1 Score, Accuracy and training time per epochs of all models in Binary classification experiment
	Model
	Precision (%)
	Recall (%)
	F1 Score (%)
	Accuracy (%)
	Time/Epochs(s)

	AE-DNN
	96.78
	95.27
	96.08
	96.01
	75

	DAE-DNN
	99.21
	98.62
	98.91
	98.91
	285

	CAE-DNN
	98.72
	97.08
	97.89
	97.89
	780

	SAE-DNN
	99.38
	98.96
	99.17
	99.17
	180

	Proposed DSAE+DNN model
	99.84
	99.78
	99.80
	99.81
	120

Table.5 TPR, FPR, TNR and FNR of different models based on experimentation
	Algorithms
	True positive rate (%)
	False positive rate (%)
	True negative rate (%)
	False negative rate (%)

	AE-DNN
	95.27
	3.24
	96.76
	4.73

	DAE-DNN
	98.62
	0.80
	99.20
	1.38

	CAE-DNN
	97.08
	1.29
	98.70
	2.92

	SAE-DNN
	99.78
	0.62
	99.37
	1.03

	Proposed DSAE+DNN model
	99.78
	0.16
	99.84
	0.21

	Fig.9 plots the accuracy and training time of all the models. From the figure, it has been found out that VAE-DNN trains at a higher speed but the detection rate of the model is not up to the mark when compared with other experimented models. Both DAE-DNN and SAE-DNN have produced pretty good accuracy in classifying URLs. Also, the training time/epochs are not significantly high in comparison to the traditional autoencoder model.
[image: C:\Users\Dell\Desktop\Desktop 07.1.2\paper 2022\metrics\performance evaluation\COMAPRISION WITH DLMODELS BASED ON ACC AND TIME.png]
Fig.9 Accuracy and training time per epoch of all the models

	The training time taken for individual epoch for DAE-DNN model is the second largest among the competing models. CAE-DNN is the slowest model among all the other models in terms of time taken for each iteration while training. Besides the fact that the training time is high, the model performs better in terms of classification accuracy.
For a model to be applied in real time environment, there are three deciding metrics that assess the aptitude of the model: a) response time b) False positive rate (FPR) and c) False Negative rate (FNR). Hence to deploy a model in real world scenario, the model should possess a very lower FPR and FNR values. Also, the response time is one of the significant factors which is calculated by considering the time interval between the input URL being fed into a model and the model’s prediction interval. Model should be quick enough to respond to a malicious URL such that unintended events shall be avoided. Fig.10 represents the FPR and FNR values for every model. When compared to all other models, the results indicate that our model has the lowest false alarm rate. The model was able to successfully identify most of the phishing URL samples correctly which makes it suitable for real time environment. Since the input samples are being corrupted in our model and sparsity constraint values were added to penalize the loss function, our model’s Precision and true negative rate were significantly higher.
The Area under Curve (AUC) score was computed for all of the tested models in order to further validate the model's strength and is depicted in table.6. Receiver operating Characteristics (ROC) curve were plotted to analyze the experimented models with respect to varied discrimination threshold value
[image:]
Fig.10 TPR, TNR, FPR and FNR of all the experimented models
		.
Based on Fig.11, it can be understood that the AUC of both Denoising autoencoder and sparse autoencoder based model is much higher than the traditional autoencoder based approach. Hence, we can arrive at a conclusion that the process of adding noise to the input as well as adding sparsity constraint to the loss function helps to improve classification accuracy. Although convolutional autoencoder performs well in tandem with DAE and SAE models but the fluctuation in the curve denotes the complexity of the model. While DSAE-DNN outperforms both DAE and SAE based models, which means incorporating both the denoising feature and sparsity penalty considerably improvise the classification ability of the model.

