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Preface 
 

The book is designed to cover a certain portion of Differential Equations in the 
Under Graduate course of different Indian Universities.  This book contains a  
number of solved examples  and  exercises to give students a chance to work on 
their own.  An attempt has been made to present the subject in a clear, lucid and 
intelligible manner. 
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Chapter-1 
 

Differential Equations: Formation and Solutions 
 

 
Introduction 
 
What are Differential Equations? 
 
Differential equations are mathematical equations that relate some function with 
its  derivatives. In simple terms, a differential equation describes a relationship 
between a function and the rate at which it changes. These equations are 
fundamental in describing various physical phenomena such as motion, heat, 
and sound. 
 
Order of Differential Equations 
 
The order of a  differential equation is the order of the highest order derivative  
involved in the equation .  
 

Example 1.01: The equation 
���� = �(�, 	)  is of first order   while the equation  

 
������ + 3� ������� + 3�	 = 0   is of second order .  

 
Degree of Differential Equations 
 
The degree of the differential equation is the power of the highest order  
derivative in the given differential equation. The differential equation must be a  
polynomial equation in derivatives for the degree to be defined.  
 

Example 1.02: The equation ��������� + 3� ������� + 3�	 = 0    is of degree  3  as 

the highest order  derivative is of degree 3 .  
 

The degree of a differential equation  tan �������� + ���� = sin �   is not defined as 

the  equation is not a polynomial in the derivatives.  
 
Solution: A function ( or relation between a dependent and independent  
variable)  that satisfies the differential equation is called a solution .  
 
Example 1.03:  Show that 	 = � cos(�� + �)  is a solution of the differential  
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equation  
������ +	��	 = 	0.  

 

Sol: 	 = � cos(�� + �)  ⇒ ���� = −�� sin(�� + �) 
 ⇒ ������ = −��� cos(�� + �) = −��	  

 ⇒ ������ +��	 = 0  

 
#1.01-Formation of differential Equations 
 
Differential equations often arise from practical problems in various scientific  
and engineering fields. The process of forming a differential equation involves  
translating a physical problem or a mathematical relationship into an equation  
involving derivatives.  
 
Here are some common ways differential equations can be formed: 
 

• From Geometric Relationships: Many differential equations originate 
from geometric properties, such as curves and their tangents. 

• From Physical Laws: Physical laws, like Newton's laws of motion or the 
law of cooling, naturally lead to differential equations. 

• From Rate of Change Problems: Many real-world problems involve 
rates of change, which are naturally described by derivatives. 

• From Mathematical Conditions: Sometimes, mathematical conditions 
and constraints can be used to derive differential equations. 
 

#1.02-Formation from Geometric Relationships 
 
Consider a curve given by 	 = �(�). The slope of the tangent to this curve at 

any point (�, 	) is given by the derivative 
����. If the relationship between 	 and ���� is known, a differential equation can be formed.  

 
Example 1.04 
 
Given that the slope of the tangent to a curve at any point (�, 	) is equal to the  
product of the coordinates, we have: 
 !	!� = �	 
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This is a first order differential equation representing the given geometric  
relationship. 
 

#1.03-Formation from Physical Laws 
 
Physical laws often describe how quantities change over time. These changes 
can  be expressed as differential equations. 
 
Example 1.05 
 
Newton's Law of Cooling states that the rate of change of the temperature of an  
object is proportional to the difference between the object's temperature and the  
ambient temperature. If "(#) represents the temperature of the object at time #  
and "$ is the ambient temperature, the law can be written as: 
 !"!# = −%(" − "$) 
where % is a positive constant. 
 
#1.04-Formation from Rate of Change Problems 
 
Many problems involve rates of change, such as population growth, radioactive  
decay, and chemical reactions. These problems can often be modeled by  
differential equations. 
 
Example 1.06 
 

The rate of growth of a population &(#) at time # is proportional to the current  
population. This can be written as: !&!# = %& 
 

where % is the proportionality constant. 
 
#1.04-Formation from Mathematical Conditions 
 
Certain mathematical conditions or constraints can lead to the formation of  
differential equations. 
 
Example 1.07 
 
Consider a function 	(�) defined implicitly by the equation �� + 	� = '�, 
which represents a circle of radius '. Differentiating both sides with respect to � 
gives: 
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2� + 2	 !	!� = 0 

 

Simplifying, we get:   
���� = − �� 

 
This is a first order differential equation describing the slope of the tangent to 
the  circle at any point (�, 	) 
 
#1.05-Parameter of a Function 
 
A parameter is a constant in the function's formula, but its value can change  
within a specified range. Unlike the main variables, which are typically the 
inputs  of the function, parameters modify the relationship between the inputs 
and  outputs. 
 
Examples 
 
Consider the linear function �(�) = �� + �. Here, � and � are parameters.  
 
#1.06-Family of Curves 
 
Definition. An )-parameter family of curves is a set of  points (�, 	)	 defined by 
a  relations of the form �(�, 	, *+, *�, … , *-) = 0		where each *. 		(/ = 1,2, , )) 
are  parameters . 
 
For example, the set of concentric circles defined by �� + 	� = ��  is one  
parameter when * > 0 . 
 
Again, the set of circles, defined by (� − 2)� + (	 − β)� = 4 is a two-
parameter  family.  
 
Definition 
 
Let 4(�, 	, 	+, 	�, … , 	-) = 0 be a given  )th order ordinary differential 
equation. Then –  A solution containing ) independent arbitrary constants is 
called a general  solution  or complete primitive.  
 
A solution obtained from a general solution by giving particular values to one or  
more of the ) independent arbitrary constants is called a particular solution . 
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A solution which cannot be obtained from any general solution by any choice of  
the ) independent arbitrary constants is called a singular solution. 
 
#1.07-Method to form a differential Equation  
 
To form a differential equation from a given function of the form  
 �(�, 	, �+, ��… . . �-) = 0  or  	 = �(�, �+, ��… . . �-)  where  �. 	, / =1,2,3…)  are  parameters ,  we differentiate the given function  )  times  to get () + 1)  relations . 
 
From these () + 1)  relations , we can eliminate all the parameters  and the  
resulting equation  with no parameters is the required differential equation.  
 
Example 1.08: Form a differential equation of a family of circles  �� + 	� =�� .  
 
Sol : The Given relation in �  and  	  consists of  1 parameter  ′�′  and hence we  
need to differentiate only once .  
 
we have   �� + 	� = �� 
 

 ⇒ � + 	 ���� = 0  

 
The second equation is independent of the parameter ′�′ and is the required  
differential equation .  
 
Example 1.09 : Find the differential equation of the family of curves given by  
     	 = 6 cos� + 7 sin � 
 
Sol: Given  	 = 6 cos � + 7 sin �    (  2 parameters )  
 

 			⇒ ���� = −6 sin � + 7 cos �  

 ⇒ ������ = −(6 cos � + 7 sin �)  
 

or  
������ = −	   
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#1.08-The Wronskian 
 
Definition:   The Wronskian of  )  functions   8.(�) 	 ∶ 		/ = 1		#:	)    is defined 
as  
 

;(8+, 8�, … . 8-)(�) = < 8+(�) 8�(�)… . . 8-(�)8+′(�) 8�′ (�)… . . 8-′(�)..8+-=+(�) ..8�-=+(�)… . ..8--=+(�)<  
 
#1.09-Linearly dependent and independent set of functions  
 
Definitions.  The  ) functions 	+(�), 	�(�), … , 	-(�) are linearly independent if  *+	+ + *�	� +⋯+ *-	- = 0 ⇒ c? = 0		∀	/ = 1	, 2	, … )	 and  linearly 
dependent if  there exist constants *+, *�, … , *- (not all zero),  
such that  *+	+ + *�	� +⋯+ *-	- = 0 
 
Theorem 1.01: The two non-zero differentiable functions �(�) and 4(�)  
defined on A are  linearly dependent on A if and only if the Wronsteian       ;(�, 4) = 0    for all � ∈ A. 
 
Proof : Suppose �(�) and 4(�) are linearly dependent on A, then there exists  

a real   number C ≠ 0 such that  
E(�)F(�) = C 

 

Therefore,  ;(�, 4) = G� 4� ′ 4′G 	= H�
+I �� ′ +I � ′H = +I G� �� ′ � ′G = 0  

 
Conversely,  suppose  ;(�, 4) = 0 
 

Then for all � ∈ A , we have   G�(�) 4(�)� ′(�) 4′(�)G = 0 

E′(�)E(�) = F′(�)F(�)  
 

On integration, we get   
E(�)F(�) = * ⇒ �(�) − *	4(�) = 0  

 
So that  �(�)  and  4(�)  are Linearly  dependent .  
The other side of the theorem can be stated ( without further proof )  as  
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Theorem 1.02: The two non-zero differentiable functions �(�) and 4(�)  
defined on A are  linearly independent on A if and only if the Wronsteian        ;(�, 4) ≠ 0   for all � ∈ A. 
 
The above two theorems can be extended to 3 or more functions.  
 
#1.10: Linear differential equations  
 
The general linear ODE of order ) is 	(-) + J+(�)	(-=+) +⋯+ J-(�)	 = K(�) ………………..(1) 
 
If K(�) ≠ 0, the equation is inhomogeneous.  
The Equation           	(-) + J+(�)	(-=+) +⋯+ J-(�)	 = 0 ……………..(2) 
 
will be called  the associated homogeneous equation  of  (1). 
 
#1.11: Linear differential operators 
 

If we take 
��� = L		, ����� = L�   and so on , equation (1)   above  can be written 

as  
 (L- + �+L-=+ +⋯+ �-)	 = K(�)  
 
or  J(L)	 = K(�)   or  M(	) = K(�)  
 
where 	M = J(L) = L- + �+L-=+ +⋯+ �- We call  J(L) a Linear  
differential operator  in the sense  that it  possesses  Linearity rule  tobe seen 
below .  
 
Operator rules 
 
We will state below some of these rules  and  assume that the functions 
involved are  sufficiently differentiable upto any order , so that the operators can 
be applied to them. 
 
Sum rule:  If J(L) and K(L) are polynomial operators, then for any  function N, [J(L) + K(L)]N = J(L)N + K(L)N  
 
Linearity rule:   If N+ and N� are functions, and *. constants, J(L)(*+N+ + *�N�) = *+J(L)N+ + *�J(L)N�  
 
Multiplication rule:  If J(L) = 4(L)ℎ(L), as polynomials in L, then 
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J(L)N = 4(L)(ℎ(L)N)  
 
Commutative Rule:  For two differential  operator  �(L) and  4(L)  and  a 
function  N(�)   ,  we have   �(L)4(L)	RN(�)S = 4(L)�(L)	RN(�)S  
 
Substitution rule 
   J(L)T$� = J(�)T$�  
 
The proof for all these are easy as they involve differentiation only   
 
Theorem 1.03: Let  M(	) = 0  be a homogeneous linear differential equation 
and let 	+ and 	� be two solutions.  Then *+	+ + *�	� is also a solution for any 
pair or constants *+ and *�. 
 
Proof : We shall prove the theorem  for a linear differential equation of order 2, 
the result can be generalized to any order  .  
 
Let M(	) = 	 ′′ + J	 ′ + K	 
 
Then  M(	+) = M(	�) = 0 
 
Now  L(c+y+ + c�y�) = (c+y+ + c�y�)′′ + p(t)(c+y+ + c�y�)′ + q(t)(c+y+ +c�y�) 
 
          = c+y+	′′ + c�y�	′′ + p(t)c+y+	′ + p(t)c�y�	′ + q(t)c+y+ + q(t)c�y� 
   
          = c+y+	′′ + p(t)c+y+	′ + q(t)c+y+ + q(t)c�y�	′′ + p(t)c�y�	′ + q(t)c�y�  
 
          = c+(y+	′′ + p(t)y+	′ + q(t)y+) + c�Ry�′′ + p(t)y�′ + q(t)y�S  
 
         = *+ L(y+) + c� L(y�) = 0 + 0 = 0  
 
We state below another theorem ( without proof ) that will be important in the  
chapter to come . 
 
Theorem 1.04: Existence and uniqueness Theorem.  
 
If �+(�), ��(�), …�-(�), K(�) are continuous (real-valued) functions on some  
interval (�, �)  containing �Y, then an initial value problem of the form 
 
  	(-) + �+(�)	(-=+) +⋯+ �-=+(�)	 ′ + �-(�)	 = K(�), 	  
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	(�Y) = 	Y, 	 ′(�Y) = 	+, … , 	(-=+)(�Y) = 	-=+ has a unique solution on (�, �). 
 
#1.12: Some Geometrical Concepts  
 
To start with , we first make an identification of any point &(�, 	, Z)  in space 
with  a vector  [&\\\\\] = �	^̂ + 	`̂ + Z%a	   where  ̂̂		, `̂		, %a   are unit vectors along the b − ��/c	,	 d − ��/c	  and  e − ��/c	 respectively.   
 
If [&\\\\\]  makes an angle 2		, f		, g  with the coordinate axes ,  then taking the dot 
product of  [&\\\\\]  with  ^̂	, `̂		, %a	 respectively , we obtain the direction cosines of  [&\\\\\]   as  cos 2 = �hi 		 , 	cosf = �hi 	 , cos g = jhi	  ……………   (1)  

and  so  �	, 		, Z   is one set of direction ratios  . 
 
Using the above concept and the addition of vectors for  the two vectors 
  67\\\\\] = [7\\\\\] − [6\\\\\]  , we can easily see that :   
 
A line joining AB  ( where  6 = (�+, 	+, Z+) ,  7 = (��, 	�, Z�) )   has  direction 
cosines  
                    cos 2 = ��=�klm 		 , cos f = ��=�klm 		 , cos g = j�=jklm 	    ……  (2)  

 
 and one set of  direction  ratios  are   �� − �+, 			� − 	+, 		Z� − Z+  
 
Taking � = �� − �+,				� = 	� − 	+, 	* = 	Z� − Z+ 
 
It is also clear that the line 67  is parallel to  a vector  n̅ = �^̂ + �`̂ + *%a	  which 
pass through the origin  as they both have same direction  ratios.  
 
If  two proper lines  67  and  pL  have direction ratios (or direction 
cosines)			�+	, �+		, *+  and  ��, ��, *�  respectively , then the angle ′q′  between  
them  is same as the angle between the vectors parallel to them and passing 
through the origin . If further , AB   and  CD are perpendicular then  using the 
dot product we can easily show that  �+�� + �+�� + *+*� = 0  ………….       (3) 
 
Plane: If  &(�, 	, Z)  and   6(�Y, 	Y, ZY)  be two points on the plane and  )r  be a 
normal vector to the plane where )r = )� ^̂ + )�`̂ + )j%a   then &6rrrr. )r = 0      ⇒ (� − �Y))� + (	 − 	Y))� + (Z − ZY))j = 0  ………    (4) 
giving the plane in terms of point and directions of its normal  normal .  
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 Surfaces and Curves  
 
The  mathematical definition of surfaces and curves  can be found in most 
topology  books and  as they are not part  of our  treatise  , we shall bring up just 
a few concepts  that we feelmaybe required in our chapters .  
 
A relation of the form       s(�, 	, Z) = *      …….   (5)  
 
 always represent a family of surfaces .  
 
If  each points satisfying  (5) can  be described by a set of relations  
 � = �+(N, n)		, 	 = ��(N, n)			, Z = ��(N, n) ………      (6) 
 
Then  (6)  is knows as the parametric  equation of the surface  (5) .  
In solving the first two equations of   (6)  ,  we can obtain   realtions  of the form  
 N = 8(�, 	)		, n = u(�, 	)	  so that   Z  can be expressed as a function of  � and 	  say     Z = �(�, 	)	 ……….        (7)   
and since (7)  is just  a change of form of  (5) , it represents a surface .  
 
Curves in Space  
 
In general , the intersection of two  surfaces �(�, 	, Z) = 0 = 4(�, 	, Z)   
represents a curve  in space .  
 
Let the curve  p  be represented by  the parametric equations  � = �(c)	, 	 = 	(c)	, Z = Z(c)    . . . . . . .  .                 (8) 
 
where  c  is the distance of  a point &R�(c), 	(c), Z(c)S  from some fixed point &Y  on the the curve measured along the curve.   
 
Let Q be a neighbouring  point of  & on on the curve  whose straight distance &v = w* .  
 
If v is at a distance wc  along the curve from &, then the  distance &Yv along the 
curve will be c + wc,  and the coordinates of v are   {�(c + wc), 	(c + wc), Z(c + wc)} . 
 
When the point v	  approaches &  i.e wc → 0, the two distances w*  and  wc  are 
almost  identical  ( of course  wc > w*	)	  and we shall have  lim}~→Y  }�}~ = 1  
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Using the formulae from  equation (2) , we see that the  direction cosines of the  

chord &v are    ��(~�}~)=�(~)}� , �(~�}~)=�(~)}� , j(~�}~)=j(~)}� �   
 
Assuming  the smoothness of the curve, we have  
 �(c + wc) − �(c) = ����~� δs + ����~� (}~)�� … ..	   …..     (9) 

 ⇒	 �(~�}~)=�(~)}� =	����~� δ�δ� + ����~� (}~)��}� 	 +….  

 
and since  the chord &v  ( when wc → 0 )  becomes a tangent to the curve  p   at  &  and  since lim}~→Y  }�}~ = 1    ,  the   direction cosines of  the tangent &v  to the 

curve p at  & becomes  
 ����~ , ���~ , �j�~�     .  ……..                 (10) 

 
and also  !�	, !		, !Z  is one set of direction ratios of the tangent . 
  
Suppose  the curve p given by the equations (8)  lies entirely on the surface � 
with equation   s(�, 	, Z) = 0 , then for each  c ,  we have  
 s[�(c), 	(c), Z(c)] = 0   ……….               (11) 
 
Differentiating equation (11) with respect to c and  suing the chain rule , we 
obtain  
 ���� ���~ + ���� ���~ + ���j �j�~ = 0   ……..               (12) 

 
By the perpendicularity condition ( see equation 3 )  
we see  from (12)  that the tangent  to the curve p at the point & is perpendicular 
to the line whose direction ratios/cosines are 
 ����� , ���� , ���j� ………                 (13) 

 
Also , the curve p above can be any  arbitrary curve passing through the point & 
and lies on the surface �. Thus  the line with direction ratios (13) is 
perpendicular to the  tangent to every curve  lying on  � and passing through &. 
Hence the direction (13) is the direction of the normal to the surface � at the 
point &. 
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If the equation of the surface � is of the form   Z = �(�, 	),  then taking  

   s(�, 	, Z) = �(�, 	) − Z    , �j�� = J  , 
�j�� = K   

 

we have   
���� = �E�� = �j�� = J		, ���� = K				, ���j =	−1    

 
Therefore , normal to the surface  Z = �(�, 	)  at &(�, 	, Z)   has direction ratios  
 

                                (	J	, K, −1)   and  direction cosines are  � �,�,=+�������+�  
Exercises  
 
1. Find the differential equation of all circles which pass through the origin and 
     whose centres are on the x-axis. 
 
2. Find the differential equation of the curve  	 = 	�	c/)	� + 	�	*:c	�	 +�	c/)	�.   

 
3. Form a differential equation of the following :  

 (i) ellipses centered at the origin.  
 (ii) parabolas with axis parallel to the axis of y. 
 (iii)  	 = � cos�� + � sin��	. 
 (iv)  circles with center at (�, �)  and radius  ' .  
 (v) �	 = �T� + �T=+ 

 
4. Show that the given functions  in each of the following are solutions to the  
    given  differential  equations .  

(i) 		 = 	*	R�	– 	*S�									,     ������� = 	4		(� ���� 	– 	2	).   
 

(ii) 	 = *T�� + ��          ,  ���� = 5	 − 3	  
 

(iii)   	 = *+T=� + *�T=�� + *�T=��    ,   ������� + 6 ������ + 11 ���� + 6y� = 0  

 

(iv)  	 = T=�(*+cos	 4� + *�sin	 4�)    ,   ������� + 6 ������ + 12 ���� + 8	� = 0 
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Chapter-2 
 

First Order and First Degree Differential Equation 
 

 
Introduction  
 
A first-order differential equation is an equation that involves the first derivative 
of a function but no higher-order derivatives. When it is also of the first degree, 
it means that the highest power of the first derivative in the equation is one. 
The general form of the first order and first degree equation is of the  form – 
 

               
���� = �(�, 	)    or  �(�, 	)!� + 4(�, 	)!	 = 0  

 
#2.01: Geometrical Implication 
 

Consider the equation 
���� = �(�, 	)    …….      (1) 

 

Since    
����  represents  the slope of the tangent to the curve  	 = s(�)  at any 

point &(�, 	) on the curve , therefore if  8(�, 	) = * ( for a constant * ) is a 

solution curve or integral curve  of  the equation (1) , then    
���� = − ����   must 

satisfy  equation (1) i,e the slope of the tangent to the curve 8 (x,y)=c   at any 
point P(x,y) on the curve  must equal to  f(x,y) .Also  8 (x,y)=c  is a family of 
curves  lying at different heights   depending on the value of  'c'  . 
 

Thus the general solution of the equation 
���� = �(�, 	)   is a family of curves 

called  integral curves  whose tangent  at any point  P(x,y)  is  f(x,y).   
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Figure 2.01 

 
#2.02: There are several methods to solve such equations, including separation 
of variables, integrating factors, and exact equations. Here are some common 
types: 
 
(A). Separation of Variables  
 
 This method is applied when an equation can be put in the form  �(	)!	 =4(�)!� which can be solved by directly integrating both sides to get ∫ �(	)!	 = ∫ 4(�)!�  
 
Example 1: Solve the differential equation: 
 

 2 ���� = �(��+)�  

 
Sol: Separating  the variables we have  
 

         
���� = (��+)���     or       

���� = �1 + +��!� 
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Integrating both sides  
 ∫ 	 ���� = ∫ 	 �1 + +��!�  2 log 	 = � + log � + C  
 
Example 2: Solve     �!	 = 	 log	 	 !�   given that  � = 2    when   	 = T.  
 
Sol:  Separating variables we have  
 		   ��� ���� = ���   

 

Integrating: [For the 	 part, let N = log 	, then !N = ��� . 

 � 	 !		 log 	 = � 	 !��  

 log(log 	) = log � + C ………..       (1) 
 
Substituting � = 2   when 	 = T	  
we get log(log T) = log 2 + C ⇒ 	C = − log2  

Substituting this (1) 

we get   log(log 	) = log � − log2 = log ����  ⇒ log 	 = ��     or   	 = T�/�  
 
(B) Reduction to Equation where Variables are seperable 
 
 Sometimes , there are equations where the variables cannot be separated but by 
some suitable substitutions , they are seperable . These Equations are mostly of 
the form  
 

         
���� = �(�� + �	 + *)	 . 

 
Upon taking (�� + �	 + *) = n  ,  they will be reduced to the the form  !� = 4(n)!n  
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Example 3: Solve 
���� = sin(� + 	) 

 

Sol: Taking (� + 	) = n	 ⇒ 	 ���� = �¡�� − 1 

 

Therefore 
�¡�� − 1 = sin n 		⇒ !� = �¡+��?¢ ¡ = +� sec� �¡�� !n 

 

Integrating  ∫ �	!� = ∫ +� sec� �¡�� !n 

 ⇒ � = +� tan �¡�� + p  

 

or � = +� tan ���� + p 

 
Example 4: Solve   		(� + 	 − 1)!� = (� + 	 + 1)!	 
 