Table.6 Area under curve score for the experimented models
	Algorithms
	AUC score

	AE-DNN
	0.9742

	DAE-DNN
	0.9812

	CAE-DNN
	0.9790

	SAE-DNN
	0.9949

	Proposed DSAE+DNN model
	0.9983

	In order to adopt a model in real time environment, the response time of a model is a valiant metric to be considered. Because, the model to be deployed should have very minimal amount of time to respond to URLs in real-time.
[image: C:\Users\Dell\Desktop\Desktop 07.1.2\paper 2022\metrics\ROC\roc for dl.png]
 Fig.11 AUC-ROC curve of all experimented models
Response time of a model can be calculated as the time difference between the time at which the URL is fed and the results being predicted. Once a URL is fed into a model, several processes will be carried out such as URL preprocessing, Feature selection and finally prediction of URL as either benign or phishing.
	Hence an analysis has been conducted to test the experimented models in terms of response time. The results of the analysis have been depicted in table.7. For experimental purpose, a random set of URLs were taken from both the training and testing set and fed into all the experimented models and response time was calculated for every models.	
Table.7 Response time of the experimented models
	Algorithms
	Response time (s)

	AE-DNN
	1.5

	DAE-DNN
	3.5

	CAE-DNN
	5.6

	SAE-DNN
	2.8

	Proposed DSAE+DNN model
	2.6

Table.7 suggests that among all the models, CAE-DNN has the maximum response time of 5.6 sec due to the complexity involved in the structure of the model whereas the traditional AE-DNN is the fastest among all the models with the response time of 1.5 sec with respect to the simplicity of the model. Our proposed model acquired a response time of 2.6 sec which is quite fast to detect phishing attacks. The runtime achieved through DSAE-DNN is optimal and does not give away much time for the cyber criminals to steal important credentials. However, this response time may vary according to the configuration of the systems.	

C. Comparison analysis
	We have compared our proposed model with other anti-phishing models that adopted feature engineering based on lexical/statistical analysis. Existing artificial intelligence based phishing detection solutions were taken into consideration that derived data source from ISCX-URL-2016 URL dataset. Each of these models extracted varying number of lexical based features from the URL data and performed classification accordingly. Our model which makes use of featureless engineering in which the features are automatically extracted through deep learning approach is compared against the selected set of feature engineering based approach based on various metrics such as precision, recall, F1 score and accuracy.
	Table.8 represents the breakdown of precision, recall, accuracy and F1 score of all the experimented models.
Table.8 Precision, Recall and F1 Score of all models as available in literature
	Model
	Precision (%)
	Recall (%)
	F1 Score
	Accuracy (%)