Sol:  We rewrite the equation as   
���� = ���=+����+. ………..    (1) 

 

Let  � + 	 = n     ⇒ 	1 + ���� = �¡�� 
 
so that 
 ���� = �¡�� − 1.  
(1) becomes      

�¡�� − 1 = ¡=+¡�+ 
 

or 	 �¡�� = �¡¡�+ 
 

or   2!� = �1 + +¡�!n. ∴ Integrating, 
 2� + * = n + log	 n  or   x – y + c = log (x + y) 
 
(C) Homogeneous Equations 
 
Definition: A function �(�, 	)  is said tobe homogeneous in �  and  	 of  
degree  ) if  �(%�, %	) = %-�(�, 	)  
 
To Solve an equation of the form  
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���� = �(�, 	) where  �(�, 	)  is a homogeneous  function , we use a 

substitution  ¥ = ¦§ so that   ̈
¥¨§ = ¦ + § ¨¦¨§  

 

Example:  Solve  
���� = �=���� 

 

Sol:  Substitute 	 = n�    so that  
���� = n + � �¡��  

 

Replace 	 in the given  equation  we get   n + � �¡�� = ¡�=�¡��� 
 

  or   n + � �¡�� = �(¡=+)�(¡�+) = ¡=+¡�+   
 

 or � �¡�� = ¡=+¡�+− n  

 

 or � �¡�� = ¡=+=¡(¡�+)¡�+   

 

or  � �¡�� = ¡=+=¡�=¡¡�+   

or  � �¡�� = =¡�=+¡�+   

 

or  � �¡�� = =(¡��+)¡�+   

 

or  � �¡�� = −(n − 1)  
 

Integrate both sides we get  ∫ 	 ¡�+¡��+!n = −∫ 	 ���  

 

or  ∫ 	 ¡¡��+!n + ∫ 	 +¡��+!n = −ln	 |�| + p  

 

The first integral is 
+� ln	|n� + 1|, and the second is arctan	(n) : 

 +� log	|n� + 1| + tan n = −ln	 |�| + p  

 
Back-substitute n = �� : 
 +� log	 G����� + 1G + tan	 ���� = −ln	 |�| + p  
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Example 5: Solve 
���� = �� + tan	 �� 

 

Sol. Taking  
�� = n, 	 i.e. 		 = n�, 	 we get    

	���� = n + � ��¡���. 
 
The given equation becomes  
 	n + � �¡�� = n + tan	 n	 or 		 ��� = ���	 ¡�?¢	 ¡ !n. 

 
Integrating, 	 log � + log * = log sin n ,			*    being an arbitrary constant. 
or   *� = sin	 n, 
or    *� = sin	(	/�) 
 
(D) Equation reducible to homogeneous form 
 

Equations of the form 	 ���� = $��«���$¬��«¬���¬ , 	 where 	 $$¬ ≠ ««¬, can be reduced to 

homogeneous form  by expressing 	* = �ℎ + �%		�)!		*­ = �­ℎ + �′% so that  
the given equation can be written as   

  
���� = $(��¯)�«(��°)$¬(��¯)�«¬(��°)   which upon substitution   � + ℎ = b		, 	 + % = d ,  

  the R.H.S. will be homogeneous  .  
 

Example 6: Solve the equation  
���� = ���=��=���  

 
Sol:  We choose  ℎ, %  such that  
              ℎ + % = −2 
              ℎ − % = 4 
 
Therefore  ℎ = 1, % = 	−3 
 
The given equation  reduced  to   
 

 
���� = (��+)�(�=�)(��+)=(�=�)  
 
Taking  � + 1 = b		, 	 − 3 = d 
 
The above equation  becomes   
 

   
�±²³ = ³�±³=±           (R.H.S  is  homogeneous )  
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On taking  d = nb   
 

the last equation becomes  n + b �¡�³ = +�¡+=¡  
 

or    b �¡�³ = +�¡+=¡ − n = +�¡�+�¡  

 ⇒ �³³ = +�¡+�¡� !n    , integrating   we get  ∫ �³³ = ∫ +�¡+�¡� !n 

 

or  ∫ �³³ = ∫ ++�¡� !n + +�∫ �¡+�¡� !n  

 ⇒ logb = tan=+ n + +� log(1 + n�) 	+ p  

 

or log(� + 1) = tan=+ �=���+ + +� log �1 + ��=���+���	+ p   

 

Example 7: Solve  (� + 	 − 10) ������ − 2� − 	 − 20 = 0. 

Sol:  We rewrite the equation as  
���� = ������Y���=+Y   …….    (1) 

 
Let ℎ	, %  be such that  
 2ℎ + % = 20   and   ℎ + % = −10  
Then ℎ = 30	, % = 	−40 
equation (1) can further be written as  
 ���� = �(���Y)�(�=�Y)(���Y)�(�=�Y) 	  
or        

�±�³ = �³�±³�±             where  b = � + 30	, d = 	 − 40 

 
The  R.H.S  of the  above equation is homogeneous  and so  we put   d = nb  to get  
 n + b �¡�³ = ��¡+�¡	     or   b �¡�³ = �=¡�+�¡ 			  or   

�³³ = +�¡+=¡� 	!n  

 

integrating we  get    ∫ �³³ = ∫ +�¡+=¡� 	!n =	 ∫ ++=¡� 	!n	 − +�∫ =�¡+=¡� !n  

 ⇒ logb = +� log +�¡+=¡ − +� log(1 − n�) + log p  
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= log √+�¡�(+=¡)√+=¡� + logp = log µ+=¡  
 ⇒ b = µ+=¡	   or  b(1 − n) = p 

 

or  b �1 − ±³� = p   or  b − d = p 

 
or � − 	 + 70 = p    or   � − 	 = p+   where  p − 1 = p + 70  a  constant .  
 
(E) Exact Differential Equation:  An equation of the form  
 ·!� + ¸!	 = 0   …………(1) is said tobe exact if   there exists a  function  s(�, 	) having continuous first order  partial derivatives    such that  · =���� 		 , ¸ = ����	. 
 

If such a function exists , then  (1)  will become    
���� !� + ���� !	 = 0  or  !s = 0   and  on  integrating    gives  

        ¹(§, ¥) = º  
 
which is a solution of  (1)  . 
 
Theorem: The necessary and sufficient condition for differential equation  
                                	·. !� +¸. !	 = 0  
 

   to be an exact differential equation is that      
�»�� = �¼�� 

 
Proof: ( P.G.Andhare , AIIRJ , Vol - V Issue-III MARCH 2018 )  
 
Necessary Condition 
 
Suppose M.dx + N.dy = 0 is an exact differential equation. Therefore there 
exist a function N  of � and 	 such that ·!� + ¸!	 = !N By definition of total 

differentials 	!N = �½�� !� + �½�� !	 

 
From (1) and (2) we get 

             · ⋅ !� + ¸ ⋅ !	 = �½�� !� + �½�� !	  

 
Comparing coefficients on both the sides of dx and Dy we obtain, 
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             · = �½��  and ̧ = �½��  
 

              
�»�� = ��� ��½��� = ��½�� ��  

 

 But we know      
��½�� �� = ��½�� ��  

 

            ∴ �»�� = ��½�� �� = ��½�� �� = ��� ��½��� = �¼��  

 

Thus     
�»�� = �¼�� 

Sufficient Condition: Conversely suppose   
�»�� = �¼�� 

 
We Claim:  The differential equation ·!�	 + 	¸!	 = 0 is an exact differential 
equation. 
 
We define ¿ = ∫ ¸. !	       ,   � =  constant   
Differentiating V w. r.t. y we get 
 �À�� = ¸     That is 	¸ = �À�� 
 �¼�� = ��� ��À��� = ��À�� ��  
 

But we know that 
��À�� �� = ��À�� ��         ∴ �¼�� = ��À�� ��	  ………………  (4) 

 

From (3) and (4) 
�»�� = �¼�� = ��À�� �� 

 �»�� = ��À�� ��      or   
�»�� = ��� ��À���  

 
Integrating w. r. t. y treating x as constant 
 · = �À�� +  constant  
 
As we are treating � constant while integrating w. r. t. y . 
Therefore constant of integration may contain the term in ·	not containing 	 . 
Hence it is function of � say Á+(�) 
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· = �À�� + Á+(�)  
 
Now ·!� + ¸!	 = Â�À�� + Á+(�)Ã ⋅ !� + �À�� !	  

 = �À�� !� + �À�� !	 + Á+(�)!�  

 

But we know         
�À�� !� + �À�� !	 = !¿  

 ·!� + ¸!	 = !¿ + Á+(�)!�  
 = ![¿ + Á(�)]  
 = !N	           where    N = [¿ + Á(�)]  
 
Therefore there exist a function N of � and 	  that is  N = ¿ + Á(�) such that ·!� + ¸!	 = !N  
 
Hence the  differential equation ·!�	 + 	¸!	 = 0 is an exact differential 
equation.  
 
Method to solve Exact Differential Equations 
 
Method 1. Given the exact differential equation  ·!� + ¸!	 = 0  
 
The general solution is given by  s(�, 	) = *   where  
 s(�, 	)   is a function satisfying  

���� = ·		, ���� = ¸ .  

 
This method is sometimes called solution by inspection .  
 
Method 2.  Given the exact differential equation  ·!� + ¸!	 = 0  
The general solution is given by  
 ∫ 	·!� + ∫ 	 ( Terms. N not containing �)!	 = *  
where in the first integral , we integrate w.r.t  �   treating 	  as constant  and   
in the second  integral , we integrate w.r.t  	   treating �  as constant  .  
 
Method 3.  Given the exact differential equation  ·!� + ¸!	 = 0  
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The general solution is given by  
 ∫ 	¸!	 + ∫ 	 ( Terms. · not containing 	)!�    
where the integrals is tobe integrated similar as in the previous method .  
 
Example 8:  Solve   (3�	� − ��)!� + (3��	 − 6	� − 1)!� = 0  
 
Sol: Comparing the given equation with ·!� + ¸!	 = 0 
 
we have  · = (3�	� − ��)  ,    ̧ = (3��	 − 6	� − 1) 
 �»�� = 6�		, 	 �¼�� = 6�	  

 

Since    
�»�� = �¼�� 

 ∴ The differential equation is exact differential equation. 
Integrating ·  w.r.t �   treating 	  as constant  ,  

we have     ∫(3�	� − ��)!� = 3	� ∫(�)!� − ∫��!� = ������ − ���      

Integrating terms of ̧  not containg �   , w.r.t 	  we get  
 ∫(−6	� − 1)!	 = −2	� − 	  
 
Therefore the general solution is given by  

      
������ − ��� − 2	� − 	 = *  

 
Example 9: Solve the equation  (		� + 2�	)!� + (�� + 2�	)!	 = 0 
 
Sol:  Taking the function  s(�, 	) = ��	 + �	�  
 

we have  
���� = 	� + 2�				, ���� = �� + 2�		 

 
Therefore the given equation can be written as  
 ���� !� + ���� !	 = 0  

 
or !s = 0 
 
on integrating we get a solution as    
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s(�, 	) = p  
or  ��	 + �	� = p 
 
Example 10. Find the values of constant Ä for which  the equation  
 

                   (2�T� + 3	�) ������ + (3�� + ÄT�) = 0 is exact.  

and hence  solve it. 
 
Sol. Re-writing the given equation, 
 (3�� + ÄT�)!� + (2�T� + 3	�)!	 = 0. ………     (1) 
 
Comparing  with ·!� + ¸!	 = 0, 
 
we have  	· = 3�� + ÄT� and 	¸ = 2�T� + 3	�. 
 
Now, for (1) to be exact we must have 
 �»�� = �¼��     so that   ÄT� = 2T�   ⇒ 	Ä = 2. 

 ∴ (1) becomes    (3�� + 2T�)!� + (2�T� + 3	�)!	 = 0 
Equation (3) in exact and hence its solution is its solution is ∫ 	·!�	 + ∫ 	 ( terms in N not containing �)!	 = *  
 ∫ (3�� + 2T�)!� + ∫ (3	�)!	 = * 
 
or  �� + 2�T� + 	� = * 
 
Example 11: Solve   [	� − ��sin	(�	)]!	 + [cos	(�	) − �	sin	(�	) +T��]!� = 0 
 
Sol: We have  · = cos	(�	) − �	sin	(�	) + T�� 
                        ̧ = 	� − ��sin	(�	)  
 ∂·∂	 = −�� ycos(�	) − 2 xsin(�	) 
 ∂∂̧� = −��	cos	(�	) − 2�sin	(�	) 
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As  
�»�� = �¼��   ,  the  equation is exact. 

 
  ∫·(�, 	)! = � ∫ 	 (cos	(�	) − �	sin	(�	) + T��)!� 
 

                         = +� sin	(�	) + �cos	(�	) − +� sin	(�	) + +� T�� + �(	)  
 

                         = �cos	(�	) + +� T��  ∫ (#T'�c	:�	¸	):#	*:)#�/)/)4		�)	!	 = ∫ 	�!	 = ��� 	  
Therefore the general solution is given by  

 � cos(�	) + +� T�� + ��� = p  

 
Example 12: Solve:  (1 + 4�	 + 2	�)!� + (1 + 4�	 + 2��)!	 = 0  
 
Sol: Given  (1 + 4�	 + 2	�)!� + (1 + 4�	 + 2��)!	 = 0  
Compare with   ·!� + ¸!	 = 0, we get M = 1 + 4�	 + 2	�, ¸ = 1 + 4�	 + 2�� ⇒ ∂M∂	 = 4� + 4				, ∂¸	∂� = 4	 + 4� 

 �»�� = �¼��   

 ∴ Equation (1) is exact.   
 ∫  �·!� + ∫ 	 ( terms in ̧  not containing �)!	 = *  
where * is an arbitrary constant of integration. ⇒ � �   (1 + 4�	 + 2	�)!� + � 	 (1)!	 = * ⇒ � + 4� 	�2 + 2	� ⋅ � + 	 = * 
 ⇒ � + 2�	� + 2	�� + 	 = * 
 ⇒ � + 	 + 2�	� + 2	�� = * 
 ⇒ � + 	 + 2�	(	 + �) = * 
 ⇒ (� + 	)(1 + 2�	) = * 
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The Integrating Factor: If the given differential equation is not exact, it may  
sometimes be possible to multiply through by an integrating factor   È(�, 	) to 
make it exact. An integrating factor È(�, 	) is a function that, when multiplied 
by the original differential equation, makes it exact. There is no universal 
method for finding  integrating factors, but common strategies include looking 
for È that depends only on � or 	, or using specific forms based on the structure 
of the equation. 
 
We shall list some of the commonly used strategies below:  
 

(i) If          
+¼ Â�»�� − �¼��Ã = �(�)    ( a function of  �  alone ) then the integrating 

factor of the equation  ·!� + ¸!	 = 0  is  given by  È = T∫ E(�)�� 	 
  

(ii)  If          
+» Â�¼�� − �»�� Ã = 4(	)    ( a function of  	  alone ) then the integrating 

factor of the equation  ·!� + ¸!	 = 0  is  given by  È = T∫ F(�)��	 
 
Example 13: Solve   (3�	 − 	�)!� + �(� − 	)!	 = 0 
Sol:  Here we have ,  · = 3�	 − 	�	  ,   ̧ = �(� − 	) 
 

 
�»�� = 3� − 2	   ,  

�¼�� = 2� − 	 

 

Since  
�»�� ≠ �¼�� 	 , the  equation is not exact. 

 

We have 
+¼ Â�»�� − �¼��Ã = +¼ [3� − 2	 − (2� − 	)] = �=��(�=�) = +� 	= �(�) 

 
a function only of � .  
Therefore , the  integrating factor is 
 È = T∫ 	E(�)��  
 T∫ 	(+/�)��  
 = T����  
 = �  
 
Multiply the differential equation the I.F.  we get  
 �[(3�	 − 	�)!� + �(� − 	)!	 = 0]  
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or  (3��	 − �	�)!� + (�� − ��	)!	 = 0 ………….    (1) 
 
Checking exactness of equation (1)  
 
we have  · = 			3��	 − �	�  ,   ̧ = �� − ��	  
 �»�� = 3�� − 2�	    ,   

�¼�� = 3�� − 2�	  

 Since   
�»�� = �¼��  ,   equation  (1) is  exact  and can be solved by the previous 

method .  
 
Example 14. Solve (�� + 	� + 2�)!� + 2	!	 = 0 
 
Sol. Given equation :  (�� + 	� + 2�)!� + 2	!	 = 0   …….   (1) 
 

Where M = �� + 	� + 2�, N = 2	 ⇒ �Ê�� = 2	, �Ë�� = 0 

 

Since 
�Ê�� ≠ �Ë��,  (1) is not an exact equation. 

 

Also 
+
 Ë ��Ê�� − �Ë��� = +�� (2	 − 0) = +�� (2	) = 1 = real number 

 
 ∴ I.F. = expÌ∫ �(�)!�Í = exp	R∫ 1!�S = T� 
 
Multiplying (1) by T� 
we get  (�� + 	� + 2�)T�!� + 2	T�!	 = 0……..    (2) 
 
Now (2) is  of the form ·+!� + +̧!	 = 0	 
is  an exact equation  ,  where M+ = (�� + 	� + 2�)T� and N+ = 2	T� ∴ General solution of (2) is 
 
 ∫ �(�� + 	� + 2�)T�!� + ∫ 0!	 = *					(	∵Ï no term in N+ not containing Ï�) 
 ⇒ ∫ ��T�!� + 	�∫ T�!� + 2∫ �T�!� = * 
 ⇒ ��T� − ∫ 2�T�!� + 	�T� + ∫ 2�T�!� = * 
 ⇒ (�� + 	�)T� = *   
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(iii) If the given equation ·!� + ¸!	 = 0 is homogeneous and (·� + ¸	) ≠0	, then 
+»��¼�	   is an integrating factor. 

 

Example 15. Solve 
���� = �������� . 

 
Sol. The  given  equation can be written as  
 
     (�� + 	�)!� + (�	�)!	 = 0 ………….      (1)  
 
Here · = (�� + 	�) and ̧ = −(�	�)   which are homogeneous in � and 	. 
Also  ·� + ¸	 = (�� + 	�)� + (−�	�)	 = �� 		≠ 0			/�		� ≠ 0 
 

Thus   A. s = +»��¼� = +(�����)��(=���)� = +�Ð 
 
Multiplying the given equation by the integrating factor to make it axact  

we have    
(�����)�Ð !� + (���)�Ð !	 = 0 

The required solution is given by ∫ (�����)�Ð !� + ∫ [ terms of 
(���)�Ð  not 

containing    �]!	 = * 
 

i.e  The required solution is given by ∫ �+� + ���Ð�!� + ∫ (0)!	 = *. 
 ⇒ The required solution is given by    

             log	 � − ����� = *. 
 
(iv) If an equation is of the form   �(�	)	!� + 4(�	)�!	  where  · = 	�(�	)  
and  ̧ = �4(�	)    then  

+»�=¼�   is an integrating factor .  

 
(v) Inspection: Sometimes , the integrating factor can be found by inspection  
when the given differential equation is of familiar form . These form can be a 
differential of some standard  functions  as given below :  
 
 (i)  !(�	) = 	!� + �!		                       (ii) !(�� + 	�) = 2�!� + 2	!	   
 

(iii) ! ���� � = �����=������                          (iv) 		! ���� � = �����=������  

 

(v) ! ������ = ������=�������Ð                       (vi)    ! ������ = ������=�������Ð  



Chapter 2: First Order and First Degree Differential Equation 

29 

 

(vii) ![log	(�	)] = ���������                     (viii)   !(�	) = �!	 + 	!� 

 

(ix) ! �tan=+	 ��� = ���=��������                        (x)     	! �tan=+	 ��� = ���=��������  

 

(xi) ! Âlog	 ����Ã = ���=�����                        (xil)     ! Âlog	 ����Ã = ���=�����  

 

(xiii) ! Â+� log	(�� + 	�)Ã = ������������         (xiv)    ! �− +��� = �����������  

 

(xv) ! �Ñ�� � = �Ñ���=Ñ�����                           (xvi) 				!(sin=+	 �	) = �������(+=����)k/� 
 

(xvii)  ! ���� = ���=�����                              (xviii)  ! ���� = 	 ���=�����  

 
Example 16:  Solve (�� + �	� + 	)!� + (	� + 	�� − �)!	 = 0. 
 
Sol. Re-writing, the given equation,  
 �(�� + 	�)!� + 	(�� + 	�)!	 + (	!� − �!	) = 0  

or    �!� + 	!	 + ���=�������� = 0	  ( the 3rd term being the differential of  tan=+ ��  )  
 

or 	�!� + 	!	 + ! �tan=+ ��� = 0.  

 

Integrating we get  , 
	��� + 	�/2 + tan=+ ���� = */2	 

 or 	�� + 	� + 2 tan=+ ���� = *. 
 
(F) Linear Differential Equation of First order  :  An equation of the form  ���� + J(�)	 = K(�) ……………..       (1) 

 
(where  J(�)	, K(�)	  are functions of  � )  is called a linear equation of first 
order . If we multiply equation  (1)  by some  Integrating Factor  È(�)  we get  È(�) ���� + È(�)J(�)		 = È(�)K(�)	 ……….      (2) 

 
we assume that  È(�)J(�) = È′(�) 
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so that   
Ò¬(�)Ò(�) = J(�) 

 
on integrating we have  log È(�) = ∫J(�)!� 
     ⇒ È(�) = T∫�(�)��  
 

 From (2) we get   È(�) ���� + È­(�)	 = È(�)K(�)  
 

or     
��� (	È	) = È(�)K(�) 

 
Which can be integrated to get the general solution as  		⇒ È	 = ∫È(�)K(�)!� + p  
    or   ¥Ó∫Ô(§)¨§ = ∫ Ó∫Ô(§)¨§Õ(§)¨§ + º			   
 
Example 17: Solve the equation 	­ + �� 	 = 4� − 3 

 

Sol: Here  J(�) = �� and   K(�) = 4� − 3. 

The integrating factor is È(�) = T∫ (�/�)!� = T��¢	 � = ��. 
Multiplying both sides of the differential equation by È(�) gives us 
 ��	­ + �� �3�� = ��(4� − 3) 
 ��	­ + 3��	 = 4�� − 3�� 
 ��� (��	) = 4�� − 3��.  
 ∫ 	 ��� (��	)!� = ∫ 	 4�� − 3��!�  

 ��	 = ��Ö� − ��Ð� + p  

 	 = ���� − ��� + p�=�  
 

Example 18:  Solve the differential equation  
���� + 3��	 = 6��. 

 
Sol:  Comparing with the standard equation  we have  
 &(�) = 3�� and v(�) = 6��.  
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An integrating factor is  È(�) = T∫ 	����� = T��  
 
Multiplying both sides of the differential equation by T��, we get 
 T�� ���� + 3��T��	 = 6��T��  
 
Or 
 ��� RT��	S = 6��T��  
 
Integrating both sides, we have T��	 = ∫ 	 6��T��!� = 2T�� + p  
 	 == 2 + pT=��  

 
Example 19:  Find the solution of the initial-value problem ��	­ + �	 = 1			  ,   � > 0			, 	(1) = 2 

 
Sol:  The given equation can be written as  
 	­ + +� 	 = +�� 	  ……..         (1) 

 
The integrating factor is È(�) = T∫ 	(+/�)�� = T�¢	 � = �   
 
Multiplication of Equation (1)   by � gives �	­ + 	 =	 +�    or   

��� (�	) = +�  
 
Integrating we get ,  �	 = ∫ 	 +� !� = log � + p  

 
Since 	(1) = 2, we have 2 = log1 + p	 ⇒ 		p = 2  
 
Hence the required solution is  �	 = log � + 2  

 

Example 20: Solve    
���� + ���+��� 	 = �?¢�	 �+���  

 
Sol: Given 
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���� + ���+��� 	 = �?¢�	 �+���   

 

Comparing with 
���� + &	 = v   we have   & = ���+��� 		,				v	 = �?¢�	 �+���  

 

Therefore  A. s	 = T∫ 	i�� = T∫ 	 ���k×���� = T���	(+���) = 1 + �� 
 
            Hence the solution is given by 
 

                 	(1 + ��) = ∫ 	 �?¢�	 �+��� (1 + ��) ⋅ !� + *	 = ∫ 	 sin�	 �!� + *  
 

            = +�∫ 	 2 sin� �!� + * = +�∫ 	 (1 − cos 2�)!� + *	 = +� �� − �?¢	 ��� � + *   
 
Example 21: Solve  (1 + 	�)!� = (tan=+	 	 − �)!	 
 