	Random Forest [14]
	99.7
	99.46
	0.995
	99.57

	DL based LGB model[21]
	99.36
	99.79
	0.995
	99.36

	Convolutional AutoEncoder [22]
	95.19
	95.90
	95.54
	96.10

	SDAE-LR model [23]
	98.03
	99.01
	0.985
	98.52

	Proposed DSAE+DNN model
	99.85
	99.81
	0.998
	99.81

	In [14], the authors have used limited number of lexical features in order to train the model for classification. Although this seemed to be a viable strategy, the contemporary URL structure, which is much shorter, inadvertently lowers the impact of lexical features in classification. However, our approach employ featureless engineering that incorporates automatic feature selection using modern deep learning models that eliminate the drawback associated with the discussed approach.
	In paper [21], adoption of Principal Component analysis and sparse autoencoder were used for selecting features from the raw URLs. Although this model seems to be effective since deep learning model have been adopted which significantly enhances the learning ability of the model, adapting PCA requires standardization of features. Also, the URL features cannot be interpreted as original features since the original features will be converted into principal components. In case of our model, the features are selected based on corrupted input features which let the model to learn higher level abstract representation of input rather than analyzing the principal components of the model. Also in terms of false positive rate, our model overcomes the performance of the compared approach.
	Authors at [22] adopted a character level URL feature based mechanism for feature extraction which is almost similar to our methodology. However, since the model adopted convolutional autoencoder for extracting character level features, the complexity of the model degrades the performance of the model. In terms of precision, recall and accuracy, our model surpasses the results of the compared approach.
	Stacked Denoising autoencoder was deployed in [23] to extract features from raw URL which helps the model in extracting higher level abstract features from the original input. But in case of classifying the results since logistic regression was used the model’s performance was degraded a bit, which could have been better if a neural network-based model was adapted for classification. Our model which makes use of a deep neural network model for prediction performs exceptionally well when compared to traditional classifiers.
As per the results in table, it can be clearly seen that the DSAE-DNN model considerably outperforms the existing AI based models in terms of precision, recall and accuracy. Based on the analysis, Random Forest and SDAE-LR performs well and have pretty decent detection accuracy. In terms of F1 score value, it can be clearly presumed that our model has a better precision and recall value when compared to the top performing model.
	Although few models in comparison also have average accuracy of more than 99% in accordance with the proposed model’s accuracy, but the false alarm rate of the proposed model which stands at 0.16 is the lowest value recorded in analysis.
	The reason behind this is the fact that adopting featureless engineering approach helps the model in resistance to zero-day attacks. Since the existing feature engineering-based approaches stick to fixed number of features for classification, a new malicious URL with unidentified feature is still a threat to the model in terms of detection.

VII. CONCLUSION AND DISCUSSION
	In this paper, we propose a novel Denoising Sparse Autoencoder based deep neural network (DSAE-DNN) framework for phishing website detection, which combines DSAE and DNN together to improve detection accuracy. DSAE-DNN first applies DSAE, an autoencoder based model, to automatically extract higher level representation of URLs features without any manual intervention. The compressed relevant features from the DSAE architecture's latent space are then fed as input to the deep neural network for classification. The primary innovation of this study is the addition of noise to the original input and optimization of cost function by including a sparsity constraint which can be performed by combining the unique features of a denoising and sparse autoencoder.
The experimental results demonstrated that the performance of the proposed DSAE-DNN model achieves the lowest false positive rate of 0.16 in comparison to other autoencoder based deep learning frameworks (AE-DNN, CAE-DNN, DAE-DNN, SAE-DNN). The results confirm that DSAE-DNN achieves higher accuracy of 99.81% which is higher when compared with the existing feature engineering based phishing detection solutions [14], [21], [22], [23].
Based on our analysis of the results, it has been observed, that despite the fact that our methodology is featureless and can automatically extract high-level features, the model requires considerable amount of time to tweak the hyper-parameters of the neural network. The main reason for this shortcoming is the amount of time spent refining the cost function during unsupervised fine tuning of the proposed model, however the abstract characteristics recovered through optimization compensate for the lengthy duration.
In the future, we intend to improve our proposed model by calculating weights for the extracted features and implementing attention mechanisms based on transformer models, so that the relationship of internal dependency of individual URL characters can be investigated further, potentially leading to the most accurate detection of malicious URLs.