Sol: The given equation can be written as  !�!	 + �1 + 	� = tan=+	 	1 + 	�  

 

Comparing  with the standard equation  
���� + &	 = v, 

 

we get  & = ++��� 		 , v = ØÙ¢Úk	 �+���  

 

Therefore , A. s = T∫ 	i�� = T∫ 	 kk×���� = TØÙ¢Úk	 � 
 
Hence the solution is given by = ∫ 	 ØÙ¢Úk	 �+��� TØÙ¢Úk	 �!	 + * ……..       (1) 

 

Put tan=+	 	 = Z   so that  
++��� !	 = !Z 

 
Equation (1) becomes �TØÙ¢Úk	 � = � 	 Tj ⋅ Z!Z + * = ZTj −� 	 1 ⋅ Tj!Z + *	 = ZTj − Tj + * = tan=+	 	TØÙ¢Úk	 � − TØÙ¢Úk	 � + * 
 ⇒ � = tan=+	 	 − 1 + *TØÙ¢Úk	 � 
Which is the general solution of the given equation. 
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 (G) Equation reducible to Linear Form 
   
Equations of the form   
 

(i)  �­(	) ���� + J(�)�(	) = K(�) 
 
Equations of these form   can be reduced to linear form by a substitution  

 ¦ = Û(¥) 		 ∶ 	 ¨¦¨§ = Û­(¥) ¨¥¨§	  
 

(ii)    
���� + J(�)	 = K(�)	(-) ( Bernoulli’s equation)  where ) ∈ ¸  and  	(-)  

denotes the )Ü¯ order  derivative  of  	   w.r.t. � . 

These kind of equations   can be reduced to linear  form  by   putting  ¦ = Ý¥(ÞÚÝ)  
 
 
 
(iii)  A first-order homogeneous differential equation is of the form: !	!� = s(	/�)ß(	/�) 
 

Let n = ��,   which implies 	 = n�  and   
���� = n + � �¡��.  

 
Substituting these into the original equation: 

 n + � �¡�� = �(¡)à(¡)   or  
�¡�� + ¡� = +� �(¡)à(¡)  

 
which is linear .  

This can be rewritten as: � �¡�� = �(¡)à(¡)− n 

which is separable and can be integrated to find n(�). 
 

Example 22: Solve the Bernoulli Differential Equation   
���� + 3	 = 2	�  

 
Sol:  Divide by 	�  we get   
 	=� ���� + 3	=+ = 2  

 

Let n = 	=+,     so     
�¡�� = −	=� ����.  

 
The given equation becomes  
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  − �¡�� + 3n = 2 

or    
�¡�� − 3n = −2  

which  is now a linear differential equation in n. 
 

Example 23: Solve the equation   � ���� + 	log	 	 = �	T�. 
 
Sol. Dividing by �	, the given equation reduces to 
 +� ���� + +� log	 	 = T�  …………        (1) 

  

Let 	log	 	 = n   so that  
+� ���� = �¡��  

 ��¡��� + �+�� n = T� ……….        (2) 

Here  ,  we have 	J(�) = +�		 and 	K(�) = T�. 
Now  ∫ J(�)!� = ∫ �+��!� = log	 � 

Therefore  È(�) 	= T∫ �(�)�� = T���	 � = �.   
 
Hence solution of (2)  is   	n.È	(�) = ∫ È(�)K(�) !� + *			 or 	n� = ∫ �T�!� +*	 or 	n� = �T� − ∫ T�!� + * = �T� − T� + *  or    �log	 	 = T�(� − 1) + *.   
 

Example 24: Solve  :   �� ���� = �(���)�  

 

Sol: Given equation is 
���� = ��������  

 ∵ �(%�, %	) = �(�, 	), the	given	equation	 is a homogeneous equation. 
 

Put 	 = n�  ,  ⇒ ���� = n + � �¡�� 
 
The given equation can be written as  
 

 n + � �¡�� = ¡���¡������ = ¡��¡�  

 ⇒ � �¡�� = ¡��¡� − n = ¡��¡=�¡� = ¡�=¡�   
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Separating variables : 2 �¡¡(¡=+) = ���  

 ⇒ 2� 	 !nn(n − 1) = � 	 !�� + log	 * 
 

or  2∫ 	 � +¡=+− +¡� !n = log	 � + log	 * ⇒ 2[log	(n − 1) − log	 n] = log	 *� 

 

or   log	 �¡=+¡ �� = log	(*�) ⇒ �¡=+¡ �� = *�. 
 
Putting n = ��, the general solution of  is 

 Â(�/�)=+�/� Ã� = *� ⇒ (	 − �)� = *�	� 
 

Example 25. Solve   :   
���� = 2	tan	 � + 	�tan�	 � 

 
Sol. Given equation can be written as 
 ���� − (2tan	 �)	 = 	�tan�	 � ⇒ +�� ���� − (2tan	 �) +� = tan�	 �  

 

Let     − +� = Z ⇒ +�� ���� = �j��. 
 
Then the above equation becomes : �j�� + (2tan	 �)Z = tan�	 �. 

 
This is a linear equation in Z where P = 2tan	 �. 
Now I.F. = T∫ �ØÙ¢	 ��� = T����	 �å�	 � = T���	 �å��	 � = sec�	 �. 
 ∴ General solution  is 
   Zsec�	 � = ∫ tan�	 �sec�	 �!� − * ⇒ Zsec�	 � = ∫ tan�	 �!(tan	 �) − * = (tan�	 �)/3 − * ∴ The general solution of the given equation  is 

  − +� sec� � = +� tan�	 � − *	 
 
Example 26: Solve � ���� + 	 = 	�log	 � 

 
Sol. Given equation can be written as  
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+�� ���� + +� ⋅ +� = ���	 ��   …………..        (1) 

 

Let N = +� 					⇒ �½�� = − +�� ���� 					⇒ +�� ���� = − �½�� 
 

Equation (1) becomes    
�½�� − +� N = =���	 ��  ………….    (2) 

 

which  is a linear equation in N and �  where   P = − +� ,			Q = =���	 ��  

The   I.F. = exp	R∫ P!�S = exp	 �∫ − +� !�� = T=���	 � = T���	 �Úk = +� 
The General solution of (2) is 
 
  N (I.F.) = ∫ Q(I. F)!� + * 
 ⇒ N� = ∫ − log �� 		1� !� + * = ∫ − 1�� log	 �!� + * 
 ⇒ N� = 1� log	 � − ∫ 1� ⋅ 1� !� + * = 1� log	 � + 1� + * 
 

Putting N = +�   above  ,  

The general solution of  the given equations is :  
 

   
+�� = +� log � + +� + *			or				1 = 	log	 � + 	 + *�	  

 

Example 27: Solve the equation :    
���� − +� 	 = (1 + log �)	�. 

 
Sol: Dividing by 	�, we get 	=� ���� − +� 	=� = (1 + log �),  
 

or    − +� ��� (	=�) − +� 	=� = (1 + log �) …….     (1) 

 

Let     	=� = Z		, (1) becomes     
�j�� + �� Z = (1 + log �) ………   (2) 

 

The integrating factor is    È(�) = T∫ ���� = ��, 
 

Solution of  (2)   is  :   Z�� = ∫ − ��(1 + ln	 �)!� = − �� �� ���+ ln	 �� + *. 
The general solution  of  (1)   is  : 	 ���� = − �� �� ���+ ln	 �� + *. 
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Exercise 
 

1. Solve the initial valued problem   	­ = ���√+��� 					, 	(0) = −1 

 

2. Solve the following  by expressing in the form  
���� = a homogeneous 

function .  

(i)  (�� + �	)!	 = (�� + 	�)!�.     (//)	���� = �� + sin ����. 
 (iii)	(�� − 	�)!	 = 2�	!�.            (/n)		(�� − 	�)!� + �	�!	 = 0.  
 (n)			��	!� − (�� + 	�)!	 = 0.     (n/)	�(� − 	)!	 = 	(� + 	)!�.  

 
3. Solve the following by reducing to the form as in Question 2.  

 (/)	���� = ��������������.          (//)	���� = �����=�����=�  . 

 

           (///)		���� = ��=��+����=�.         (iv) (2� + 	 − 5) ������ + (3� + 2	 − 2) = 0. 

 (v)	(3� − 2	 − 7)!� = (2� + 3	 − 6)!	. 
 
4. Test the exactness of the following equations and solve when the equation is 

exact. 
(a) 2�	!� + (�� + 3	�)!	 = 0 
(b)     (�� − �	)!� = (�� − 	�)!	. 
(c)T�!� + (T�(	 + 1))!	 = 0 
(d)   cos	 �cos�	 	!� − sin	 �sin	 2	!	 = 0 
(e) (T� + 1)cos	 �!� + T�sin	 �!	 = 0. 
(f)    (� + 	)!� + (� − 	)!	 = 0 
(g) (3�� + 6�	�)!� + (6��	� + 4	�)!	 = 0 
(h)   (3 Ï��log	 |�| + �� + 	)!� + �!	 = 0 

 
5. Solve the following linear differential equation. 

(i)  4��	 + ��	­ = sin�	 � 
 
(ii)    	­ + 	 = sin(T�) 
 

(iii)  sin	 � ���� + (cos	 �)	 = sin	(��) 
 

(iv)   � ���� − 4	 = ��T� 
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 (v)  (1 + ��) ������ + 	 = TØÙ¢Úk	 �. 

 
(vi)   (!	/!�) + 2	tan	 � = sin	 �, given that 	 = 0 when � = é/3. 
 
(vii)  (1 + 	�) + R� − TØÙ¢Úk	 �S(!	/!�) = 0. 
 

(viii)  
���� + �����+	 = +(���+)�. 
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Chapter-3 
 

Higher Degree Equations of First Order 
 

 
Introduction:  In this chapter we shall discuss some of the standard methods in 
solving  the equations of first order and higher degree. The general form of 
these equations  is   -  
 

 &Y ������- + &+ ������-=+ + &� 	������-=� +⋯…….		&-=+	­ + &- = 0   

 
or  êëÔÞ + êÝÔÞ=Ý + êìÔÞ=ì…… .+êÞ=ÝÔ + êÞ = ë………….(1) 
 
where &.  are  constants  or  functions of  � and  	   and  J = ����	 
 
(A) Equations solvable for Ô	 
 
Suppose the equation   
  &YJ- + &+J-=+ + &�J-=�…… .+&-=+J + &- = 0 ………….(1)can be written 
as the product of linear factor of J  as (J − K+(�, 	))(J − K�(�, 	)) 	 (J −K-(�, 	)) = 0 Equating each factor to zero we get a set of )  first order and first 
degree equations J − K.(�, 	) = 0  , / = 1,2,… . )	 which can be solved to get a 
solutions  as �?(x, y, c?) = 0, i = 1,2,3…… . . n These )  solutions form the 
general solution of  equation  (1) which can be written combinely as  ÛÝ(í, î, ï)Ûì(í, î, ï)…… . . Ûð(í, î, ï) = ë    .  
 
Example 1:  Solve the following differential equations:    ��J� + �	J − 6	� =0. 
 
Sol.  Given equation is  	��J� + �	J − 6	� = 0	  
 
 or 	��J� + 3�	J − 2�	J − 6	� = 0 
 
or    �J(�J + 3	) − 2	(�J + 3	) = 0	  
 
or   (�J + 3	)(�J − 2	) = 0.   
 
Equating each factor to zero  we get  
 	� ������ + 3	 = 0	 and 	� ������ − 2	 = 0 
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or  	�+��!	 + 3 �+�� !� = 0	 and   �+��!	 − 2 �+�� !� = 0. 

 
Integrating, log	 	 + 3log	 � = log	 *, i.e., 	�� = *    
 
and   log	 	 − 2log	 � = log	 *, i.e., 

��� = * 
 

Therefore  ,   the general solution is (	�� − *) � ��� − *� = 0 . 

 

Example 2. Solve �	 ������� + (�� + 	�) ���� + �	 = 0 

 

Sol: This is first-order differential equation of degree 2. Let J = ���� 
 
The given equation  can be written as 
 �	J� + (�� + 	�)J + �	 = 0 (�J + 	)(	J + �) = 0  
 ⇒ 	�J + 	 = 0, 	J + � = 0  
 ⇒ ��� + ��� = 0			,				!	 + �!� = 0  

 
Integrating we get  log �	 = log *+ 			:'		�	 = *+ and  �� + 	� = *� 
respectively.The general solution can be written in the form  (�� + 	� − c)(�	 − c) = 0 
 
(B) Equations Solvable for § 
 
If  the differential equation &YJ- + &+J-=+ + &�J-=�…… .+&-=+J + &- = 0   
be solvable for � . Then � can be expressed as a function 	 and J, that is, � = �(	, J) …………..         (1) 
 
Differentiating (1) with respect to 	 we get 
 +� = �E�� + �E�� ⋅ ����     which is a linear  equation of first order in  	  and  J   and 

can be solved to get a solution of the form  8(	, J, *) = 0 …………..  (2)  
 
The general solution of  (1)  can be found by substituting  the value of J	  from  
(2)  in  (1) or by   eliminating  J  between  (1)  and  (2)  
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If the elimination of J between (1) and (2) is not possible, then we solve (1) and 
(2) to express � and 	 in terms of J and * in the form 
 � = �+(J, *), 		 = ��(J, *). 
 
These two equations together form the general solution of (1) in the parametric 
form .   
 
(C) Equations Solvable for ¥ 
 
If  the differential equation 
 &YJ- + &+J-=+ + &�J-=�…… .+&-=+J + &- = 0   be solvable for y . Then y 
can be expressed as a function � and J, that is, 	 = �(�, J) ………….. (1) 
 
Differentiating (1) with respect to � we get ���� = �E�� + �E�� ⋅ ����  ………….        (2)  

 
The last equation is a linear  first order differential equation of first degree in � 
and J.  
 
It may be solved by previous  methods . 
 
After getting a  solution of  (2)  in  the form  u(�	, J) = 0 …………         (3)  
 
Then  J can be eliminated between   (1)  and (3)  to get the solution of  (1)  .  
If the elimination of J between (1) and (3) is not possible, then we solve (1) and 
(3) to  express � and 	 in terms of J and * in the form � = �+(J, *), 		 = ��(J, *). 
 
These two equations together form the general solution of (1) in the parametric 
form.   
 
Example 3: Solve 	 = 2J� + J�	. 
 
Sol. The given equation is easily seen tobe solvable for  �  . 
         Solving for �, we get 
         2� = −J	 + 	/J.   ………..       (1)  
 
Differentiating (1) w.r.t. 	, we get 
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2J = −J − 	 !J!	 + 1J − 	J� !J!	 ,    
  

or 	J + +� = −	 ������ �1 + +��� 
 

 or J �1 + +��	� + 	 ������ �1 + +��� = 0   

 
or �1 + +��	� [J + 	 ������] = 0.  
 
The  first factor leads to  J = ±/		 which is  a singular solution  and hence we 
can omit  .  
 
We shall be taking the second factor 
 J + 	 ������ = 0    or   

��� + ��� = 0  

 
Integrating 	log	 J + log	 	 = log	 * 
 
or   J	 = *.  ⇒ 	J = */	. Putting this value of J in   (1), we get   2� = −* + ���  

or  2�* − 	� + *� = 0 
 

Example 4: Solve � ������� − 12 ���� − 8 = 0  

 

Sol: Letting  J = ����, the  given eequation becomes  

  �J� − 12J − 8 = 0  
 
which  is solvable for �  to get  
 � = +���ò�� = +��� + ò�� ……………       (1)  

 
Differentiating with respect to 	, we get 
 ���� = −2 +��� ���� − 3 ò�Ð ����    or   or 

+� = − ���� ���� − ���Ð ����  
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or   !	 = �− ���� − �����!J   

 
Integrating  we get   	 = ��� + +��� 	+ * ………         (2) 

 
As  J  cannot be  eliminated  between (1)  and  (2)   , therefore  (1)   and  (2)  
constitutes the general  solution of the given equation in parametric  form .  
 
Example 5: 	 Find the general and singular solution of   	� − 1 − J� = 0 
Sol: It is clear that the equation is solvable for 	, to get  	 = �1 + J�   ………….        (1) 
 
By differentiating  with respect to � we get 
 !	!� = 12 1�1 + J� ⋅ 2J !J!� 

 

or    	J = ��+��� ���� 
 

or   J ó1 − +�+��� ����ô = 0 

 

giving   p = 0   or 1 − ��+��� ���� = 0  …………..     (2)  

 
Taking the second factor we have  
 

 1 − +�+�õ� �õ�� = 0   or    
���� = �1 + J�   or  

���+��� = !�	 
 
Integrating we get  sinh=+ J = � + c 
or  J = sinh(� + *)  
Putting this value of J  in  (1)  we get   
 	 = �1 + sinh�(� + *) = cosh(� + *) ……….(3) which is  is a general 
solution  of  (1)  
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(D) Lagrange’s Equation 
  
An equation of the form   	 = ��(J) + 4(J)    where  � and 4   are  functions 
of   J  only  are known as  Lagrange’s  equation .  
 
Being the special case of  the form  described in  (C)  ,  we can  follow the same 
process.  
Given  	 = ��(J) + 4(J)    ………       (1)  
 
Differentiating  w.r.t  �  we get  
 J = �(J) + ��­(J) ���� 	+ 4­(J) ����   
 

or  R�	�­(J) + 4­(J)S ���� 	+ �(J) − J = 0  which is  linear   in  � and  J and 

can be solved to get the solution as   
 � = Á(J, *) ……………..        (2) 
 
The general  solution of (1)  can   be  found  by eliminating  J  between  (1)  and  
(2) . 
 
If J  cannot  be eliminated  between  (1)  and  (2)   then   from   (2)  we  replace 
the value   of  �  in   (1)  to get   	 = u	(	J. *	)   ……….(2)  
 
In this  case  (2)  and  (3)  constitute  the general  solution  in  parametric  form.  
 
we state below  a  special  case  of  Lagrange’s  equation   namely  
 
(E) Clairaut's equation: An  equation of the  form  	 = J� + �(J)  
 
where  �(J)  is  a  function  of  J  only . The method  to solve these  kind of  
equations  will be  followed  with the same  method  as  in  Lagrange’s  
Equation . Given    	 = J� + �(J)   ……      (1)  
 
Differentiating  w.r.t  �  we get   we get   
 J = J + � ���� + �­(J) ����  
 ⇒	 ���� 	R	� + �­(J)S = 0 ………       (2) 
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Taking   
���� = 0  gives   J = *   

 
and  putting  in  (1)   gives the general  solution  as 
   ¥ = ö§ + Û(ö)   ……..         (3)  
 
which is  same as   replacing  J in  the  original  equation with  an  arbitrary 
constant  * .  
From  (2)  if we take     � + �­(J) = 0  ………     (4)  
  
and   eliminate  J  between  (1)  and  (4)   , we shall  arrive at  a   singular  
solution    which cannot be  obtained  from  the  general  solution   (3)  .  
                      ………………………………………………………. 
 
Example 6: Solve the  equation   	 = J�	 + (J� − 1) . 
 
Sol: Given   	 = J�	 + (J� − 1)    

 The general  solution  is  given  by    	 = *�	 + (*� − 1)    
 

Example 7: Solve the equation : 	 = 2�	­ − 3(	­)� 
 
Sol.   Let  	­ = J, the equation is written in as : 
 	 = 2�J − 3J�  ………….(1) 
Which is in Lagrange’s  form . 
 
Differentiating both sides, 
 !	!� = 2� !J!� + 2J − 6J!J!� 

 J = 2� !J!� + 2J − 6J!J!� 

 ⇒ ���� + �� � − 6 = 0  ………..(2) 

 
which is  a linear equation in  �  and  J . The integrating factor is N(J) = exp	 �� 	 2J !J� = exp	(2 log J) = exp	(log J�) = J� 
 
The general solution of (2)  is given by 
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 �J� = � 	 J� ⋅ 6!J + p = 2J� + p ⇒ � = 2J + µ��  ……………….       (3) 

 
As  J  cannot  be eliminated between  (1)   and  (3)  , therefore we  replace the 
value of   � from  (3)   and put in  (1)   , we get 
 	 = J� + �µ�   ………………        (4) 

Equation  (3)  and  (4)   together  form  the general  solution of the given 
equation .  

 
Example 8: Find the general solution of  the equation  	 = �� �J + eõ  ……………..        (1) 

 
Sol. The given equation is a  Lagrange equation 
 

Differentiating both sides with respect to �  and  putting 
���� = J  

 

 we have    J = ��J + �� � ���� + T� ���� 
 

  or    − +�J = ��� � + T�� ���� 
 

  or    
���� + �� � = − �� T�,				J ≠ 0.  …………..     (2) 

 
The integrating factor for linear equation is È(J) = exp∫ ��!J = exp3 log J = exp log J� = J�.  
 
Therefore,  the  general solution of (2)  is �J� = ∫− �� T� × J� dp = 	−2∫J�T�!J  

 
      = −2eõ(J� − 2J + 2) + c.   after integrating by parts twice .  
 ⇒ 		� = − �Ñù�� (J� − 2J + 2) + ���.  ………….     (3) 

 
As  we cannot eliminate J between  (1)  and   (3)  
we substitute the value of �    from  (3)   in  (1)  
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we get    	 = ��J �	− �Ñù�� (J� − 2J + 2) + ���.		� + T�	 ………….  (4) 

Equation  (3)  and   (4)  together  form  the general  solution of  (1)  
 
(F) Singular Solution  
 
A singular solution is a solution not obtainable by assigning particular values to 
the  arbitrary constants of the general solution. It is the equation of an envelope 
of the family  of curves represented by the general solution. 
Let  Û(§, ¥, Ô) = ë   be the given  differential  equation  and let  ú(§, ¥, ö) = ë  
be its  general solution . 
 

(i)  A relation 		u(	�, 	) = 0		obtained  by eliminating  J  between the equations  
 �(�, 	, J) = 0  and  

��� 	�(�, 	, J) = 0   is  the  Ô −discriminat of the given 

equation . 
 
(ii)  If the given equation is a quadratic equation in  J  of the form   
            6J� + 7J + p = 0   then    
 
     u(	�, 	) = 7� − 46p = 0  is  the  Ô −discriminat of the given equation 
 
(iii)   A relation û(�, 	) = 0  obtained by eliminating  *  between the equations  

    8(�, 	, *) = 0  and  
��� 	8(�, 	, *) = 0   is  the  ö −discriminat of the given  

equation. 
 
(iv)  If the general solution  8(�, 	, *) = 0  is a quadratic equation in  *  of the 
form   6*� + 7* + p = 0   then    û(	�, 	) = 7� − 46p = 0  is  the  ö −discriminat of the given equation 
 

Determination of Singular Solution 
 
(v)  If the p-discriminant   u(�, 	) = 0  satisfy the given  differential  equation  �(�, 	, J) = 0  then   u(�, 	) = 0  is a singular solution  . If it does not satisfy,  
then resolving u(�, 	) = 0		 into simpler factor , the part that satisfy the 
differential equation  is a  singular solution .  
 
If  the differential equation can be written as the product  of linear factors in  Ô    or  If the  differential equation is of first degree in Ô , then  there  
will be no singular solution. 
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(vi)  If the c-discriminant   û(�, 	) = 0  satisfy the given  differential  equation  �(�, 	, J) = 0  then   û(�, 	) = 0  is a singular solution  . If it does not satisfy , 
then resolving û(�, 	) = 0		 into simpler factor , the part that satisfy the 
differential  equation  is a  singular solution .  
 