REFERENCES

1) Kals, Stefan & Kirda, Engin & Krügel, Christopher & Jovanovic, Nenad. (2006). SecuBat: a Web vulnerability scanner. 247-256. 10.1145/1135777.1135817.
2) Gunter Ollmann, The Phishing Guide--Understanding & Preventing Phishing Attacks--(IBM Internet Security Systems)
3) APWG. Phishing Activity Trends Report for Q3 2021. Available online: https://docs.apwg.org/reports/apwg_trends_report_q2_2021.pdf
4) Hong, Jason. (2012). The State of Phishing Attacks. Commun. ACM. 55. 74-81. 10.1145/2063176.2063197.
5) Tang L, Mahmoud QH, A Survey of Machine Learning-Based Solutions for Phishing Website Detection, Machine Learning and Knowledge Extraction. 2021; 3(3):672-694.
6) Carlo Marcelo Revoredo da Silva, Eduardo Luzeiro Feitosa, Vinicius Cardoso Garcia, Heuristic-based strategy for Phishing prediction: A survey of URL-based approach, Computers & Security, Volume 88, 2020, 101613, ISSN 0167-4048
7) M. H. Alkawaz, S. J. Steven, A. I. Hajamydeen and R. Ramli, "A Comprehensive Survey on Identification and Analysis of Phishing Website based on Machine Learning Methods," 2021 IEEE 11th IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE), 2021, pp. 82-87.
8) Basit, A., Zafar, M., Liu, X. et al. A comprehensive survey of AI-enabled phishing attacks detection techniques. Telecommun Syst 76, 139–154 (2021).
9) Gururaj Harinahalli Lokesh & Goutham BoreGowda (2021) Phishing website detection based on effective machine learning approach, Journal of Cyber Security Technology, 5:1, 1-14.
10) Ekta Gandotra & Deepak Gupta (2021) Improving Spoofed Website Detection Using Machine Learning, Cybernetics and Systems, 52:2, 169-190.
11) P.A. Barraclough, G. Fehringer, J. Woodward, Intelligent cyber-phishing detection for online, Computers & Security, Volume 104, 2021, 102123, ISSN 0167-4048.
12) Sabahno, Mahdieh & Safara, Fatemeh. (2021). ISHO: improved spotted hyena optimization algorithm for phishing website detection. Multimedia Tools and Applications. 1-20. 10.1007/s11042-021-10678-6.
13) A Saleem Raja, R. Vinodini, A. Kavitha, Lexical features based malicious URL detection using machine learning techniques, Materials Today: Proceedings, Volume 47, Part 1, 2021, Pages 163-166, ISSN 2214-7853.
14) Brij B. Gupta, Krishna Yadav, Imran Razzak, Konstantinos Psannis, Arcangelo Castiglione, Xiaojun Chang, A novel approach for phishing URLs detection using lexical based machine learning in a real-time environment, Computer Communications, Volume 175, 2021, Pages 47-57, ISSN 0140-3664
15) Najafabadi, M.M., Villanustre, F., Khoshgoftaar, T.M. et al. Deep learning applications and challenges in big data analytics. Journal of Big Data 2, 1 (2015).
16) Weiping Wang, Feng Zhang, Xi Luo, Shigeng Zhang, PDRCNN: Precise Phishing Detection with Recurrent Convolutional Neural Networks, Security and Communication Networks, vol. 2019, Article ID 2595794, 15 pages, 2019.
17) Abdullah, Adel. A & Ali, Waleed (2019), Hybrid Intelligent Phishing Website Prediction Using Deep Neural Networks with Genetic Algorithm-based Feature Selection and Weighting. IET Information Security. 10.1049/iet-ifs.2019.0006.
18) P. Yang, G. Zhao and P. Zeng, "Phishing Website Detection Based on Multidimensional Features Driven by Deep Learning," in IEEE Access, vol. 7, pp. 15196-15209, 2019, doi: 10.1109/ACCESS.2019.2892066.
19) Yang, Liqun & Zhang, Jiawei & Wang, Xiaozhe & Li, Zhi & Li, Zhoujun & He, Yueying. (2020). An improved ELM-based and data preprocessing integrated approach for phishing detection considering comprehensive features. Expert Systems with Applications. 165. 113863. 10.1016/j.eswa.2020.113863.
20) A Lakshmanarao, P. S. P. Rao and M. M. B. Krishna, "Phishing website detection using novel machine learning fusion approach," 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS), 2021, pp. 1164-1169, doi: 10.1109/ICAIS50930.2021.9395810.
21) Omer Kasim (2021), Automatic detection of phishing pages with event-based request processing, deep-hybrid feature extraction and light gradient boosted machine model, Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 78(1), pages 103-115, September.
22) Bu S-J, Cho S-B. Deep Character-Level Anomaly Detection Based on a Convolutional Autoencoder for Zero-Day Phishing URL Detection. Electronics. 2021; 10(12):1492. https://doi.org/10.3390/electronics10121492
23) Yan, Huaizhi & Zhang, Xin & Xie, Jiangwei & Hu, Changzhen (2019), Detecting Malicious URLs Using a Deep Learning Approach Based on Stacked Denoising Autoencoder: 12th Chinese Conference, CTCIS 2018, Wuhan, China, October 18, 2018.
image3.png
nnnnnn