Example 9: Find the general and singular solution of the equation  
                      J� + 4�p − 4	 = 0 
 
Sol : The given equation can be written as 	 = J� + +� J� ……………        (1) 

 
which is in the Clairaut's form  and hence the general solution is given by y = cx + ���  ……………….        (2) 

 
To find a singular solution , differentiating  (1)  partially  w.r.t   J  we get �� + � = 0   or  J = −2�  …………….      (3) 

 
Eliminating  J between  (1)  and  (3)  we get 	 = −2�� + �� = −�� 
 
which is clearly  a solution of   (1)  . Since it contains no arbitrary constant , 	 = −2� is a singular solution . 

 
Example 10: 	 Find the general and singular solution of   	� − 1 − J� = 0 
 
Sol: It is clear that the equation is solvable for 	, to get  
 	 = �1 + J�   ………….        (1) 
 
By differentiating  with respect to � we get 
 !	!� = 12 1�1 + J� ⋅ 2J !J!� 

 

or    	J = ��+��� ���� 
 

or   J ó1 − +�+��� ����ô = 0 
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giving   p = 0   or 1 − ��+��� ���� = 0  …………..     (2)  

 
Taking the second factor we have  
 

 1 − +�+�õ� �õ�� = 0   or    
���� = �1 + J�   or  

���+��� = !�	 
 
Integrating we get  sinh=+ J = � + c 
or  J = sinh(� + *)  
Putting this value of J  in  (1)  we get   
 	 = �1 + sinh�(� + *) = cosh(� + *) ……….     (3) 
 
which is  is a general solution  of  (1)  
From  (2)  , if  we take the first  factor   we get  J = 0 
and  from  (1)  we get   y = 1 which is clearly a solution of   (1) 
which cannot be obtained by giving a particular value to c in (3). 
Hence  	 = 1  is a  singular solution .  
 
Example 11:  Solve the equation J� + 	� = 1. 
 
Sol. Given J� + 	� = 1. 
We rewrite the above equation as   J� + o ⋅ p + (	� − 1) = 0  …………..      (1) 
 
which is quadratic  in  J	. 
Solving  we get  	J = ���� = ±(1 − 	�)k�		 or  	!� = ± +�+=�� !	. 

 
Integrating, 	� + * = ±sin=+	 		 or 	sin=+	 	 = ±(� + *)	  
or 		 = sin	(� + *)  which is the general  solution .  
From (1), the J-discriminant relation is 0 − 4 ⋅ 1 ⋅ (	� − 1) = 0   or 		� − 1 = 0   or 	(	 − 1)(	 + 1) = 0. 
Now, 	 − 1 = 0 ⇒ J = 0.  
 
Substituting  	 = 1 and J = 0   in   (1)  we have  M. ü. � = ý. ü. � = 0  
Hence 	 = 1 is a singular solution.  
 
Similarly we see that 		 = −1, p = 0 satisfy  equation (1). 
i.e  	 = −1	  is also a singular solution .  
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Hence 	 = sin	(� + *)   is a  general solution and 	 = ±1 are singular 
solutions. 
 
Example 12: Solve the equation   4J� = 9� 
 

Sol.  From the given equation  we have  	J = ���� = ± ��√�	 ……..  (1) 

 	 ⇒ !	 = ± ��√�!�	 
 Integrating we get   	 + * = ±���	  
or 	(	 + *)� = ��	 or 	*� + 2	* + (	� − ��) = 0 …………..   (2) 
 
which is is a quadratic equation in *.  
Now the  *-discriminant relation is of  (2)  is  
 	4	� − 4 × 1 × (	� − ��) = 0	 or 	�� = 0	 or 	� = 0 ⇒ +� = ���� = 0  

 
The given equation an be written as   

                   
��� = �

�  
 

Putting  � = 0  , 
+� = 0   we see that  M.ü. � ≠ ý.ü. � 

i.e  � = 0  does not satisfy the given  equation .  
Hence there is no  singular solution  to the given   equation .  
 
Exercises 
 
Find the general and singular solutions (if any )  of the following equations .  
 
1. J� = pT�� 

 
2. 4�J� = (3� − 4)� 

 
3. 	(	 − 2)J� − (	 − 2� + �	)J + � = 0 

 
4. J�(4 − ��) = 1 − 	� 

 
5. 3J�T� + 1 = J� 

 
6. �J� = 	J + 	 
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7. 	J� + (� − 	)J − � = 0 
 

8. �J� − 2	J + 2� = 0 
 

9. 	�(1 + 4J�) − 2J�	 − 1 = 0 
 

10. J� = 	 − � 
 

11. �J� − 2	J + 4� = 0 
 

12. �	 �	 − � ����� = � + 	 ���� 
 

13. 	 = �J − J� 
 

14. 	 = �J + 5J� 
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Chapter-4 
 

Linear Differential Equations with  Constant 
Coefficients 

 
 
Introduction:  Linear differential equations with constant coefficients are a 
special class of linear differential equations where the coefficients of the 
derivatives are constants . These equations are of the form:  
 ������ + �+ ��Úk����Úk + �� ��Ú�����Ú� +⋯……… .+ $�Úk���� + �-	 = K(�)  ……………(1) 

 
where K(�)  is  a function  of  � . 

Writing   L = ��� 		 , L� = ����� 		 , ……. 
 
Equation  (1)  can be re-written  as  (L- + �+L-=+ + ��L-=� +⋯ . . �-=+L + �-)	 = K(�)  …    (2)  
 
or  �(L)	 = K(�)   where   �(L) = (L- + �+L-=+ + ��L-=� +⋯ . . �-=+L + �-)    is   ( as had been seen 
earlier)  a linear  operator  satisfying the following :  
 
Sum rule:  If J(L) and K(L) are polynomial operators, then for any  function N, [J(L) + K(L)]N = J(L)N + K(L)N  
 
Linearity rule:   If N+ and N� are functions, and *. constants, J(L)(*+N+ + *�N�) = *+J(L)N+ + *�J(L)N�  
 
Multiplication rule:   If J(L) = 4(L)ℎ(L), as polynomials in L, then J(L)N = 4(L)(ℎ(L)N)  
 
Substitution rule:   
     J(L)T$� = J(�)T$�  
 
If  K(�) = 0   then  equation  (2)  reduces  to  (L- + �+L-=+ + ��L-=� +⋯ . . �-=+L + �-)	 = 0   ………….  (3) 
 
or  �(L)	 = 0  which is called a homogeneous part of   equation  (2) .  
Before we proceed to the general  solution of  (3) ,  we shall discuss first a few  
particular type of  homogeneous  equation  below :  
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 (i)  Solution  of   (�−�)¥ = ë   . 
 

We have  (L −�)	 = 0 ⇒	 ���� = �	 

 ⇒ +� !	 = �!�      and on integrating both sides  we get log 	 = �� + % 
 ⇒ 	 = T(���°) = T°T�� = *T�� 
 
(ii)  Solution of  (�−�)ì¥ = ë  
We rewrite the above equation as 
 (L −�)(L −�)	 = 0   ……..(4) 
 
Let    (L −�)	 = n …………(5) 
 
Then  (1)  becomes   (L −�)n = 0 
Using  (/)  we get  n = *�T��   and  putiing in       (5) 
we get  (L −�)	 = *�T�� 
 ⇒	 ���� −�	 = *�T��   ………………….      (6) 

 
which is  linear with   integrating factor   È(�) = exp∫−�!� = T=�� 
The  solution of  (6)   is then  given by 
 	T=�� = *�∫ T=��T��!� + *+ = *�� + *+ ⇒ 	 = (*+ + *��)T�� 
 
we shall state the generalized form ( without further proving )  that 
 
(iii)  The general  solution of the equation  (�−�)Þ¥ = ë  is given by ¥ = (öÝ + öì§ + ö�§ì +⋯ . öÞ§Þ=Ý)Ó�§ 
where   the  *.′c  are  arbitrary   constants  . 
 
Complimentary Function 
 
The general solution of the reduced homogeneous equation  
   (L- + �+L-=+ + ��L-=� +⋯ . . �-=+L + �-)	 = 0  ……….   (7) 
or  �(L)	 = 0 is called the Complimentary Function  (C.F)   
where  �(L) = (L- + �+L-=+ + ��L-=� +⋯ . . �-=+L + �-) Consider the 
equation   �- + �+�-=+ + ���-=� +⋯ . . �-=+� + �- = 0 ……………. (8) 
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called the auxiliary/characteristic  equation  of   (7)  or  (2) .  
 
Equation (8)  being a polynomial   equation  of degree  )  will be having  )  
roots . 
 
Suppose that  �+, ��, ��, … . . �-   be the roots  of  (8).  
 
Then  �(L) = 0  can be written  as  
 �(L) = (L −�+)(L −��)… . . (L −�-) = 0	 and  hence  equation  (7)  can 
be written as  
 (L −�+)(L −��)… . . (L −�-)	 = 0	 …………    (9) 
 
First we notice that the factors in  equation (8)  are  obviously  commutative  

since L = ��� , (for example � ��� − 2� � ��� + 3�	 = � ��� + 3� � ��� − 2�	       )  

and  hence can  be  shuffle  in any order .  
 
Now    	 = *.T���   is a   solution  of   (L −�.)	 = 0 
         ⇒ (L −�.)*.T��� = 0  
 
Also   �(L)*.T��� = (L −�+)(L −��)… . . (L −�-)*.T��� 
 
         = (L −�+)(L −��)… . (L −�.=+)(L −�.�+)… (L −�-)(L −�.)*.T���	  
         = 0                  …………..(10) 
 
Case I: If  all the roots  of  equation  (8)  are equal  then the given equation 
takes the form (iii)  as  discussed in the previous  section .   
 
Case II: Suppose  all roots  are  distinct .  Let  *+T�k�	, *�T���	, …… . *-T���  
be the individual  solution  to each  of the  equation  (L − �.)	 = 0  
 
Let   	 = (*+T�k� +		*�T��� +	…… .+	*-T���) 
 
Now  �(L)	 = �(L)(*+T�k� +		*�T��� +	…… .+	*-T���) = ∑ �(L)*.T���	-.	+ = 0  as   each  term  is  zero  as  seen  from          (10) 
 
Also *+T�k� +		*�T��� +	…… .+	*-T���  consists  of   )  arbitrary  constants.  
 
Hence  p. s = *+T�k� +		*�T��� +	…… .+	*-T���     is the general  solution 
of   the homogeneous   equation  (7)  
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Case III: If  some of the roots  are  repeated  then  equation (7)  can be  written 
as  �(L)	 = (L −�+)
k(L −��)
� … . . (L −�°)
�	 = 0   where   ∑ '. = ) . 
As  seen from  (iii)  in the previous section  , each individual equation  
 (L −�.)
� 		 = 0		will have  solution of the form   R*.+ + *.�� + *.���…+*.
��
�=+ST���  and the general  solution of  (7)    is  given by  
 
             p. s = ∑ R*.+ + *.�� + *.���…+ *.
��
�=+ST���°.	+ 	  
 
Particular Integral ( P.I)   
 
The solution of the equation �(L)	 = K(�)  which is not part of the  
complimentary function is called the particular integral (P.I) . Let  	 = n  be  as 
particular solution . 
 
Then  �(L)n = K(�)  ⇒ n = +E(²) K(�)  
or  &. A = +E(²) K(�)   
where   

+E(²) K(�)    is defined to be that function of  x which when operated  

upon by 
 
 f (D) gives  K(�).	   
For instant , 

Ý
�Õ(§) = ∫ Õ(§)¨§		  

 
General  Solution of the equation    �(L)	 = K(�)   :  
 
Given  an equation  �(L)	 = K(�) ……………..          (11)  
 
We have just seen the solution of the reduced homogeneous  equation   
                        �(L)	 = 0  and the particular integral .  
 
Let  the complimentary function of (11)  be   p. s = N   and the particular 
integral  be  &. A = n  . 
Therefore �(L)N = 0	  and  �(L)n = K(�) 
Consider the relation  	 = N + n 
 
We have  , �(L)	 = �(L)(N + n) = �(L)N + �(L)n = 0 + K(�) = K(�) 
Since  (N + n)  consists of  )  arbitrary  parameters , it becomes the general 
solution of  equation (11) .  
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Summary: The general  solution of the equation  �(L)	 = K(�) is given by  	 = p. s + &. A	  
                                         …………………………….. 
Examples 1: Find the complimentary  function of the equation  (L − 3)�(L −1)	 = sin � 
 
Sol: The auxiliary  equation of   the given  equation is given by  (� − 3)�(� − 1) = 0	 
whose   roots  are  �+ = 3	, �� = 3	, �� = 1 
Therefore  p. s = (*+ + *��)T�� + *��T�  where  *+, *�	, *�  are  arbitrary  
constants .  
 
Examples 2: Find the complimentary  function of the equation 

             
������ − 6 ������ + 12 ���� − 8	 = T� 

 
Sol: The given equation can be written as  
 (L� − 6L� + 12L − 8)	 = T� 
The characteristic  equation of   the given  equation is given by 
 (�� − 6�� + 12� − 8) = 0 
or  (� − 2)� = 0 
whose   roots  are  �+ = 2	, �� = 2	, �� = 2 
Therefore  p. s = (*+ + *�� + *���)T�� 
where  *+, *�	, *�  are  arbitrary  constants . 
 
Examples 3: Find the complimentary  function of the equation 

             
������ + 5 ������ + 3 ���� − 9	 = �� + 1 

 
Sol: The given equation can be written as  (L� + 5L� + 3L − 9)	 = T� 
The characteristic  equation of   the given  equation is given by (�� + 5�� + 3� − 9) = 0 
or  (� + 3)�(� − 1) = 0  whose   roots  are  �+ = −3	, �� = −3	, �� = 1 
Therefore  p. s = (*+ + *��)T=�� + *�T� 
where  *+, *�	, *�  are  arbitrary  constants . 
 

Example 4:  Solve the differential equation: 
������ − 8 ���� + 15	 = 0 

Sol: Given   (L� − 8L + 15)	 = 0 
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The  Characteristic equation is: �� − 8� + 15 = 0 ⇒ (� − 3)(� − 5) = 0 
 ⇒ � = 3,5 ∴ 		 C.F. = *+T�� + *�T��  
 
Therefore  , the general solution is given by   
 	 = C.F 
or  	 = *+T�� + *�T��  
 
Example 5  Find the Complimentary Function of the  differential equation 

                    
�Ð���Ð − 2 ������ + 	 = 0 

 
Sol:  Given  (L� − 2L� + 1)	 = 0 
 
The Characteristic equation is given by   
      �� − 2�� + 1 = 0 ⇒ (�� − 1)� = 0 ⇒ (� + 1)�(� − 1)� = 0 
whose roots are  1,1,−1,−1 ∴ 			C.F. = (*+ + *��)T=� + (*� + *��)T� 
 
Note on Complex roots:  We know that complex  root  of an equation   and its 
conjugate always  occur  together .  
 
Suppose  *+T�k�  ,   *�T���  be parts of the complimentary  function  , where  �+  is a complex number  and  �� is the conjugate  of  �+  . 
 
Then  �+ = � + /�	  ,  �� = � − /�  where  /� = −1	 .  
Now   (	*+T�k� + *�T���) = R	*+T($�.«)� + *�T($=.«)�S 
            = T$�R*+T.«� + *�T=.«�S 
     
Using  Euler's formulas : 
 T.�� = cos	(��) + /sin	(��) T=.�� = cos	(��) − /sin	(��) 
 cos	(��) = Ñ����ÑÚ����   sin	(��) = Ñ���=ÑÚ����?   
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We have  (	*+T�k� + *�T���) = T$�R*+T.«� + *�T=.«�S 
 
                 = T$�[*+(cos �� + / sin ��) + *�(cos ��	 − / sin ��)	]		   
                 = T$�{(*+ + *�) cos �� + (*+/ − *�/) sin ��}	  
                   = T$�(	6 cos �� + 7 sin ��)	 
 
where  6	 = *+ + *�		, 7 = *+/ − *�/   are  arbitrary  constants .  
If  � = 0   , then  �+		,��  are  purely  imaginary   
i.e  �+ = /�			, �� = −/�   
 
i.e The equation is of or  contains the form  (L� + ��) . 
In this case  , the C.F   is  given  by  ( or  contains   the part )   (6 cos �� +7 sin ��	)	.	 
 
Example 6: Find the C.F of the equation  (L� + 4)	 = � . 
 
Sol: The auxiliary  equation of   the given  equation is given by  
           �� + 4 = 0  whose roots  are  ±2/  
Therefore  p. s = 6 cos2� + 7 sin 2� 
 
Example 7: Find the C.F of the equation  (L� + 25)(L − 3)	 = �  . 
 
Soln: The auxiliary  equation of   the given  equation is given by  
 
           (�� + 25)(� − 3) = 0  whose roots  are  5/		, −5/		, 3  
Therefore  p. s = 6 cos5� + 7 sin 5� + pT��  
 
Method to find the Particular Integral   
 
Theorem: For a function K(�)	  of  �  , we have    

  
+²=$ K(�) = T$� ∫K(�) T=$�!�   . 

 

Proof :  Taking   	 = +²=$ K(�) ⇒ (L − �)	 = K(�)   ⇒ ���� − �	 = K(�)  ………..    (1) 

 
which is a linear  equation  of  first order .  Its  integrating factor  is  
          È(�) = T∫=$�� = T=$�  
 
So  the solution of  (1)  is  given  by   	T=$� = ∫K(�) T=$�!�  
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or  	 = T$�∫ K(�)T=$�!�   
 

i.e  
+²=$ K(�) = T$� ∫K(�) T=$�!�    

 
Theorem: For a function K(�)	  of  �  , we have     

 
+²�$ K(�) = T=$� ∫K(�) T$�!�   .  

 
Proof : As  above .  
 
A repeated application of the above formulas  gives  
 

Theorem:  For any positive integer  '  we have  ,   
+(²=$)
 T$� = �



! T$�  
 

Theorem: If  �(�) ≠ 0  then  
+E(²) T$� = Ñ��E($)	 

 
Proof.    Let 	�(L) = L- + *+L-=+ + *�L-=� +⋯+ *-=+L + *-. 
We have,  
 
  	LT$� = �T$�, 	L�T$� = ��T$�, 	 … , 	L-=+T$� = �-=+T$�, 	L-T$� = �-T$�. 
 ∴ �(L)T$� = (L- + �+L-=+ + ��L-=� +⋯ . . �-=+L + �-)T$�  
 = (�- + �+�-=+ +⋯+ �-=+� + *-)T$� = �(�)T$�  
 �(L)T$� = �(�)T$� 
 ⇒ T$� = +E(²)�(�)T$�  
 

 or    T$� = �(�) +E(²) T$� 
 

  
+E(²) T$� = +E($) T$�  

 
Theorem:  If  �(L)	  can be expressed as a function of  L�  say  �(L) = 8(L�)  
                    and  8(−��) ≠ 0   Then 
 

                   
+�(²�) sin �� = +�(=$�) sin ��			 , +�(²�) cos	 �� = +�(=$�) cos ��		  . 

 
Theorem:  If  �(L)	  can be expressed as a function of  L�  say  �(L) = 8(L�)  
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with  8(−��) = 0   Then �(L)	 has a factor of the form (L� + ��)   
    and   (i)   

+²��$� sin �� = �� ∫ sin �� !� = − ��$ cos �� 

            (ii )    
+²��$� cos �� = �� ∫ cos�� !� = ��$ sin �� 

 
The proof of the above theorem is done by taking  sin �� =	Ñ���=ÑÚ����. 			 , cos �� = Ñ����ÑÚ����    and  use the previous  two  

theorems.  
 
Using the above theorems and  more that we shall stated if needed , we list 
below a  quick summary on the methods to find the particular integrals of some 
of the standards functions  K(�)  .  
 
Summary 
 
(A) To find the P.I of the equation  �(L)	 = K(�)   where  K(�) = T$� .  
   
Case I:  If  �(�) ≠ 0  then  &. A = +E(²) T$� = +E($) T$�  
   
Case II: If  �(�) = 0  then  �(L) = (L − �)
8(L)   where  8(�) ≠ 0 

 In this  case  , &. A = +E(²) T$� = +(²=$)
�(²) T$� 
                     = +�($) × +(²=$)
 T$� = +�($) × �



! 	T$�  
 
(B) To find the P.I of the equation  �(L)	 = K(�)   where  K(�) = sin ��	 or cos ��	.  and  �(L) = 8(L�) with   8(−��) ≠ 0   Then 

       &. A = 	 +�(²�) sin �� = +�(=$�) sin �� 			:'	&. A = 		 +�(²�) cos	 �� =+�(=$�) cos ��		 . 
 
(C) To find the P.I of the equation  �(L)	 = K(�)   where  K(�) = sin ��	 or cos ��	. and  �(L)  cannot be  expressed as a function  of  L� .  
 
In this case  , we expressed  L� = LL�	, L� = L�L�	, L� = L�L  and so on , 
so that  �(L) = 8(L�, L) . replacing L�  by  −��   will  make the   
denominator linear in L.  
 
Now rationalize the  denominator and  substitute L� = −��.  the numerator will 
become a   linear factor in L .  
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       i.e   8(−��, L) = %(L +�)			:'		%(L −�)  
       &. A = 	 +�(=$�,²) sin �� = +°(²±�) sin �� = +° ²∓�(²�=��) sin �� = 			 +° ²∓�(=$�=��) sin ��  

 

      :'	&. A = 		 +�(²�) cos	 �� = +°(²±�) cos �� = +° ²∓�(=$�=��) sin ��		   
      
      which can be completed  by differentiation .  
 
(D) To find the P.I of the equation  �(L)	 = K(�)   where  	 
       K(�)  is a polynomial  in  � .  
 
In this case  , we express  �(L) = %R1 ± 8(L)S   
 

so that  &. A = +E(²) K(�) = +°R+±�(²)S K(�) = +° R1 ± 8(L)S=+K(�) 
 

Expanding  R1 ± 8(L)S=+  by binomial  theorem  and differentiate  will 
complete the &. A. 
 
Note: (1 + �)=+ = 1 − � + �� − ��… .. 
          (1 − �)=+ = 1 + � + �� + ��… .. 
 
(E) To find the P.I of the equation  �(L)	 = K(�)   where  	  K(�)  is  of the 
form T$�n(�)  for some function n(�)  .   
 

In this case  , we use  &. A = +E(²) T$�n(�) = T$� +E(²�$) n(�)   and   
+E(²�$) n(�)  

can be completed by some other methods .   
 
(F) To find the P.I of the equation  �(L)	 = K(�)   where  	  K(�)  any other 
form not  mention above .  
 

In this case  , resolve  
+E(²)  into partial fractions with each denominators as 

linear factor  in L  and use the rule  

     
+²�$ K(�) = T=$� ∫K(�)T$�!� 		:'	 +²=$ K(�) = T$� ∫K(�)T=$�!�			 

  
(G) To find the P.I of the equation  �(L)	 = �K(�)   ,  
      In this case , Use the rule:  
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+E(²) R�K(�)S = � +E(²) K(�) − �¬(�)R�(�)S� K(�)      where  �­(L) = ��² �(L) 

 
Example 8: Solve (L� + 4L + 3)	 = T=��. 
 
Sol: Here Characteristic equation is 
 �� + 4� + 3 = 0  ⇒ �� + 3� +�+ 3 = 0  ⇒ �(� + 3) + 1(� + 3) = 0  ⇒ (� + 3)(� + 1) = 0  
 
Therefore the roots  are  �+ = −3	, �� = −1 ⇒ 	p. s = p+T=� + p�T=��,    where p+ are p� are arbitrary constants. 
 