.....................................

nnnnnnnnn

,,

image4.png
INPUT LAYER X;

CORRUPTED INPUT

Min(Lsparse(©)

ENCODER

BOTTLENECK LAYER

Lsparse(8)-L(0)+0(6)
(Cost Function based on sparsity constraint)

% =f(hw'+c)

DECODER

OUTPUT LAYER X;

image5.png
DENOISING SPARSE AUTOENCODER (DSAE)

‘—17

weuTLAYER

s G () () e ()

[Bt ®

{“or 0N

image6.png
Weight decay(A)

030

025

0.20

0.00

Noise factor of 20% (NF=0.2)

—— Weight decay
— Sparsity (right)

008 010 012 014 016 018 020
Loss values after 25 Epochs for different A and p values

0.050

0.045

0.040

0.035

0.030

0.025

Sparsity constraint (p)

0.020

0.015

0.010

image7.png
Weight decay(A)
°

0.00

Noise factor of 50% (NF=0.5)

—— Weight decay
—— Sparsity (right)

0.02 0.04 0.06 0.08 0.10 012
Loss values after 25 Epochs for different A and p values

0.050
0.045
0.040
0.035
0.030
0.025
0.020
0.015

0.010

parsity constraint (p)

image8.png
Weight decay()

0.30

0.25

0.20

0.15

0.10

0.05

0.00

Noise factor of 70% (NF=0.7)

= Weight decay
—— Sparsity (right)

0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20
Loss values after 25 Epochs for different A and p values

0.050

0.045

0.040

0.035

0.030

0.025

0.020

0.015

0.010

Sparsity constraint (p)

image9.png
Accuracy()

Accuracy of DSAE-DNN (Binary Classification)

— training accuracy.
—— testing accuracy

3 H o 3]
epochs.

%

image10.png
014
012
010
4 o8
g
006
004

002

Loss curve of DSAE-DNN(Binary classification)

— training loss.
— testing loss

%

image11.png
Predicted_class

Benion

Phishing

Benion

Actual class

Phishing

image12.png
Actual class onshing
Benion

134

Benion

Predicted

Phishing

image13.png
Actual class oisning
Benion

E

Benion

Predicted_class

16

Phishing

image14.png
#ctual_class onshing
Benion

Benion

Predicted

10

Phishing

image15.png
Predicted_class

Benion

Phishing

Benion

Actual class

Phishing

image16.png
Accuracy(%)

100.0

DSAE-DNN model Evaluation

99.5

99.0

98.5

98.0

97.5

97.0

96.5 4

96.0 4

— ACCUracy
e Time (right)

800

700

600

o
=3
S

a
S
S
Time(sec)

100

AE-DNN DAE-DNN

CAE-DNN

SAE-DNN

DSAE-DNN

image17.png
3.24]

4.73

mFalse Positive rate W False Negative rate

292
1.38 1.29
08 1.03
- 0.62
0.160.21
. . . _— .

AE-DNN

DAE-DNN CAE-DNN SAE-DNN DSAE-DNN

image18.png
10

08

°

True Positive rate
°
2

02

00

00

ROC curve

02

EESSSSS S

04 06
False Positive Rate

DSAE-DNN(AUC=0.9983)
DAE-DNN(AUC=0.9812)
CAE-DNN(AUC=0.9790)
AE-DNN(AUC=0.9742)
SAE-DNN(AUC=0.9949)

08 10

image1.png
Subdomain Path Parameters

N N

https://schalar.gaagle.cam/- ; C5&q=phishing+detection|

v \’

Scheme Domain name Query

image2.png
| omsprepmaton [ToidegPhase |

UNSUPERVISED TRAINING

SUPERVISED FINE TUNING