Particular Integral (P.I.)  is given by  P. I = +E(²) K(�) = +²���²�� T=�� = +(=�)���(=�)�� T=�� = +�=ò�� T=�� = −T=�� 
  
The general solution of the given equation is given by 	 = p. s + &. A  
or  	 = p+T=� + p�T=�� − e=��  

     
Example 9.Solve (L� + 6L + 9)	 = 3T�� 
 
Sol: The auxiliary equation is :   �� + 6� + 9 = 0 
 or  (� + 3)� = 0	 ⇒ 		m = −3		, −3	  ∴ 		p. s = (*+� + *�)T=�� 
 &. A = � 1(L� + 6L + 9)�3T�� 
 = � +(�)���(�)��� T�� = ++� T��  
 
The general solution is  :    y = C.F + P.I 

or  y = (*+� + *�)T=�� + ++� T��  
 
Example 10: Solve (L� − 4L + 4)	 = T��. 
 
Sol: Here Characteristic equation is   
      �� − 4� + 4 = 0 
  or  (� − 2)� = 0  
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The roots are  	2, 2  
Therefore  p. s = (*+ + *��)T�� 
Here �(L) = (L� − 4L + 4) ⇒ �(2) = 0	 
 &. A = +E(²) K(�) = +(²=�)� T�� = ���! 	T�� = ��� T��  
 
Therefore , the genral solution of the given equation is given by  	 = p. s + &. A  
or  	 = (*+ + *��)T�� + ��� T��  
 
Example 11 . Solve the differential equation: (L� + L − 2)	 = sin	 � 
 
 Sol: The  Auxiliary equation is given by  �� +� − 2 = 0 
 or		(� + 2)(� − 1) = 0 ⇒ � = −2,1 

C.F. = *+T=�� + *�T� 
 

P.I. = +E(²)s(�) = +E(²) sin	 � = +²��²=� sin	 �  

 
putting L� = −1� = −1 

P.I = +²=� sin	 � = ²��²�=� sin	 �,    Rationalizing the denominator 

 = (²��)�?¢	 �=+Y 		,											 Putting L� = −1  

 

 = =++Y (Dsin � + 3 sin �) = =++Y (cos � + 3 sin �)         :   ! = ��� 
 

Example 12: Solve the  differential equation    :  (L� − 4)	 = sin	 4� 
 
Sol: The Characteristic equation is �� − 4 = 0  whose roots are   � =	−2	, 2  
 
Therefore complementary function (C.F.) is p. s = p+T=�� + p�T��  
Particular Integral (P.I.)  , 

  &. A = +²�=� sin	 4� = +=��=� sin	 4�	 = − +�Y sin	 4�   

Hence the general solution is given by  
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	 = p. s + ê. � = ºÝÓ=ì§ + ºìÓì§ 	− Ýìë ��ð	�§	  
 
Example 13: Solve (L� + L + 1)	 = sin	 2� 
 
Sol: 
 
The auxiliary equation is :  �� +� + 1 = 0 ⇒ � = −1 ± /√32 = �	− 12 ± /√32 � 

 

Therefore    C.F = TÚ�� Â*+cos	 �√��� � + *�sin	 �√��� �Ã 
 

P.I = � +(²��²�+)� sin	 2� = � +(=��²�+)� sin	 2�	 = � +²=�� sin	 2� 

 

     = � ²��²�=�� sin	 2�	 = �²��=+�� sin	 2� = − ����	 ��+� − ��?¢	 ��+�  

 
     The general solution is given by :  	 = p. s + P.I 
 

     or   	 = TÚ�� Â*+cos	 �√��� � + *�sin	 �√��� �Ã − ����	 ��+� − ��?¢	 ��+�   

 
Example 14: Solve (L� − 3L + 2)	 = sin	 3�. 
 
Sol.  The  characteristic equation is  :  �� − 3� + 2 = 0   giving � = 1.2 

 
C.F. = *+T� + *�T��,					*+, *� being arbitrary constants.  
 P. I = +²�=�²�� sin	 3� = +=��=�²�� sin	 3�  

 = − +�²�� sin	 3� = − (�²=�)(�²=�)(�²��) sin	 3�  

 = − (�²=�)
�²�=�� sin	 3� = − (�²=�)

�(=��)=�� sin	 3�  

 = ++�Y (3L − 7)sin	 3� = ++�Y (9cos	 3� − 7sin	 3�)  ∴ 	 Solution is 		 = *+T� + *�T�� + ++�Y (9cos	 3� − 7sin	 3�)  
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Example 15: Solve (L� − 6L + 8)	 = (T�� − 1)� + sin	 3�. 
 
Sol. The auxiliary equation is L� − 6L + 8 = 0  whose roots are � = 2,4  ∴ 	 C.F. = *+T�� + *�T�� 

P.I. corresponding to (T�� − 1)� = +(²=�)(²=�) (T�� − 2T�� + 1) 
 = +(²=�)(²=�) T�� − 2 +(²=�)(²=�) T�� + +(²=�)(²=�) TY.�  
 	= +²=� +(�=�) T�� − 2 +(²=�)(�=�) T�� + +(Y=�)(Y=�) TY.� = +� �T�� + �T�� + +ò  
 

P.I. corresponding to sin	 3� = +²�=�²�ò sin	 3� = +=��=�²�ò sin	 3� 

 = − 16L + 1 sin	 3� = − 6L − 136L� − 1 sin	 3� = − (6L − 1)sin	 3�36(−3�) − 1  

 = 1325 (18cos	 3� − sin	 3�) 
 ∴ The general solution is 	 = p. s + &. A  
 		 = *+T�� + *�T�� + �� T�� + �T�� + +ò+ +��� (18cos	 3� − sin	 3�)  
 

Example 16: Solve the differential equation  
������ − 2 ���� + 10	 = T�� 

 
Sol : ⇒ (L� − 2L + 10)	 = T�� 
The characteristic equation is: �� − 2� + 10 = 0 
 

whose roots are  � = �±√�=�Y	� = 1 ± 3/	  
C.F. = T�(*+cos	 3� + *�sin	 3�) 
 

 P.I. = 1�(L)s(�) = 1�(L) T�� = 1�(2) T��,    by putting L = 2 = +��=�(�)�+Y T�� = ++Y T��  
Complete solution is: 	 = C.F. + P.I 
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⇒ 	 = T�(*+cos	 3� + *�sin	 3�) + ++Y T��  
 
Example 17: Solve the differential equation: (L� + 2L + 1)	 = cos�	 � 
 
Sol:  The auxiliary equation is: �� + 2� + 1 = 0 

 or  (� + 1)� = 0  whose roots  are  � = −1,−1   
Therefore  C.F. = T=�(*+ + *��)  
 

 P.I. = +E(²)s(�) = +E(²) cos�	 � = +²���²�+ �+����	 ��� �   
 = +� +(	²���²�+)1 + +� +(	²���²�+) cos	 2�   

 = +� +(	²���²�+	) TY� + +� +(	²���²�+) cos	 2�   …………..(1)  

 

Now 
+� +(	²���²�+	) TY� = +� +Y�Y�+	) TY� = +�	    

 

and   
+� +(	²���²�+) cos	 2�			 = +� +(	=���²�+) cos	 2�    

       

=
12 1	(	2L − 3) cos	 2� 

 = 12 2L + 3(	4L� − 3�) cos	 2�, Rationalizing the denominator  

 +� �²��(	�(=�)=��) cos	 2�                    ,  Putting L� = −4 

 
 = (2L + 3)cos	 2�−50  

 ∴  P. I. = 12 − 150 (−4 sin 2� + 3 cos 2�) 
  
Now 	 = C.F. + P.I 
 ⇒ 	 = T=�(*+ + *��) + +�− +�Y (−4sin	 2� + 3cos	 2�)   
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Example 18: Solve the differential equation: (L� − 6L + 9)	 = 1 + �� 
 
Sol: The  characteristic equation is: �� − 6� + 9 = 0 

or (	� − 3)� = 0  whose roots are  � = 3,3		 
Therefore  C.F. = T��(*+ + *��) 
 

P.I. = +E(²)s(�) = +²�=�²�� (1 + ��)  
 

= 
+

��+=��� ���� � (� + ��) 
 

= +
� �1 − ��²� − ²�

� ��=+ (1 + ��)  
 = +

� ó1 + ��²� − ²�
� � + ��²� − ²�

� �� +⋯ô (1 + ��)  
 = +

� Â1 + �²� − ²�
� + �²�

� +⋯Ã (1 + ��) (neglecting higher degree of  L)  

 = +
� Â1 + �²� + ²�� +⋯Ã (1 + ��)  

 = +
� 	Â1 + �� + ��� + ��Ã = +�� [3�� + 4� + 5]		   

 ∴		  The general solution is given by  	 = p. s + &. A = 	 T��(*+ + *��) +�� [3�� + 4� + 5]		   
 
Example 19:  Solve the differential equation: (L� + 4)	 = ��T�� 
 
Sol: The auxiliary equation is: �� + 4 = 0 
whose roots are  � = ±2/ 
Therefore  p. s = *+ cos 2� + *� sin 2� 
 P. I = +E(²) ��T�� = +²��� ��T��      (of the form  

ÝÛ(�) Ó�§¦(§)  ) 
 = T�� +(²��)��� ��  
 = T�� +²���²�+� ��	  
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= Ñ��+� +�+���k����k�� ��  
 

= Ñ��+� �1 + ��²+� + ²�+���=+ ��  
 = Ñ��+� ó1 − ��²+� + ²�+�� + ��²+� + ²�+��� +⋯ô��  
 = Ñ��+� Â1 − �²+� − ²�+� + ��²�+�� +⋯Ã��  
 = Ñ��+� Â1 − �²+� + ��²�+�� +⋯Ã �� = Ñ��+� Â ��+�� − +��+� + ��Ã	  
 
Therefore , the complete solution of the given equation is  	 = p. s + &. A  
or  	 = *+ cos 2� + *� sin 2� + Ñ��+� Â ��+�� − +��+� + ��Ã  
 
Example 20: Solve (L� − 4L + 3)	 = T�cos	 2� 
 
Sol:   The characteristic equation is : 
                        �� − 4� + 3 = 0 
                or  (� − 1)(� − 3) = 0 ⇒ � = 1	, 3 ∴ p. s = *+T� + *�T��  
 

 P.I = � +(²�=�²��)� T�cos	 2�    (  of the form  
+E(²) T$�n(�)  )  

 = � Ñ�(²�+)�=�(²�+)��� cos	 2� = � Ñ�=�=�²� cos 2�  

 = − +� � Ñ�²��� cos	 2� = − Ñ�� � ²=�²�=�� cos	 2�  

 = − Ñ�� Â(²=�)���	 ��=ò Ã = − Ñ�+� (−2sin	 2� − 2cos	 2�)  = Ñ�ò (sin	 2� + cos	 2�)  
 
The general solution is :  y = C. F + P.I 

or   	 = *+T� + *�T�� − Ñ�ò (sin	 2� + cos	 2�) 
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Example 21:  Solve the differential equation: (L� + 16)	 = �cos	 5� 
 
Sol: The auxiliary equation is: �� + 16 = 0 
whose roots are  � =	±4/	 
Therefore C.F. = (*+cos	 4� + *�sin	 4�)  
P.I. = +²��+� � cos 5� 	  = � +²��+� cos 5� 	+ =�²(²��+�)� cos 5�  

 = � +=���+� cos 5� + =�²(=���+�)� cos	 5�, 	            Putting   L� = −25  

 = �	���	 ��=� − �²	���	 ��ò+   

 ∴  P.I. = ����	 �=� + +Y�?¢	 �ò+ 	  
 
The general  solution is given by   	 = C.F. + P.I 

 or   	 = *+cos	 4� + *�sin	 4� + ����	 �=� + +Y�?¢	 �ò+ 	    
 
Method of Variation of Parameters 
  

Let   
������ + & ���� + v	 = ý……………………..      (1) 

 
be the given equation  .  where   &,v  are  constants . The case where &,v  are 
functions of  �  will be seen later .  
 

Suppose 	 = N		�)!			 = n   be  independent  solutions of   
������ + & ���� + v	 =0 (i.e  N		�)!		n  are  part of the complimentary  solution  of  (1)  )  

 
Therefore   N� + &N+ + vN = 0			, n� + &n+ + vn = 0…….(*) 
 
Then        	 = �N + �n ---------------------      (2)    
 

  is  also  the general   solution of  
������ + & ���� + v	 = 0 

 
Let     	 = 6N + 7n ---------------------------       (2) 
 
be the general  solution of equation  (1)  ,  where  6	, 7	  are  functions of   �. 
Differentiating  we  get  
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	+ = 6N+ + 7n+ + (N6+ + n7+) -------------      (3)    

where   6+ = �l�� .  
 
In order to simplify the process , we take one extra condition called the  
Auxiliary  Condition namely -  
                 N6+ + n7+ = 0  ------------------      (4) 
 
so that  (3) becomes   	+ = 6N+ + 7n+-----------     (5) 
 ⇒ 	� = 6N� + 7n� + 6+N+ + 7+n+ ------------     (6) 
 
 Putting the value of  		, 	+		�)!			�  from (2) , (5)  and  (6)    in  (1)  
    
we  get  (6N� + 7n� + 6+N+ + 7+n+) + &(6N+ + 7n+) + v(6N + 7n) = ý  
or  6(N� + &N+ + vN) + 7(n� + &n+ + vn) + 6+N+ + 7+n+) = ý ⇒ 6+N+ + 7+n+ = ý   ----------------------      (7)   
using     (*) 
Now , 6+  and  7+ can  be solved  from   (4)  and  (7)   to  get  6+ = �l�� = 		ℎ(�)		,					7+ = �m�� = 4(�)   say  

So that   6			�)!		7  can be obtained by integration  .  
 
A quick method to find !  and  "  
 
Solving   (4)  and   (7)   we  get   get  
 6+ = �l�� = − ¡#½¡k=½k¡ = − ¡#

$ 		 ,      7+ = �m�� = ½#½¡k=½k¡ = ½#
$    

 

(Where   ; = (Nn+ − N+n) = % N nN+ n+%   called  the Wronskian of   N  and  n )  

 
from which  we  shall get  
 6 = −∫ ¡#$ 	!� + p+  ,   7 = ∫ ½#$ !�	 + p�   
 
The general solution is then  given by  	 = 6N + 7n 
 

or          ¥ = −&∫ ¦'( 	¨§	+ ¦∫ &'
( ¨§	 

Example 22: Solve the equation  
������ + 9	 = sec �  by the method of variation 

of parameter .  
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Sol:  The auxiliary equation : �� + 9 = 0 ⇒ � =	±3/	 
        Therefore  p. s = *+ cos 3� + *� sin 3� 
 
 We have ,  N = cos �			 , n = 	 sin �	  are parts of  the complimentary function .  
 The wroskian of  N  and  n   is given by  
 

  ; = %N nN′ n′% = % 		cos � sin �− sin � cos �% = 1  

Let 	 = 6N + 7n  be the complete solution .  
 

Then  6 = 	−∫ ¡#$ 	!� + p+ =	−∫ sin � sec � 	!�	 + *+ = log cos � + *+ 
   7 = ∫ ½#$ !� + *� = ∫ cos � sec � 	!� + *� = � + *�	   
 
Therefore , the complete solution of the given equation is given by  	 = (log cos � + *+) cos � + (	� + *�) sin �  
 
Equations Reducible to Linear Form with Constant Coefficients 
 
Cauchy – Euler’s / Homogeneous  Linear Differential Equation 
 
The differential equation of the form: 
 �- �����n 

+ *+�-=+ ��Úk����Úk +−−−−+*-=+� ���� + *-	 = v(�) ………….(1) 

 
where  the c? ‘s  are  constants   is called Cauchy – Euler’s  linear equation  
These kind of  equations  can be reduced to linear differential equations with 
constant coefficients by following substitutions: 
 
      � = Tj	 ⇒ ):4	 � = Z  
 

  ⇒ ���� = ���j �j�� = +� 	���j  
 ⇒ � ���� = ���j    or  �L	 = L+	     i.e  �L = L+  where  L = ��� 		 , L+ = ��j  

 
In a similar way we will find that  
 �� ������ = ����j�  or  ��L� = L+(L+ − 1) 

 ��L� = L+(L+ − 1)(L+ − 2)  etc .  
Equation  (1)  will then reduce  to  the form  
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(	L+- + �+L+-=+ + ��L+-=�……… .+�-	)	 = K(Z)  ……………  (2) 
 
Which  can be solved  as in previous section .  
 

Example 23:  Solve �� ������ − 3� ���� + 4	 = 0 

 
Sol. The given equation  can be written as   
 (��L� − 3�L + 4)	 = 0………… ..        (1) 
 

where  L = ���  
Let � = Tj so that  	Z = log	 �	 	 
Then, �L = L+ and ��L� = L+(L+ − 1)where  L+ = ��j		, 
 
with these substitution ,  (1) reduces to {L+(L+ − 1) − 3L+ + 4}	 = 0 
 
or   (L+ − 2)�	 = 0  …………..       (2)  
 
The  characteristic equation is  (� − 2)� = 0  
with roots  2		, 2. 
 
As  R.H.S  of  (1)  is  0  , The general solution is same as  C.F. 
Therefore The general solution is given by  	 = (*+ + *�Z)T�j = (*+ + *�log	 �)��  
 
Example 24: Solve the differential equation:  

                �� ������ − 2� ���� − 4y	 = �� + 2log	 �, 	� > 0  

 
Sol:  The given  equation can be written as 

             (	��L� − 2�D− 4	)	 = �� + 2log	 �		……………  (1) 
 
  Let  � = Tj	 ∴ log	 � = Z 
 Then  ��L� = L+(L+ − 1)			,			�L = L+  where  L = ��� 		 , L+ = ��j  
With these substitutions , equation (1)  becomes  
 
 (	L+(L+ − 1) − 2L+ − 4)	 = T�j + 2Z  
or (L+� − 3L+ − 4)	 = T�j + 2Z ………………..    (2) 
 
Auxiliary equation  of  (2)  is : �� − 3� − 4 = 0 (� + 1)(� − 4) = 0  whose roots are  � =	−1, 4 
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Therefore   C.F. = *+T=j + *�T�j = �k� + ���Ð  P. I = 1(L+� − 3L+ − 4) (T�j + 2Z) = 1(L+� − 3L+ − 4) T�j + 1(L+� − 3L+ − 4)2Z 
     = +=� T�j + +=��+=�kÐ²k�=�Ð²k�� 2Z  
 

= − Ñ�*
� − +� 	�	1 − �²k�� − ��L+��=+ Z  

 = − Ñ�*
� − +� 	�	1 + �²k�� − �²k� � +⋯ . � Z  

 = − Ñ�*
� − +� 	�	Z − �� . � = 	− ��

� − +� log � + �ò   
 
 The general solution is  	 = �k� + ���Ð − ��

� − +� log � + �ò  
 

Example 25: Solve  �� ������ + 2�� ������ + 3� ���� − 3	 = ��  
 

 Sol:  Taking  L = ���   , the given equation can be written as  

              (��L� + 2��L� + 3�L − 3)	 = ��  ……..    (1) 
 
Let          � = T+ 				 ∴ 			Z = log	 �  

Let  L+ = ��j 
Then  (1)   becomes 
 Ï[D+(D+ − 1)(D+ − 2) + 2D+(D+ − 1) + 3D+ − 3]	 = T�j 
or (D+� − D+� + 3D+ − 3)	 = T�j  ………….      (2)  
A. E  of  (2)  is :   �� −�� + 3�	 − 3 = 0 
or     	(�� + 3)(� − 1) = 0 
whose roots are   	� = 1,+/√3 
C.F  of  (2)   = *+Tj + *�cos	(√3Z) + *�sin	(√3Z) 
 

and 	 P.I   = +²k�=²k���²k=� T�j  =		 +
�k�=�k����k=� T�j = +ò=���=� T�j = +

� T�j 
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Therefore , the complete solution of  (2)  is   	 = p. s + &A = *+Tj + *� cosR√3ZS + *� sinR√3ZS + å�,
�    

 
Hence the complete solution of the given equation is  	 = *+� + *� cosR√3 log �S	 + *� sin(√3 log �) + ��

� 	  
 

Example 26: Solve �� 	������ − �	 ���� − 3	 = �� log �			  
Sol:     Taking L = ��� , the given equation can be written as         

                  (��D� − �D− 3)	 = ��log	 � …………..    (1)  
 

         Let � = Tj 				 ∴ Z = log	 �   and let  L+ = ��j  
   Then  (1)   becomes  
 [D+(D+ − 1) − D+ − 3]	 = T�jZ (L+� − 2L+ − 3)	 = ZT�j  ……….       (2) 
 
The auxiliary equation of  (2)   is :  �� − 2� − 	3 = 0    or   (� + 1)(� − 3) = 0 
 ⇒   � = −1,			3 
  ∴ 	 C.F = *+T=j + *�T�j 
 

P.I = 1
D+� − 2D+ − 3ZT�j = T�j 1(D+ + 2)� − 2(D+ + 2) − 3 Z 

 

       = T�j +
�k����k=� Z = − Ñ�*� Â1 − ��D+ − +�D+�Ã=+ Z 

 = −13T�j ó1 + 23D+ô Z = −13 T�j �Z + 23� 
 
Therefore , 

 	 = p. s + &. A = 	 *+T=j + *�T�j − Ñ�*� �Z + ��� 
 = �k� *��� − ��� �log � + ���	  
 
Which is the complete solution of  (1)  
 
 



Chapter 4: Linear Differential Equations with  Constant Coefficients 

75 

Legendre's Linear Differential Equation 
  
The differential equation of the form:  
 	(�� + �)- �-���- + *+(�� + �)-=+ �-Úk���-Úk +⋯+ *-=+(�� + �) ���� + *-	 = v(�)  
….(1) is called Legendre's linear equation . 
 
These equations can  be reduced to Cauchy-Euler’s  form   by a substitution  
                    (�� + �) = Z	  
 
or  reduce to linear differential equations with constant coefficients  by  a  
substitutions -  (�� + �) = Tj ⇒ Z = log	(�� + �) 
 

So that    
���� = ���j �j�� = ���j � $$��«�  

 ⇒ (�� + �)L	 = (�� + �) ���� = � ���j = �L+	,      where L+ = ��Ü  
  

                   or   (�� + �) ���� = (�� + �)L	 = �L+	 

 

Similarly   (�� + �)� ������ = (�� + �)�L�	 = ��D+(D+ − 1)y  
 

                  (�� + �)� ������ = (�� + �)�L�	 = ��D+(D+ − 1)(D+ − 2)y   
 
Equation  (1)  will then reduce to linear form with constant  co-efficient  of the 
form (	L+- + �+L+-=+ + ��L+-=�……… .+�-	)	 = K(Z)  .  which can  be solved 
by the method discussed  before .  
 

Example 27:  Solve  2(2� + 1)� ������ − (2� + 1) ���� + 3	 = +(���+)�  
 
Sol: The given equation can be written as   {2(2� + 1)�L� − (2� + 1)L + 3}	 = (1 + 2�)=� ………..   (2) 

where  L = ��� 
Let 	(2� + 1) = Tj	 or 	log	(2� + 1) = Z, 	  
Then, we have 	(2�+ + 1)L = 2L+, 	(2� + 1)�L� = 2�L+(L+ − 1)	  
 
Using These , equation (2)  becomes  {8L+(L+ − 1) − 2L+ + 3}	 = T=�j  
or 	(	8L+� − 10L+ + 3)	 = T=�j……………….       (3) 
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Here auxiliary equation for (3) is  8�� − 10�� + 3 = 0		  
whose roots  are  � = +Y±√+YY=��	+� = �� 		 , +�	  
 

Therefore  p. s = *+	T�Ðj + *�T�k��j = *+(2� + 1)�Ð + *�(2� + 1)k�	 &. A = +ò²k�=+Y²k�� T=�j =	 ÑÚ�*�� = +�� (2� + 1)=�  
the general solution is then  given by  
 	 = *+(2� + 1)�Ð + *�(2� + 1)k� + 155 (2� + 1)=� 
 

Example 28: Solve the equation Â(� + 2)� ������ − (� + 2) ���� 	+ 1Ã 	 = 3� + 4 

 
Sol. The given equation can be written as  
  [(� + 2)�L� − (� + 2)L + 1]	 = 3� + 4	  ………….    (1) 
 
Let   � + 2 = Tj ⇒ Z	 = log	(� + 2)  
Therefore   (� + 2) ���� = L+				,			 (� + 2)� ������ = L+(L+ − 1)  
 
Equation  (1)  becomes  
 
 [L+(L+ − 1) − 2L+ + 1]	 = 3Tj − 2  
or  [L+� − 2D+ + 1]	 = 3Tj − 2  
 
Its  auxiliary  equation is   �� − 2� + 1 = 0   whose roots are  � = 1		,1 
Therefore  p. s = (*+ + *�Z)Tj = (*+ + *� log(� + 2))	(� + 2)  
P.I   = +²k�=��k�+ (	3Tj − 2) = +²k�=��k�+3Tj − �²k�=��k�+ TYj   = +(²=+)� 3Tj − 2  = �� Z�Tj − 2 = �� (log(� + 2))�(� + 2) − 2	  
 
The general solution is given by  	 = p. s + &. A  
 
Exercices  
 

1. Solve �� ������ − 4� ���� + 6	 = �� sin �    , Ans : 	 = *+�� + *��� − �� sin � 
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2. Solve (L − 1)�(L + 1)� = sin�	 �� + T� + �          

    Ans : 	 = (*+ + *��)T� + (*� + *��)T=� − +ò cos	 � + ��ò T� + � + +� 
 

3.  
���
 ��� − 2 �� �� + 	 = T� log �	 														6)c ∶ 		 = (*+ + *��)T� +��� T� �log � − ��� 
 

4. (L� − 2L + 1)	 = �T� cos �  ,  	6)c ∶ 		 = (*+ + *��)T� + T�[− xcos � +2 sin �] 
 

5. (L� − 4L + 4)	 = ��  ,  Ans:  	 = *+T�� + *�T=�� − +�� 6� + 1)  
 

6. (L� + 2L + 1)	 = 2� + ��. 
 

7.  (L − 2)�	 = �T��. 
 Ans. 	 = (*+ + *�� + *���)T�� + �Ð�� T�� 
 

8. (L� − 4L + 1)	 = T��sin	 �. 
 

 Ans. 	 = *+T� + *�T=� + +� T�(2sin	 � − cos	 �) 
 

9. (L� + 1)	 = T=� + cos	 �. 
 

 Ans. 	 = *+ cos � + *� sin � + +� T=� + +� xsin � 

  

10. (2L� − D− 6)	 = T=�.� + sin � 
 

Ans. 	 = *+T�� + *�T=���� � + �/~ �=ò ~.- �
�� − �

� T=���� � 
 

Find the solution of the given initial-value problem. 
 
11. y′′ + y′ − 2y = x		; 	y(0) = 0, y′(0) = 1. 

 
12. y′′ + 4y = x� + e�		; 	y(0) = 0, y′(0) = 1. 

 
13. y′′ − 5y′ + 6y = sin 2x		 ; 	y(0) = 1, y′(0) = −1. 

 
14. y′′ − 2y′ + y = xe�; 	y(0) = 1, y′(0) = 1.
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Chapter-5 
 

Simultaneous Linear Differential Equations 
 

 
These kind of equations arise from the case  where there are two or more  
functions of the  same variables , i.e  there is one independent  variable and two 
or more than two dependent  variables. To solve such equations completely, 
there must be as many equations as there are  dependent variables.  
 
In this unit we shall be considering only the case  where  there are two 
dependent  variables  and one independent  variable .  
 
Suppose  that  �  and  	  are  functions of  ′#′ .  Then the differential  quations 
that arise  take the form : �+(L)� + ��(L)	 = s(#)    …………….      (1) 
 4+(L)� + 4�(L)	 = ß(#) ……………..      (2) 
 

where  L = ��Ü 
 
Skippinng aside the case where  �+, ��   are proportional  to  4+, 4� , the above 
equations  can be solved by the process  elimination  ,the general idea  where   
we  eliminate  one  variable  �  or  		 by equation the co-efficients of   either �  
or  	  in both the equations and subtract to get rid of one of them .  (the way we 
solve linear equations in two variables ).  
 
Example 1: Solve the eequations  
 

                
���Ü + 	 = � + eØ	      

                
���Ü + � = 	 + eØ  

 
Sol. the given equations can be written as  
 
            (L + 1)	 − � = TÜ …………..      (1) 
 
and   −	 + (L + 1)� = TÜ  ………….      (2) 
 

where   L = ��Ü  
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Operating (2) by (L + 1), we get −(D+ 1)	 + (L + 1)�� = (L + 1)TÜ = 2TÜ   …………    (3) 
 
Adding (1) and (3), we get 
 
 L(L + 2)� = 3TÜ ………….        (4) 
 
We first solve equation (4)   to get the value of  � . 
The auxillary  equation of    (4)  is   
 �(� + 2) = 0   so that   
 p. s = *+TYÜ + *�T=�Ü = *+ + *�T=�Ü  
 &. A = +²(²��)3TÜ = TÜ   
 
Therefore  the general solution of  (4)  is given by  
  � = *+ + *�T=�Ü + TÜ	 ………….       (5) 
 
Putting this value of  �  in  (2) we get  	 = (L + 1)� − TÜ = (L + 1)(*+ + *�T=�Ü + TÜ) − TÜ  
    = *+ − *�T=�Ü + TÜ  …………..       (6) 
 
The general solution of the given  equations   are given by  (5)  and  (6) . 
( notice the choice of putting the value of  � in  equation  (2) , if  we put the 
value of � in  (1)  , then to get the value of  		  we will have to follow  the  
method of  finding  
 &. A , which  may take a bit  longer )   
 
Example 2. Solve  the equations  
 

                     
���Ü + 2� + 3	 = 0	, 	 

                  
���Ü + 3� + 2	 = 2T�Ü. 

 

Sol. Let L = ��Ü,  
 
         the given equations become 
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(L + 2)� + 3	 = 0  ………………       (1) 
 3� + (L + 2)	 = 2T�Ü ………….       (2) 
 
Operating (2) by (L + 2) and multiplying (1) by 3 and subtracting,  
we get   [(L + 2)� − 9]	 = (L + 2)2T�Ü 
 
or    (L� + 4L − 5)	 = 8T�Ü………..       (3) 
We now solve  equation (3)  to get the value of  	  .  
 
The  auxiliary equation of (3) is 
   	�� + 4� − 5 = 0	 ⇒ � = 1,−5 
 ∴ 	 C.F. of (3) = p+TÜ + p�T=�Ü , 	*+ and *� being arbitrary constants 
 

   P.I. = +²���²=�8T�Ü = 8 +����⋅�=� T�Ü = ò
� T�Ü  

 ∴ The general solution of (3) is given by  

   	 = *+TÜ + cT=�Ü + ò
� T�Ü  ……………………     (4)  

 
Differentiating w.r.t.  #   we get  
 ���Ü = *+TÜ − 5*�T=�Ü + +�

� T�Ü ………………     (5) 

 
From (2), 3� = 2T�Ü − 2	 − ���Ü    
 

or     	3� = 2T�Ü − 2 �*+TÜ + *�T=�Ü + ò
� T�Ü� − �*+TÜ − 5*�T=�Ü + +�

� T�Ü�     
( using (5)) 
 

or 	3� = −3*+TÜ + 3*�T=�Ü − +ò
� T�Ü	  

 	� = −p+TÜ + p�T=�Ü − (6/7)T�Ü ………………….    (5) 
 
The required solution is given by (4) and (5). 
 
Example 3:  Solve the equations :  

    
���Ü = 3� + 8	   ;  

���Ü = −� + −3	    

 
Also  find the solution  given that  �(0) = 6    and   	(0) = −2. 
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Sol: Taking  
��Ü ≡ L  , the given equations can be written as  L� − 3� − 8	 = 0	 ⇒ 	(L − 3)� − 8	 = 0 ……….    (1) 

 
and   L	 + � + 3	 = 0	 ⇒ 	(L + 3)	 + � = 0  …………..   (2) 
 
Multiplying (1)   by (L + 3) and (2) by 8 adding  we get 
 (L� − 1)� = 0 …………..        (3) 
The auxiliary equation of  (3)  is  :  
 �� − 1 = 0	 ⇒ m� = 1  ⇒ � = ±1  ∴ 	p. s.= p+TÜ + p�T=Ü    ,    P.I. = 0 
 
Therefore ,  	� = p+TÜ + p�T=Ü ……..       (4) 
 
From (1) we get  (L − 3)[p+T� + p�T=�] = 8	 
 ⇒ 8	 = −p+TÜ − p�T=Ü − 3p+TÜ − 3p�T=Ü 
 ⇒ 8	 = −2p+TÜ − 4p�T=Ü ⇒ 	 = − +� (p+TÜ + 2p�T=Ü) ………..       (5) 

 
The general  solution is given by  (4)   and  (5)  
Initially when   # = 0 then � = 2. 
 
From (4) we get    2 = p+TY + p�TY ⇒ p+ + p� = 2 ……..   (6)  
Also when # = 0, 	 = −2. 
 

From (5), 	 − 2 = − +� (p+TY + 2p�TY) ⇒ 8 = p+ + 2p�  ………….        (7) 
 
Solving (6) and (7), we get   p+ = −4    and p� = 6  

Hence, the required solution is :   � = −4TÜ + 6TÜ   and 	 = − +� (−4TÜ +12TÜ) 
 
Exercise 
 

1. Solve : 
���Ø + � = 	 + TÜ , ���Ø + 	 = � + TÜ 
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Ans : � = *+ + *�T=�Ü + TÜ  , 	 = *+ − *�T=�Ü + TÜ 
 

2. 
������ + 2 ������ + ���� = T�� + sin	 2� 

        

Ans :		 = *+ + T=�(*� + *��) + ++ò T�� + ++YY (6cos	 2� − 8sin	 2�) 
 

3. Solve the following set of simultaneous differential equations 

         	 ���Ø − 7� + 	 = 0, ���Ø − 2� − 5	 = 0 

 
Ans : � = T�Ü(*+cos	 # + *�sin	 #)  ,  	 = T�Ü(*+ − *�)cos	 # +(*+ + *�)sin	 #) 

 
4. 	(L + 1)� + (2L + 1)	 = TÜ	; 					(L − 1)� + (L + 1)	 = 1 

 
     Ans: � = *+TÜ + *�T=�Ü + 2T=Ü  ,   	 = 3*+TÜ + 2*�T=�Ü + 3T=Ü 
 

5. Solve  
���Ü − 3� + 4	 = T=�Ü , ���Ü − � + 2	 = 3T=�Ü,    

                     given that � = 12, 	 = 7 for # = 0.         
                     

     Ans: � = 6T�Ü + 9T=Ü − 3T=�Ü , 	 = �� T�Ü + 9T=Ü − �� T=�Ü 
 

6. Solve  
���Ü + 2� + 3	 = 0		,				3� + ���Ü + 2	 = 2T�Ü 

 

     Ans. � = *+TÜ + *�T=�Ü − �
� T�Ü , 	 = −*+TÜ + *�T=�Ü + ò

� T�Ü 
 

7. 
���Ü + 5� + 	 = TÜ , ���Ü + 3	 − � = T�Ü 
 

Ans. � = (*+ + *�#)T=�Ü + ��� TÜ − +�� T�Ü , 	 = −(*+ + *� + *�#)T=�Ü ++�� TÜ + ��� T�Ü 
 

8. 
���Ü + ���Ü + 2� + 	 = 0, ���Ü + 5� + 3	 = 0 

 

Ans. � = *+cos	 # + *�sin	 #, 	 = +� (*� − 3*+)cos	 # − +� (*+ − 3*�)sin	 # 
 9. ���Ø = 4x − 2y, ���Ø = 3x − y		
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Ans. � = �� *+TÜ + *�T�Ü , 	 = *+TÜ + *�T�Ü 
 10. ���Ø = x + 2y, ���Ø = y  

Ans. � = *�TÜ + 2*+#T�Ü , 	 = *+TÜ 
 

11. 
��
�Ü = 7� − 	, ��

�Ü = 2� + 5	 

 
Ans. � = T�Ü�*+cos # + *�sin #
, 	 = T�Üx�*+ − *�
cos # + �*+ + *�
sin #y 

 

12. 
��
�Ü + 2� + 3	 = 0, ��

�Ü + 3� + 2	 = 2T�Ü 
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Chapter-6 
 

Exact Linear  Differential Equation of Higher Order 
 

 
Definition  
 
A differential equation is said tobe exact if it is  obtained by differentiating  the 
next lower  order equation .  
 
For Example: An equation  
 � ������ + (1 + sin �) ���� + (cos �)	 = 2�	  ……….     (1) 

 
is obtained by differentiating the equation  
 � ���� + (sin �)	 = �� + 5 …………..       (2) 

 
So , according to our definition , eequation  (1)  is exact .  
 
Solution of exact differential  equation 
 
Let    &Y	(-) + &+	(-=+) + &�	(-=�) +⋯…&-	 = 8(�)  ……….(A)  
 

be a differential equation of  order  )  , where  	(
) = �
���
 
 
If  equation  (A)  is obtained by differentiating the equation  
 &Y	(-=+) + v+	(-=�) + v�	(-=�)…… . . v-=+	 = 8+(�) + *+ ……….(B) 
 
then the equation (B)  is called the First Integral   of   (A) 
 
It is obvious that  8+(�) = ∫8(�) !�  
 
If  further , (B) is exact and  is obtained by differentiating the equation   &Y	(-=�) + ý+	(-=�) + ý�	(-=�)…… . . ý-=�	 = 8�(�) + *�  ………(C)  
 
then   (C)  is called the First Integral   of  (B)  and the Second Integral  of  (A).  
etc .  
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Condition of exactness of a linear differential equation of order Þ 
  
Let the linear differential equation of order ) be 
 &Y	(-) + &+	(-=+) + &�	(-=�) +⋯…&-	 = 8(�)   ………..   (1)  
 
where &Y, &+, … , &- and 8 are functions of � .  
 
Let (1) be exact so that  it is  obtained from an equation of next lower order 
simply by  differentition.  
 
Let     êë¥(Þ=Ý) +2Ý¥(Þ=ì) + 2ì¥(Þ=�) +⋯…2Þ=Ý¥ = ∫ú(§)¨§ + º 
……….           (2) 
 
be the first integral  of  (1)  .  
 
Differentiating  (1)  we get  
 &Y	(-) + (&­Y + v+)	(-=+) + (v+­ + v�)	(-=�) +⋯  
                  ……(v-=�­ + v-=+)	­ + v­-=+	 = 8(�)  ………………  (3) 
 
Equation (1)  and  (3)  are identical , hence the corresponding  co-efficients  of 
the derivatives  must be equal . Therefore – 
 &+ = &Y­ + v+, 				&� = v+­ + v�,							&� = v�­ + v�, 	 … . . &-=+ = v-=�­ + v-=+	  
 and 	&- = v-=+­ 	 …… .…          (4) 
 
Expressing the v.­c   in terms  of  &.­c    from above we have  
 v+ = &+ − &Y	­   ,  
 v� = &� − v+	­ = &� − ��� (&+ − &Y	­) = &� − &+	­ − &Y	­­  ,  
 v� = &� − v�	­ = &� − ��� (&� − &+	­ + &Y­­) = &� − &�	­ + &+	­­ − &Y	­­­,  
etc.. 
 v-=+ = &-=+ − &-=�­ + &-=�­­ −⋯+ (−1)-=+&Y(-=+) ,  
 &- = v-=+­ = ��� Â&-=+ − &-=�­ + &-=�­­ −⋯+ (−1)-=+&Y(-=+)Ã  
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						= &-=+­ − &-=�­­ + &-=�­­­ −⋯+ (−1)-=+&Y(-)  
 ⇒		êÞ − êÞ=Ý­ + êÞ=ì­­ − êÞ=�­­­ −⋯+ (−Ý)Þêë(Þ) = ë …………  (5)  
 
Which is the required condition for  equation  (1)  tobe exact .  
Again if we put back the  the above values of v+, v�, … , v-=+ in (1), we get 
 &Y	(-) + (&+ − &Y­)y(¢=+) + (&� − &+­ + &Y­­)y(¢=�) +⋯…+ �&-=+ − &-=�­ + &-=�­­ −⋯+ (−1)-=+&Y(-=+)� 	 = ∫ 	 8(�)!� + p.  
 
which is always the form of an equation tobe exact .  
 
We list below , for quick use ,  the equation (5)  when  ) = 2,3,4	. 
 

(i) The equation   &Y ������ + &+ ���� + &�	 = 8(�)  is exact  if  

       &� − &+­ + &Y­­ = 0	  and  the First  integral  is given by  

       &Y ���� + (&+ − &Y­)	 = ∫8(�) + *  
 

(ii) The equation   &Y ������ + &+ ������ + &� ���� + &�	 = 8(�)  is exact  if  

       &� − &′� + &+­­ − &Y­­­ = 0	  and  the First  integral  is given by  

       &Y ������ + (&+ − &Y­) ���� + (&� − &+­ + &Y­­)	 = ∫8(�) + *   
 

(iii) The equation   &/ �Ð���Ð + &+ ������ + &� ������ + &� ���� + &�	 = 8(�)  is exact  if  

       &� − &�­ + &�­­ − &+­­­ + &�′′′′ = 0	  and  the First  integral  is given by   

  &Y ������ + (&+ − &Y­) ������ + (&� − &+­ + &Y­­) ���� + (	&� − &�­ + &+­­ − &Y­­­)	 =∫8(�) + *   
 

Example 1. Show that the equation   (1 + ��)	­­ + 4�	­ + 2	 = sec�	 �  
                 is exact and  solve it .  
 
Sol. Given equation: (1 + ��)	­­ + 4�	­ + 2	 = sec�	 � ……..   (1) 
 
Comparing (1) with &Y	­­ + &+	­ + &�	 = 8(�) 
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We have  &Y = 2 + ��, 			&+ = 4�,				&� = 2,				8(�) = sec�	 � 
 
Since   &� − &+	­ + &Y­­ = 2 − 4 + 2 = 0, 
The given equation  is exact.  
The first integral of (1) is given by  
 &Y ���� + (&+ − &Y­)	 = ∫ 	 sec� �!� + *+	   
 

 or 	(1 + ��) ���� + 2�	 = tan	 � + *+  ……………..    (2) 

 

Comparing  (2)  with  &Y ���� + &+	 = 8(�) 
 
we have  &Y = (1 + ��)		, &+ = 2�	 .  Since  &+ − &Y­ = 2� − 2� = 0 
therefore   (2)  is  also  exact  and its  first integral which is also the general 
 solution of  (1)   is given by  
 &Y	 = ∫ 8(�)!� + *�		  
or  (1 + ��)	 = ∫(tan � + *+)!� + *� 
or  (1 + ��)	 = log sec �	 + *+� + *� 
   

Example 2:  Solve    cos � �������� + sin � ������ + 2	 cos � = 0. ……..  (1) 

 
Sol. Comparing (1) with &Y	­­ + &+	­ + &�	 = 8(�),		 
 We	have				&Y = cos � , P+ = sin �		 , &� = 2 cos �	  
 &� − &+­ + &Y­­ = 2cos	 � − cos	 � − cos	 � = 0.  
Hence the given equation is exact and its first integral is 
 

    &Y ������ + (&+ − &Y	­)	 = *+. 
 

or     cos � ������ − (2 sin �)	 = *+,  …………     (2)  

which is not exact.  Rewritting equation (2)  as  
 

      ������ − (2 tan �)	 = *+sec	 �   

 
which is linear and its integrating factor (I.F.) is given by 
 I.F. = T∫ 	(=�ØÙ¢	 �)�� = T����	 ���	 � = cos� �  
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∴ The solution of (2)   ( which is the general solution of  (1) )   is  
  	 cos� � = *+ ∫ 	 sec � cos� � !� + *� = *+ ∫ cos � !� + *�  
or     	 cos� � = *+ sin � + *� 
 

Example 3:  Solve the equation   (1 + � + ��) ������ + (3 + 6�) ������ + 6 ���� = 0 

 
Sol: Comparing the given with the standard equation  we have  &Y = (1 + � + ��)		, &+ = (3 + 6�)		, 	&� = 6		, &� = 0  
Clearly  , &� − &�­ + &+­­ − &Y­­­ = 0	 
 
so the given  equation is  exact  and its first integral  is given by  

           (1 + � + ��) ������ + (4� + 2) ���� + 2y = c+   …………..   (1) 

 
Again comparing  (1)  with the standard  equation we have  
 &Y = (1 + � + ��)		, &+ = (4� + 2)		, &� = 2  
 
 &� − &+­ + &Y­­ = 2 − 4 + 2 = 0 
 
Therefore  (1)  is also  exact  and its first integral is   
 

 (1 + � + ��) ���� + (2� + 1)	 = *+� + *�	  ……..     (2) 

 
Comparing  (2)  with the standard  equation we have  
 
 &Y = (1 + � + ��)		, &+ = (2� + 1)		 &+ − &Y­ = (2� + 1) − (2� + 1) = 0  
Therefore  (2)  is  exact . Its  first integral is given by 
  (1 + � + ��)	 = �k��� + *�� + *�  
which is the  general solution of the given  equation .  
 
Example 4: Show that the differential equation 
 

              (1 + ��) ������ + 3� ���� + 	 = 0     is exact and hence solve it. 

 
Sol: Comparing the given equation with the standard  equation , we have  
 &Y = (1 + ��)	, &+ = 3�		, &� = 1  
Also &� − &+­ + &Y­­ = 1 − 3 + 2 = 0  
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Therefore the given equation is exact  and  its  first  integral is  given  by  

   (1 + ��) ���� + �		 = *+	   which is not  exact but can be written as  

       
���� + � �(+���)� 	 = �k+��� …..        (1) 

 
which is  linear and its  integrating factor is  
 È(�) = exp� �1 + �� !� = exp� 2�2(1 + ��) !� = exp12 log(1 + ��) 
                     = exp log√1 + �� =	√1 + ��  
 
Therefore the solution of  (1)  is given by  
 	√1 + �� = ∫ �k√+���+��� !�	 + *�	   
or  	√1 + �� = ∫ �k√+��� 	!� + *� = *+ log |� + √1 + ��| + *�  
 
which is  the general  solution of  the given  equation .   
 
Example 5: Test for exactness and solve   (1 + ��)	­­ + 4�	­ + 2	 = sec�	 �  
given that  	 = 0, 	­ = 1 when � = 0. 
 
Sol: Comparing the given equation with the standard  equation , we have  
 &Y = (1 + ��)		, &+ = 4�			, &� = 2  
 
Now , &� − &+­ + &Y­­ = 2 − 4 + 2 = 0 
Therefore the given equation is exact . Its  first  integral  is given  by  

 &Y ���� + (&+ − &Y­)	 = ∫0 	!� 
 

or     (1 + ��) ���� + 2�		 = *+  ………      (1) 
 
Again  Comparing the last equation with the standard  equation , we have  &Y = (1 + ��)	, &+ = 2�	   so that  &+ − &Y­ = 0 
 
Therefore  equation  (1)  is also  exact and its first integral is  
       (1 + ��)	 = *+� + *�  ……….       (2) 
 
which is the general solution of the given  equation . 
Differentiating (2)   w.r.t  �  we get  
 
Using  	 = 0, 	­ = 1 when � = 0  in    (1)   and  (2)   we get   *+ = 1  , *� = 0 ⇒ (1 + ��)	 = �   is the solution  with the given initial values of  �	, 		, 	­ . 
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Example 6:  Solve (�� − 4�) ������ + (9�� − 12) ������ + 18� ���� + 6	 = 2. 

 
Sol:  Comparing the given equation with the standard  equation  &Y	­­­ + &+	­­ + &�	­ + &�	 = 8(�) 
we have    &Y = �� − 4�, 				&+ = 9�� − 12, 				&� = 18�, 				&� = 6. 
Then 
 &� − P�­ + P+­­ − PY­­­ = 6 − 18 + 18 − 6 = 0. 
 
Therefore, given equation is exact. Its First Integral is given by 
 &Y !�	!�� + (&+ − &Y­) !	!� + (&� − &+­ + &Y­­)	 = �8(�) !� + *+ 
 

Or   (�� − 4�) ������ + (6�� − 8) ���� + 6�	 = 2� + *+  ……..   (1) 

 
Again Comparing equation (1)  with the standard  equation 

  &Y	­­ + &+	­ + &�	 = 8(�) 
 
We have ,  &Y = (	�� − 4�)		, &+ = (6�� − 8)	, &� = 6� 
Also &� − &+­ + &Y­­ = 6� − 12� + 6� = 0 . 
 
Therefore  equation  (1)  is also  exact   and its first  integral  is  given  by &Y !	!� + (&+ − &Y­)	 = �8(�)!� + *� 
 

or    (�� − 4�) ���� + (3�� − 4)	 = 2�� + *+� + *�  ………..   (2) 

 

Again , comparing  (2)  with  &Y ���� + &+	 = 8(�) 
we have  &Y = (�� − 4�)			, &+ = 3�� − 4   and  &+ − &Y­ = 0 
Therefore  (2)  is exact  , its integral is (�� − 4�)	 = 23�� + 12 *+�� + *�� + *� 
and is the general solution of the given  equation . 
 
Exercises 
 
1. Show that the equation  

        sin � ������ + (sin � + cos �) ���� 	+ (cos �	)	 = T�			/c	  exact and solve it .  
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Ans:  	 sin � = T� + *+� + *� 
 

2. Solve :  sin� � ������ − 2	 = 0	  
 

3. Show that  equation   ��(1 + �)	­­ + 2�(2 + 3�)	­ + 2(1 + 3�)	 = 0 
     is exact and solve it . Also find the particular solution   given that  

    � = 1, 	 = 1	, ���� = 0      .  

 
 Ans :   	��(� + 1) = *+� + *�  and  	��(� + 1) = 5� − 3,   
 

4. Solve the equation (2�� + 3�) ������ + (6� + 3) ���� + 2	 = (� + 1)T�.   
 
Ans. 	(3 + 2�) = T� + *+log	 � + *� 

 
5. Show  (1 + ��)	­­ + 4�	­ + 2	 = sec�	 �  is exact and solve ,  

 
           given   that 	 = 0, 	­ = 1 when � = 0. 
 

6. Solve  (1 + ��) ������ + 4�	 ���� + 2	 + �(+���)� = 0	  
 

Ans : 	 = ØÙ¢Úk �+��� + *+ �+��� + ��+���	 
 

7. Solve � ������ + (�� + � + 3) ������ + (4� + 2) ���� + 2	 = 0. 

 

     Ans:   	 = +� T=������ �∫ (*+� + *�)T����� !� + ��� T=������ � 
 

8. Solve:  sin	 � ������ − cos	 � ���� + 2sin	 �	 = 0.  

 
Ans. 	 = *+sin�	 � + *�cos	 � − *�sin�	 �log	 tan	 ��  

 

9. Solve :  (1 + � + ��) ������ + (3 + 6�) ������ + 6 ���� = ��.  
Ans. (1 + � + ��)	 = �Ö

�Y + *+�� + *�� + *� 
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Chapter-7 
 

Linear Differential Equations of Second Order 
 

 
Th general linear equations of second order  take the form  ������ + & ���� + v	 = ý …………       (1) 

 
where  &	, v	, ý  are  constants or  functions of  � .  

The equation  
������ + & ���� + v	 = 0  ………………….    (2)  

 
is called the homogeneous  part of  equation (1) .  
The solutions of  equation  (2)  are called  the Complimentary Function of  (1) .  
 

Some standard solutions of   ̈
ì¥¨§ì + ê ¨¥¨§ +2¥ = ë  : 

  
(A) Taking  	 = �-   , we have   
 

           
���� = )�-=+				, ������ = )() − 1)�-=�  

 

        Therefore   
������ + & ���� + v	 = 0 ⇒ )() − 1)�-=� + &)�-=+ + v�- = 0 

 
        ⇒ )() − 1) + &)� + v�� = 0   
 
(B) Taking  	 = �   , i.e  taking  ) = 1	  in  (A)  we have   
 

           
���� = 1				, ������ = 0  

 

        Therefore   
������ + & ���� + v	 = 0 ⇒ 0 + & + v� = 0 

 
        ⇒ & + v� = 0  
 
(C) Taking  	 = ��   , i.e taking  ) = 2  in (A)   we have   
 

           
���� = 2�				, ������ = 2  
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        Therefore   
������ + & ���� + v	 = 0 ⇒ 2 + 2&� + v�� = 0 

 
(D) Taking  	 = T$�   , we have   
 

           
���� = �T$�			, ������ = ��T$�  

 

        Therefore   
������ + & ���� + v	 = 0 ⇒ ��T$� + �&T$� + vT$� = 0 

 
        ⇒ �� + �& + v = 0  
 
(E) Taking  	 = T�   ,  i.e  � = 1		/)		(L)		we have   
 

           
���� = T�			, ������ = T�  

 

        Therefore   
������ + & ���� + v	 = 0 ⇒ T� + &T� + vT� = 0 

 
        ⇒ 1+ & + v = 0  
 
(F) Taking  	 = T=�   ,  i.e  � = −1		/)		(L)		we have   
 

           
���� = −T�			, ������ = T�  

 

        Therefore   
������ + & ���� + v	 = 0 ⇒ T� − &T� + vT� = 0 

 
        ⇒ 1− & + v = 0  
 
Summary: We take a list below the above six  complimentary  functions of the 

general equation  
������ + & ���� + v	 = ý  depending on the relation of  &	�)!	v .  

 
   
 
 
 
 
 
 
 
 

 Condition integral of  C.F 
1 )() − 1) + &)� + v�� = 0  	 = �-  
2 & + v� = 0  	 = �  
3 2 − &� + v�� = 0  	 = �=+  
4 2 + 2&� + v�� = 0	  	 = ��  
5 �� + �& + v = 0  	 = T$�  
6 1 + & + v = 0   	 = T�  
7 1 − & + v = 0  	 = T=�	  
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General Solution when one integral of the complementary  function is 
known 
 

Let          
������ + & ���� + v	 = ý …………..      (1) 

 

be the given equation    and       
������ + & ���� + v	 = 0   ………..   (2) 

 
be the  homogeneous part .  
 
Let    	 = N   be a known part of the  complementary function.  
Thus 	 = N is a solution of  (2)  
 ⇒ ��½�� + P �½�� + vN = 0.   …………..       (3) 

 
Now let the complete solution of (1) be 
             	 = Nn  
where n is a function of �.  
 

Differentiating we get     
���� = n �½�� + N �¡�� 

 

   and                               
������ = n ��½��� + 2 �½�� �¡�� + N ��¡���  

 
Therefore  (1)  reduces to  
 �n ��½��� + 2 �½�� �¡�� + N ��¡�� � + & �n �½�� + N �¡��� + vNn = ý  

 

or    n ���½��� + & �½�� + vN� + N ���¡��� + & �¡��� + 2 �½�� �¡�� = ý  

 

or    N ���¡��� + & �¡��� + 2 �½�� �¡�� = ý,    using (3)  

 

or                ̈
ì¦¨§ì + �ê + ì

&
¨&¨§� ¨¦¨§ = '

& ………  …..     (4) 

 

Now putting    
�¡�� = K     so that     

��¡��� = ����  ,  
 

Equation (5) will reduce to       
¨Õ¨§ + �ê + ì

&
¨&¨§� Õ = '

&  

which  is  a linear equation that can be solved for  K  and  ultimately solve  for n   
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Example 1 : Solve     
������ − �(�=+) ���� + �(�=+) = � − 1. 

 
Sol. Comparing	the	given equation with the standard equation  
 

   
������ + &	 ���� + v	 = ý  

 

We  have    & = − �(�=+) ,				v = +(�=+) ,					ý = � − 1 

 

Now ,   & + v� = − �(+=�)+ +(�=+) � = 0 

 ∴ N = �    is a part of the Complimentary Function   
Let 	 = n�  be the general solution of of the given equation .  
*Differentiating  	 = n�  twice  we get  
 

          
���� = n + � �¡��		     and   

������ = � ��¡��� + 2 �¡�� 
 
Putting these in the given equation  we  get ,  
 � !�n!�� + 2!n!� − �� − 1�n + � !n!�� + n�� − 1 = (� − 1)	 
  

**  or  � ��¡��� + �2 − ���=+� �¡�� = (� − 1)	 
 

or      
��¡��� + ��� − �(�=+)� �¡�� = �=+�  ………….(1) 

 

Let    
�¡�� = Z ⇒ ��¡��� = �j��,   then   (1)  becomes  

 

     
�j�� + ��� − �(�=+)� Z = (�=+)�  ………..(2) 

 
which  is a linear equation in Z	. 
 A. s = T∫ 	���=+= k�Úk��� = T����	 �=�=���	(�=+) = T���	� ���Úk�=� = ��ÑÚ��=+   

 
The solution of  (1)  is :  Z ��ÑÚ��=+ = ∫ 	 (�=+)� ⋅ ���=+ T=�!� + *+  
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or    Z ��ÑÚ��=+ = ∫ 	 �T=�!� + *+  
 

or  Z ��ÑÚ��=+ = −T=�(� + 1) + *+  
 

or  Z = =(��=+)�� + *+ (�=+)�� T�   ⇒		 �¡�� = =(��=+)�� + *+ (�=+)�� T�  
 

 ⇒ !n = Â−1 + +�� + *+T� �+� − +���Ã !� 

 
Integrating we get  n = ∫ 	 Â−1 + +�� + *+T� �+� − +���Ã !� = −� − +� + �kÑ�� 		+ *�  
 
Hence the general solution of the given  equation is :  
 	 = n� = (−� − +� + �kÑ�� 		+ *� )x  

 
or  	 = −�� − 1 + *+T� + *�� 
 
(Note : readers can skip line  ∗  to  ∗∗ , instead  can remember equation (4)  in 
the  discussion  and write  the reduced  equation only )  
 

Example 2: Solve  
������ − �� ���� 	+ ��� 	 = � ):4 �.  

 

Sol: Given   
������ − �� ���� 	+ ��� 	 = � ):4 �. ………     (1) 

 
Comparing the given equation   with the standard equation  ������ + &	 ���� + v	 = ý ,    we have  & = − �� ,				v = ��� ,				ý = �log	 � 

Clearly  & + v� = 0  
 ∴ N = � is a part of the C.F of    (1) 
Let 	 = n�   be the general solution  
Then n  is  fround from the equation :  
 ��¡��� + �& + �½ �½��� �¡�� = #½ 								( where N = �) ��¡��� + �− �� + �� ⋅ 1� �¡�� = �⋅���	 ��   

 



Chapter 7: Linear Differential Equations of Second Order 

97 

��¡��� = log	 � ……….         (2) 

 ⇒ ��� 	��¡��� = log � 	⇒ 			!	 ��¡��� = 	 log � 	!�		  
 ⇒ �¡�� = ∫ log � 	!� = 		 (log �) ∫1	!� − ∫( ��� log � 	∫ 1!�	)	!�		  
 
          = � log � − � + *+  
 ⇒ n = ∫(	� log � − � + *+) !� = 	 ��� log	 � − ��� − ��� + *+� + *�  
 
Hence the complete solution of  (1)  is   	 = n�	 = ���� log � − ��� − ��� + *+� + *�� �  

 

Example 3: Solve   
������ − �� ���� + �	 = �� 

 

Sol: Given : 
������ − �� ���� + �	 = �  ………..      (1) 

 
Comparing the given equation   with the standard equation  ������ + &	 ���� + v	 = ý ,    we have   

 & = −��		, v = �	, ý = �  
Since  & + v� = 0  therefore    
 N = �  is a  part of the C.F .  of  (1)  
 
Let  ¥ = &¦ = ¦§  be the  complete  solution of  (1)  
Then n  is  given by  the equation  
 ��¡��� + �& + �½� �¡�� = #½		  
 

or     
��¡��� + �	−�� + ��� �¡�� = 1	………….      (2)  

 

Let  
�¡�� = K			c:	#ℎ�#	 ��¡��� = ����	  

 

Then  (2)  becomes    
���� + ��� − ��� K = 1	 ………     (3) 

 
which is linear   and first order .  
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A. s = T∫ ���=����� = T�����=��� = T�����T=��� = ��T=���    
 
Therefore ,  solution of ( 3)  is  :  
 K��T=��� = ���T=��� !� = −T=��� + *+ 
    

⇒ 		K	 = �¡�� 		= − +�� + �kÑ�����    

⇒ n = ∫5− +�� + �kÑ����� 	6!�	 	+ *�		  
The general  solution is then  given  by  	 = n� where  n  is given by the last  
equation .  
 

Example 4: Solve (� + 1) ������ − 2(� + 3) ���� 	+ (� + 5)	 = T� 
 
Sol. The given equation can be written as :  
 ������ − �(���)��+ ���� + �����+ 	 = Ñ���+.  ……………      (1) 

 

Comparing (1) with 
������ + & ���� + v	 = ý, we get 

 & = − �(���)��+ , 	v = �����+ , 	ý = Ñ���+  
 

Here          1 + & + v = 1 − ������+ + �����+ = ��+=(����)������+ = 0  . 

Therefore        N = T� 
 
is a part of the Complimentary Function  of   (1). 
 
Let the general solution of (1) be      	 = Nn.  
Then n is given by the equation :  
 ��¡��� + �& + �½ �½��� �¡�� = #½  

or      
��¡��� + �− ������+ + �Ñ� �Ñ��� � �¡�� = Ñ�Ñ�(��+) 

 

or 	 ��¡��� + �2 − ������+ � �¡�� = +��+ 
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or      
��¡��� − � ���+� �¡�� = +��+  …………..      (2) 

 

Let           
�¡�� = K          so that         

��¡��� = ���� 
 
Then (2) becomes 
 ���� − ���+K = +��+  ………….        (3)  

which is linear in K and �. 
 

Its integrating factor I.F. = T=∫ [ Ð�×k]�� = T=����	(��+) = e���(��+)ÚÐ =(� + 1)=�.  and solution  of  (3) is 
 K(� + 1)=� = � 	 1� + 1 ⋅ (� + 1)=�!� + p+ = � 	 (� + 1)=�!� + *+ 
 

or 
	�¡�� = − +� 	+ *+(� + 1)�		 or     	!n = Â− +� 	+ *+(� + 1)�Ã !�. 

 
Integrating , we get    n = − �� + �k� (� + 1)� + *�. 
Hence , the complete solution of  (1)   is given by  
 	 = Nn = T� �	− ��+ �k� (	� + 1)� + *��			  
 

Example 5: Sole the equation  
������ + (1 − cot �) ���� − (cot �)	 = sin�	 �  . 

 

Sol:  Given  
������ + (1 − cot �) ���� − (cot �)	 = sin�	 �   ……   (1)  

 

 Comparing the given equation with  
������ + &	 ���� + v		 = ý	 

we have  & = (	1 − cot �	), v = (	− cot �	)	, ý = sin� �	 
Since  (1 − & + v) = 0   ,  therefore ,  
 N = T=�   is part of the p. s  of  (1)   
Let  	 = Nn  be the complete solution of  (1)  . 
Then n  is  given  by   ��¡��� + �	& + �½ �½��� �¡�� = #½  

 

or     
��¡��� − (	1 + cot �) �¡�� = T� sin� �	 ……….     (2) 

 



Chapter 7: Linear Differential Equations of Second Order 

100 

Let 	K = �¡��			  so that  
���� = ��¡���	 

 
Equation  (2)  becomes   ���� − (1 + cot �)K = T� sin� �	  
which is  a linear  equation of  first   order  , Its  I.F  is  given  by  
 A. s = T∫=(+���Ø �)�� = ÑÚ��?¢ �  
 
Therefore , its  solution is  given  by  
 K ÑÚ��?¢ � = ∫ ÑÚ��?¢ � 	T� sin� � 	!� = ∫ sin � !� = 	− cos � + *+  
 ⇒ 		K = T�(	− sin � cos � + *+ sin �) = T�	(	− +� sin 2�		 + *+ sin �)   
 ⇒ �¡�� = *+T� sin � − +� T� sin 2�  

 ⇒ n = ∫*+T� sin � !� − +� 	∫ T� sin 2� !�  

 = *+ Ñ�� (sin �	 − cos �) − +� 	Ñ�� (sin 2�	 − 2 cos 2�) + p�   
 = p+T�(sin �	 − cos �) − Ñ�+Y (sin 2�	 − 2 cos 2�) + p�      :  where  p+ = �k�   

Hence , the complete solution of  ( 1)  is given by  
 	 = Nn = �p+T�(sin �	 − cos �) − Ñ�+Y (sin 2�	 − 2 cos 2�) + p�� T=�   
     

   = p+(sin �	 − cos �) − ++Y (sin 2�	 − 2 cos 2�) + p�T=�  
 
Changing the dependent Variable / Reducting to Normal form / removal of 
first derivative  
 

Let          
������ + & ���� + v	 = ý …………..      (1) 

Let the general  solution of (1) be  
 	 = Nn  ………          (2) 
 
where N and n are functions of �.  
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Differentiating (2)   twice   we get   
 ���� = �½�� n + N �¡�� 	 	        and 	 						������ = ��½��� n + 2 �½�� �¡�� + N ��¡���  
 

Putting the values of  
����  and  

������	   from  above  in  (1)   we get   

 ��½��� n + 2 �½�� �¡�� + N ��¡��� + & ��½�� n + N �¡��� + vNn = ý  

 

or   N ��¡��� + �&N + 2 �½��� �¡�� + n ���½��� + & �½�� + vN� = ý  

 

or    
��¡��� + �& + �½ �½��� �¡�� + +½ ���½��� + & �½�� + vN�n = #½ ……….   (3) 

 

If we take  & + �½ �½�� = 0 , the first order derivative in (3)  will be removed  

 

and reduce to     
��¡��� + +½ ���½��� + & �½�� + vN�n = #½  ……….   (4) 

 

Now & + �½ �½�� = 0 ⇒ �½½ =	− +�&	!� ⇒ log N = 	− +�∫&	!� 

or      & = Ó=Ýì∫ ê¨§ ……………       (5) 
 ⇒ �½�� = T=k�∫ i�� �− +�&� = − i½� 		                   (  ��� 	∫ &	!� = &			) 
 ⇒	!�N!�� = −12& !N!� − 12!&!� N 

 ⇒	 ��½��� = − +�& �− +�&N� − +� �i�� N, 	 putting  
�½�� = i½�   

 ⇒ +½ ���½��� + & �½�� + vN� = +½ �+�&�N − +� �i�� N − +�&�N + vN�  
 

 = Q − +� P� − +� �7�� = I						( say )   

 
Therefore , equation (4)  reduces  to  
 ¨ì¦¨§ì + An = � ……….         (6) 
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where  8 = '
&  , � = 2− Ý

�êì − Ýì ¨ê¨§ 
 
Equation  (6)  is called the normal  form  of  equation of   (1)  
 

Equation  (6)  can be solved  easily if   A   is  constant or   A = °��		 for some 

constant  % .…………………….. 
 

Example: Solve the equation 
������ + �� ���� + 	 = +� sin 2� 

 
Sol: Comparing the given equation with the standard equation  we have  

         & = �� 		 , v = 1		, ý = +� sin 2� 

Let  N = T=k�∫i�� = T=∫k��� = T���k�	 = +�   
 
Let  	 = Nn  be the general solution  .  Then the given   equation reduces to ��¡��� + �	v − i�� − +� �i��� n = #½  

 

or 
��¡��� + �	1 − +�� + +��� n = sin 2�   

 

or  (L� + 1)n = sin 2�		  …………….. (1)    where  L = ��� 
 
The auxiliary  equation of  (1)   is  �� + 1 = 0 ⇒ 		� = ±/ 
Therefore   p. s = � cos � + � sin � 
 &. A = +²��+ sin 2� = +=��+ sin 2� = 	− +� sin 2�  ⇒ n = 	� cos � + � sin � − +� sin 2�  

 
Thus , the general solution of the given equation  is    	 = Nn	 
or  	 = +� �	� cos � + � sin � − +� sin 2��  
 

Example 6: Solve    
������ − 4� ���� + (4�� − 1)	 = −3T��sin	 � 

 

Sol: Given  
������ − 4� ���� + (4�� − 1)	 = −3T��sin	 � ……….   (1) 

Comparing with the standard equation  
������ + P ���� + Q	 = R 

 
We have  & = −4�,			v	 = 4�� − 1,				ý = −3T��sin	 � 
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Let  N = 	T=k�∫ 	i�� = T=k�∫ 	(=��)�� = T�⋅��� = T�� 
 
let 	 = Nn  be the complete solution of  (1) 
With this substitution , equation  (1)  reduces to normal form  ��¡��� + An = �		 …………         (2) 

 

where  A = v − +�&� − +� �i�� = 4�� − 1 − 4�� + 2 = 1  

 

and  � = #½ = =�Ñ���?¢	 �Ñ�� = −3 sin �	 
 Therefore   (2)  becomes   

��¡��� + n = −3sin	 � ……….    (3) 

 
The characteristic equation of  (3)  is  :  �� + 1 = 0 
 ⇒ � = ±/  and   p. s = *+ cos � + *� sin � 
 P. I = +

���+ (−3 sin �) = (−3) +
���+ sin � = (−3)	�− �� cos ��  

  
The  complete primitive of the given equation is 	 = Nn = T�� Â *+*:c	 � + *�c/)	 � + �� �*:c	 �Ã  
 

Example 7:  Solve 
������ + (4 cosec 2�) ���� + (2tan�	 �)	 = T� cot �    reducing  

to normal  form . 
 

Sol. Given   
������ + (4 cosec 2�) ���� + (2tan�	 �)	 = T� cot �    ……….. (1)  

 

Comparing with    
������ + & ���� + v	 = ý		 

 
We have   & = 4 cosec 2� , 	v = 2tan�	 �	 and 	ý = T�cot	 � 
 

Let  N = T=k�∫ 	i�� = T∫ 	(=� ���å���)�� = e∫= �
:;-���� = e=∫ k

:;-� <=:��� 
                               = e=∫:><� �?@-� �� = T=���	 ØÙ¢	 � = cot	 �   
 
Let the  complete solution of (1)   be 
                   	 = Nn  
 
Then n is given  by :  
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��¡��� + An = �  ………………        (2) 

 
where  	A = v − +�&� − +� �i�� = 2 tan� � − +� (16 cosec� 2�) − +� (−8 cosec 2� cot 2�) 
 = 2 tan� � − 4	cosec� 2� + 4 cosec 2� cot 2�  
 = 2 tan� � − 4	*:cT*�2� + 4	*:cT*�2� cos 2�	   
 = 2 tan� � − 4	*:cT*�2�	(	1 − cos 2�)  
 = 2 tan� � − 4		*:cT*�2�	(	2 sin� �)  
 = 2 tan� � − 8	 sin� �(sin 2�)� = 2 tan� � − 2cos� � = 	2 tan� � − 2(sin� � + cos� �)cos� � = 	−2 

      

and      � = #
A = (Ñ� ��Ø �)��Ø � = T� 

 
Then (2)  becomes  
 ��¡���	 − 2n = T�  
or  (L� − 2)n = T�  ………..        (3) 
 
The  auxiliary equation  of   (3)   is 
 �� − 2 = 0 ⇒ 		m = 	±√2  
 ∴ 	 C.F.    of (3) 			= *+T�√� + *�T=�√� 
P.I. = +²�=� T� = +(+=�) T� = −T�  
 
Hence  , n = p. s + &. A = *+T�√� + *�T=�√� − T� 
The general solution of  (1)  is given by  
 	 = Nn  

or   	 = cot	 ��*+T�√� + *�T=�√� − T��  
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Changing the independent variable 
 

Let          
������ + & ���� + v	 = ý …………..      (1) 

 
be the given equation .   
Let the independent variable be changed from � to Z  by some relation   . 
 

Therefore  
���� = ���j ⋅ �j��  

 

and   
������ 	= ��� ������ = ��� ����j �j��� = ��� ����j� �j�� + ���j ��j��� 

 = ��j ����j� �j�� �j�� + ���j ��j��� = ����j� ��j���� + ���j ��j���  
 

replacing these  values of    
����    and   

������   , equation (1)  reduces to  

 

   
����j� ��j���� + ���j ��j��� + & ���j �j�� + v	 = ý	  

 

or 	 ¨ì¥¨Bì 		+ �¨ìB¨§ì�ê¨B¨§��¨B¨§�ì 		¨¥¨B + 2�¨B¨§�ì 	¥ = '�¨B¨§�ì      
 

Or     ̈
ì¥¨Bì + êÝ ¨¥¨B+	2Ý¥ = 'Ý  ………      (2)   

 

where 	&+ = �¨ìB¨§ì�ê¨B¨§��¨B¨§�ì 	 , 	v+ = C		�D*D���	 	 and 	ý+ =	 #		�D*D���	 …………..  (3) 

 
Equation  (2)   is of the same form as  equation (1)  and as such  will be useful if  &+	, v+  are constants .  

If  v = ±%	�(�) then   choosing  Z   such that  ��j���� = �(�)   will reduce   v+  
to a constant . 
 
If further , &+ also becomes  constant , then  (2)   is a linear  equation of  order  
two  with  constant  coefficient  and can be solved by previous methods .  
Also  in   equation (3) ,  if  we make  &+ = 0  

Then    ̈
ìB¨§ì + ê ¨B¨§ = ë	 ⇒ 	 ¨ìB¨§ì =	−ê ¨B¨§   or   

Ý̈
B¨§
¨̈§ �¨B¨§� = −ê 
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⇒ +D�D� ! ��j�j� = 	−&!�   

 ⇒ log ��j��� = − ∫ &!�  

 ⇒ �j�� = T=∫i��    ⇒ 		Z = ∫RT=∫i��S!� …………..    (4) 

 
If  with this  substitution  ,  v+   becomes  constant  , then   (2)  
 

will be  of the form  
¨ì¥¨Bì +2Ý¥ = 'Ý	 ……………….    (5) 

 

where   B = ∫RÓ=∫ê¨§S¨§		,				2Ý = 2�¨B¨§�ì 				,			'Ý = '�¨B¨§�ì	  ……………..   (6)  

 
We shall stress to remember  relation (2)  ,  (3)   or   (5) and  (6)   for direct use 
in the examples and exercises .  
 
We  give an example below where we started by making  &+ = 0  and hope that v+   becomes  constant .   
 

Example 8: Solve  
������ + �� ���� + ��� 	 = +�kE  

 

Sol:  Given   
������ + �� ���� + ��� 	 = +�kE      …………..    (1) 

 

Comparing with  
������ + & ���� + v	 = ý 

 

We have   & = �� , v = ���  and ý = +�kE 
 

Let  Z = ∫ T=∫ i�� = ∫ +�� !� = − +���.  ………..     (2) 

 

Then     
�j�� = +��   ⇒		 ��j���� = +��  . 

 

( It is clear that  
C�D*D���  is  constant  )    

With the substitution  as  given in  (2)  ,  equation  (1) 
 (using the relation 5 , 6  in the discussion )  becomes  
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����j� + v+	 = ý+	 ……………        (3)  

 

where  	v­ = C�D*D��� = 9 and ý­ = #�D*D��� = +�Ð = 4z�  
 
Equation (3)  becomes 	 
 (L� + 9)	 = 4z�   ……………..(4)    (  L = ��j		)	 
 
Whose  p. s = *+ cos 3Z + *� sin 3Z 
 &. A = +²��� 	4Z� = +

� 	�	1 + ²�
� �=+ 4Z� = +

� �	1 − ²�
� + ²Ðò+… . . � 4Z�  = �j�

� − òò+  
Therefore     	 = (*+ cos 3Z	 + *� sin 3Z) +	�j�� − òò+	 
 

 or     	 = �*+ cos �3 �− +�����	 + *� sin �3 �− +�����	� +	 +��Ð − òò+ 
 

            = *+ cos � ����� − *� sin � ����� + +
��Ð − òò+	 

 
Example 9: Solve  
 !�	!�� + tan � dydx	− (2cos�	 �)	 = 2cos�	 �. 
 

Sol. Given  : 
������ + tan � ���� 	− (2cos�	 �)	 = 2cos�	 �  …………  (1)  

 

Comparing (1) with 
	������ + & ���� + v	 = ý, we have 

 & = tan	 �,   v = −2cos�	 �   and    ý = 2cos�	 � 
 
Let  Z = ∫ T=∫ i�� = ∫T=∫ ØÙ¢ ��� !� = ∫ T��� ����!� = ∫ cos � !� = sin �	 
Therefore  

�j�� = cos � ⇒		 ������� = cos� � 

 
Changing  �  to  Z  with the substitution above , Equation  (1)   becomes  ����j� + C�D*D*�� 	 = #�D*D���     
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or  
����j� − 2	 = 2 cos� � = 2(1 − Z�)			   

 

Taking L = ��j   ,  we have   

 
  (L� − 2)	 = 2(1 − Z�)    ………………..      (2) 
 
Auxiliary equation of (2) is    �� − 2 = 0   giving � = ±√2.  ∴ C.F. of �2
 = *+T√�j + *�T=√j 
 

and   &. A = +(²�=�) 2(1 − Z�) = − ++=��� (1 − Z�) = �1 − ²�� �=+ (1 − Z�)	 
                  = �1 + ²�� +⋯� (1 − Z�) = 1 + Z� − 1 = Z�	  
 
Hence the required solution  is 	 =  C.F. + P.I  
or   		 = *+T√�j + *�T=√j + Z�  
or   	 = *+T√��?¢	 � + *�T=√��?¢	 � + sin� �		 
 
In the example below , we shall start by  makinga substitution in such  a way 
that  v+  becomes  constant  and  hope  that  &+ also becomes   constant .  
 

Example 10: Solve   
������  − �� + 4��	 = ��   

 

Sol. Given : 
������  − �� + 4��	 = ��  ………………     (1) 

 

Comparing with the equation   
������ + & ���� + v	 = ý, 	  

 

We have   & = − +� , 	v = 4��, 	ý = ��. 
 

Choose Z such that 	 ��j���� = 4��	 or 	 �j�� = 2�	 so that 	Z = �� ……….. (2) 

 
Then, (1) reduces to 
 ����j� + &+ ���+ + v+	 = ý+ ……………       (3) 
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where 	&+ = �D�*
D���iD*D���D*D��� = �=�..��� = 0			,      v+ = C�G,G.�� = ������ = 1   

 

   and    ý+ = #�G,G.�� = �Ð��� = ��� = j�    

 Therefore		  equation  (3)   becomes   
                (L� + 1)	 = j�   ……………..      (4)  

 
C.F. of (4) = *+cos	 Z + *�sin	 Z    …………..     (5) 
 

and    P.I. = +²��� �j�� = +� (1 + D�)=+Z = +� (1 − D� + D� −⋯ . )Z = j�. ∴ 	 	 = CF + PI = 	 *+cos	 Z + *�sin	 Z + j� = *+cos	 �� + *�sin	 �� + ���   

which is the general  solution  of  (1)  
 
Method of Variation of Parameters 
  

Let   
������ + & ���� + v	 = ý……………………..      (1) 

 

Suppose 	 = N		�)!			 = n   be  independent  solutions of   
������ + & ���� + v	 =0 ( i.e  N		�)!		n  are  part of the complimentary  solution  of  (1)  )  

 
Therefore   N� + &N+ + vN = 0			, n� + &n+ + vn = 0…….(*) 
 
Then        	 = �N + �n ---------------------      (2)    
 

  is  also  the general   solution of  
������ + & ���� + v	 = 0 

 
Let     	 = 6N + 7n ---------------------------       (2) 
 
be the general  solution of equation  (1)  ,  where  6	, 7	  are  functions of   �. 
Differentiating  we  get  
 	+ = 6N+ + 7n+ + (N6+ + n7+) -------------      (3)    

where   6+ = �l�� .  
 
In order to simplify the process , we take one extra condition called the  
Auxilliary  
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Condition namely –  
 N6+ + n7+ = 0  ------------------        (4) 
 
so that  (3) becomes   	+ = 6N+ + 7n+-----------     (5) 
 ⇒ 	� = 6N� + 7n� + 6+N+ + 7+n+ ------------     (6) 
 
 Putting the value of  		, 	+		�)!			�  from (2) , (5)  and  (6)    in  (1)   
   
we  get  (6N� + 7n� + 6+N+ + 7+n+) + &(6N+ + 7n+) + v(6N + 7n) = ý  
or  6(N� + &N+ + vN) + 7(n� + &n+ + vn) + 6+N+ + 7+n+) = ý 
 ⇒ 6+N+ + 7+n+ = ý   ----------------------      (7)   
using     (*) 
 
Now , 6+  and  7+ can  be solved  from   (4)  and  (7)   to  get  6+ = �l�� = 		ℎ(�)		,					7+ = �m�� = 4(�)   say  

 
So that   6			�)!		7  can be obtained by integration  .  
 
A quick method to find J  and  K  
 
Solving   (4)  and   (7)   we  get   get  
 6+ = �l�� = − ¡#½¡k=½k¡ = − ¡#

$ 		 ,      7+ = �m�� = ½#½¡k=½k¡ = ½#
$    

 

(Where   ; = (Nn+ − N+n) = % N nN+ n+%   called  the Wronskian of   N  and  n)  

 
from which  we  shall get  
 6 = −∫ ¡#$ 	!� + p+  ,   7 = ∫ ½#$ !�	 + p�  
 
The general solution is then  given by  	 = 6N + 7n 
 

or  ¥ = −&∫ ¦'( 	¨§	+ ¦∫ &'
( ¨§	 

 

Example 11: Solve (� − 1) ������ − � ���� + y = (� − 1)�   by the method of 

variation of parameters. 
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Sol. The given equation can be written as  
 ������ − �(�=+) ���� + �(�=+) = (� − 1)  ……….      (1) 

 

Comparing with 
������ + & ���� + v	 = ý 

 

we have  P = =�(�=+) , 				v = +(�=+) 			,				ý = (� − 1) 
 

Now   1 + & + v = 1 − ��=++ +�=+ = �=+=��+�=+ = 0  

 ⇒ N = T�    is a part of the p. s  of  (1)   
 
Also & + v� = =��=+ + ���+ = 0 

 ⇒ n = � is a part of the p. s  of  (1)  
 
The wroskian of N  and  n  is  given  by 
  ; = (Nn+ − N+n) = %T� �T� 1% = T�(1 − �)  
 
Let  	 = 6N + 7n = 	6T� + 7� 
 
be the complete solution of   (1) 

Then  6 = −∫ ¡#$ 	!� = −∫ �(�=+)Ñ�(+=�) 	!� = ∫�T=� !� = 	−T=�(1 + �) + *+	  ,  
   7 = ∫ ½#$ !� = ∫ Ñ�(�=+)Ñ�(+=�) 	!� = ∫−1!� = 	−� + *�  
 
Therefore the complete solution is given  by  	 = 6T� + 7� = (−T=�(1 + �) + *+)T� + (−� + *�)�   
 

Example 12: Solve 
������ +��	 = sec	��    by the method of variation of 

parameters. 
 

Sol. Given equation is   
������ + ��	 = sec	 ��    ……….    (1) 

 
The auxiliary  equation is  �� + �� = 0 ⇒ 		� = 	±/� 
Therefore  p. s  of  (1)  is  	 = p+ cos �� + p� sin �� 
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We  have  N = cos ��		 , n = sin ��  are  parts of the complimentary function .  
The wroskian  of  N  and  n  is given by  
 ; = (Nn+ − N+n) = % cos �� sin ��−� sin �� � cos ��% = �  

 
Let   y = 6cos	 �� + 7sin	 ��  be the complete solution of  (1)   
Then   
 6 = −∫ ¡#$ 	!� = −∫ �?¢$� �å�$�$ 	!� = +$� ∫ =$ �?¢$����$�	 !� = +$� log cos �� + *+  ,   
 7 = ∫ ½#$ !� = ∫ (���$� �å�$�)$ 	!� = �$ + *�  
 
Therefore the complete solution is given  by  
 	 = �	 +$� log cos �� + *+� cos �� + ��$ + *�� sin ��  

 

Example 13:  Solve 
������ − 2 ���� = T�sin	 � by the method of variation of  

                        parameters. 
 

Sol. Writing  L = ���		,		the given equation is 	(L� − 2L)	 = T� sin � … ..	 (1) 

 
The auxiliary equation  of (1)  is  :  
 
 �� − 2� = 0 ⇒ 		� = 0	, 2 
Therefore  p. s = p+TY� + p�T�� = p+ + p�T��  
It can be seen that N = 1, n = T��  are part of the p. s . 
 
The wroskian of  1		�)!		T��  is given  by  ; = %N nN′ n′% = %1 T��0 2T��% = 2T��  
 
Let 	 = 6N + 7n = 6 + 7T��  be the complete solution of (1)  
 

Then  6 = −∫ ¡#$ 	!� = −∫ (Ñ��Ñ� �?¢ �)�Ñ�� 	!� = − +�∫ T� sin � !� 

 

                = − Ñ�� (sin � − cos�) + *+  ,    
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7 = ∫ ½#$ !� = 	∫ (Ñ� �?¢ �)�Ñ�� 	!� = +�∫ T=� sin � !� = ÑÚ�� (	− sin � − cos �) + *�   
 
Therefore , the complete solution of (1)  is given by  	 = 6 + 7T�� =	− Ñ�� (sin � − cos �) + *+ 	+ �ÑÚ�� (	− sin � − cos�) +*�� T��	  
 = −T�4 (sin � − cos �) + *+ 	+ T�4 (	− sin � − cos �) + *�T��	 
 = − Ñ�� sin � + *�T�� + *+   
 

Example 14: Solve the equation   
������ + 4	 = 4tan	 2� 

 

Sol. Given equation is 
������ + 4	 = 4tan	 2�   ……………..   (1) 

 
which can be written as  L� + 4 = 4tan	 2�  …………..    (2) 
 
The auxiliary equation is  �� + 4 = 0	 ⇒ 		� = 	±2/ 
Therefore  p. s = p+ cos 2� + p�c/)2�	 
 
We have  N = cos � 			 , n = sin � 		�'T	J�'#c	 of the p. s. 
 
Let  	 = 6L + 7n = 6 cos � + 7 sin �		  be the complete solution of (1) . 
Now , the wroskian of  N  and  n  is  given by 
  ; = %N nN′ n′% = % cos 2� sin 2�−2sin � 2 cos2�% = 2  

 

Therefore  ,  6 = ∫ 	 =¡#��$ = −∫ 	 �?¢ ��⋅� ØÙ¢ ��� !� = −2∫ 	 �?¢� ������� !� 

 = −2∫ 	 +=��� 	�������� !�	 = −2∫ 	 Â +����� − cos 2�Ã !�	  
 = −2[∫ 	 sec 2�!� − ∫ 	 cos 2�!�Ï = −2 Â���|�å� ���ØÙ¢ ��|

� − �?¢ ��
� Ã + *+ 	  = −[log|sec 2� + tan 2�|P + sin 2� + *+  

 7 = � 	 ½#��$ 	= ∫ 	 �����⋅� ØÙ¢��� !� = 2∫ 	 cos 2� �?¢ ����� �� !�  
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                        	= 2∫ 	 sin 2�!� = −cos 2� + *�  
 
the complete solution of the given  equation  is given by  
 	 = 6N + 7n 
 
or  	 = ((	−[log|sec 2� + tan 2�|P + sin 2� + *+
 cos � + �−cos	 2�  +	*�	) sin �  
 

Example 15:  Solve the differential equation: �� ������ − 4� ���� + 6	 = ��log	 �  

                     using method of variation of parameters. 
 

 Sol: Let  � = TÜ	 ∴ log	 � = #    so that   
���� = ���Ü �Ü�� = +� ���Ü 

 

           ⇒ � ���� = ���Ü ⇒ 		� ���� = L					  where  L = ��Ü 
 

  Similarly  
������ = D(D− 1)y  

 ∴ Given differential becomes  
 (D(D− 1) − 4D+ 6)	 = #T�Ü ⇒ (L� − 5L + 6)	 = #T�Ü  …………      (1) 
 
Auxiliary equation of  (1)  is:         (�� − 5� + 6) = 0  
or  (� − 2)(� − 3) = 0              ⇒ � = 2,3 
 C.F. = p+T�Ü + p�T�Ü 
 Therefore			N = T�Ü and   n = T�Ü  are part of the p. s  
The wroskian of  N and  n  is  given by  
 ; = %N nN′ n′% = % T�Ü T�Ü2T�Ü 3T�Ü% = T�Ü     
 
Let  	 = 6N + 7n   be the complete solution of     (1)   
 

Then    6 = −∫ 	 Ñ�MÜÑ�MÑÖM !# = −∫ 	 #!# = − Ü�� + *+ 
 

            7 = ∫ 	 Ñ�MÜÑ�MÑÖM !# = ∫ 	 #T=Ü!# = −te=Ø + ∫ T=Ü!# 
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                  = −#T=Ü − T=Ü + *� 
 Therefore	  the required  solution is   
 	 = 6N + 7n = �− Ü�� + *+� T�Ü + (−#T=Ü − T=Ü + *�)T�Ü  
 

  = �− (��� �)�� + *+� �� − (log � + 1)�� + *��� 
 
Example 16: By the method of variation of parameters, solve �� ������ − 2�(1 + �) ���� + 2(� + 1)	 = ��  , given that N = �T��  is a solution 

of  
 M. ü. � = 0  
 
Sol: Given equation is 
 

                
������ − �(+��)� ���� + �(��+)�� 	 = �  

 
Comparing with the standard equation , we have  
 

            & = − �(+��)� ,									v = �(��+)�� 			 , ý = �  

 
Since   	P + Q� = 0 ∴ 		n = � is a part of C.F  
Also , N = �T��  is  part of  p. s   (  given )  
The wroskian of  N  and  n  is given by  
 ; = %N nN′ n′% =	 G �T�� �T��(1 + 2�) 1G = −2��T��  
 
Let    	 = 6N + 7n = 6� + 7�T��  
 

Then  6 = 	−∫ ¡#$ !� = ∫ �����Ñ�� !� = +� 	∫ T=��!� = − +� T=�� + *+ 7 = �Ný; 	!� = � ��T��−2��T�� !� =�−12!� = �−�2 + *�� 
 
The complete solution of the given  equation is given  by  
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 	 = 6N + 7n = �− +� T=�� + *+� �T�� + �− �� + *�� �		  
 
Solution by factorizing the  Operator 
  

Let   
������ + & ���� + v	 = ý……………………..      (1) 

 
be the given equation .  
 

Let L = ��� 		 , L� = �����  
 
Suppose that M.ü. �	  of (1)  can be factorized into linear factors of  L  of the 
form 
 �+(L, �)��(L, �)	          (order sensitive )   , where  �+  and  �� are functions of  L and � . 
 
Then  (1)  can be written   as  
 �+(L, �)��(L, �)	 = ý							………       (2)     
   
Taking  ��(L, �)	 = n ,  (2)  will reduce  to 
  �+(L, �)n = ý  , which is  a linear equation of  first order  and can be solved for n . 
The general solution will be found by solving  n  from the equation  
 ��(L, �)	 = n  . 
 

Example 17:  Solve    � ������ + (� − 2) ���� 	− 2	 = ��. 
 

Sol:  Let  L = ���   . The given  equation   can be written as  [�L� + (� − 2)L − 2]	 = ��  
 :'		(�L − 2)(L + 1)	 = ��  ……………      (1) 
 
Put     (L + 1)	 = n  Then	 Equation    (1) b 
ecomes  (�L − 2)n = �� 
 

or    	� �¡�� − 2n = ��  
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or    
�¡�� − �� n = ��  …………………..      (2)  

 
which is linear and  first order  .  
 

I.F. of  (2)   = e∫ �=����� = T����Ú� = +��.  
 
Therefore , solution of (2)   is given  by  
 

  
¡�� = ∫ ���� 	!� = ∫1	!� = (� + *+)	  

 ⇒ n = �� + *+��    
 ⇒ (L + 1)	 = �� + *+��  
 

or  
���� + 	 = (	�� + *+��) ……………      (3)  

 
I.F. of  (3)   = T∫ +�� = T� 
. ∴ 	 The solution of  (3)  ( which is also solution to the  given differential 
equation )  is given by 
 	T� = ∫ T�(	�� + *+��)!�	 = 	∫ 	 T���!� + *+ ∫ 	 ��T�!�  
 
  = ��T� − ∫ 3��T�!� + *+R��T� − ∫ 2�T�!�S 
 = ��T� + *+��T� − R	3��T� − ∫ 6�T�!�S − *+R2�T� − ∫ 2T�!�S   
 = ��T� + (*+ − 3)��T� + 6�T� − 6T� − 2*+�T� + 2*+T� + *�  
 = T��� + (*+ − 3)(�� − 2� + 2)T� + *� 
 ⇒	. 	 = �� + (*+ − 3)(�� − 2� + 2) + *�T=�  
 

Example 18: Solve � ������ + (� − 2) ���� 	− 2	 = ��. 
Sol. Let  L = ���	,   then the   given equation can be written as  

 [�L� + (� − 2)L − 2]	 = ��.  ………….      (1)  
 
We have  ,   �L� + (� − 2)L − 2 = �L� + �L − 2L − 2 
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                         = �L(L + 1) − 2(L + 1) = (�L − 2)(L + 1) 
 
Hence (1) becomes  
 (�L − 2)(L + 1)	 = ��        ………………     (2) 
 
Let        (L + 1)	 = n     ………………………..     (3)  
 
From (2)     (�L − 2)n = ��.  
         or      � �¡�� − 2n = �� 
           or        

�¡�� − �� n = ��  ………………….     (4)  

which is linear and first order . Its. I.F. = e∫=����	 = T=����	 � = �=� = 1/��   
 Therefore  solution of (4) is 
 ¡�� = ∫ ����	 !� + *+	      or 	 		 ¡�� = � + *+	 or 	n = �� + *+��  
 
Putting  the value of  n  in  (3)   , we get   
 

                 
���� + 	 = �� + *+��  

which is again a linear and first order  equation .  Its I.F. = T∫ �� = T�.    
Therefore  	T� = ∫ T�(�� + *+��)!� 
 
or   	T� = (�� + *+��)T� − ∫(3�� + 2*+�)e�!�  
 = (�� + *+��)T� − (3�� + 2*+�)e� + ∫ (6� + 2*+)T�	!� 
 = (�� + *+��)T� − (3�� + 2*+�)e� + (6� + 2*+)T� − ∫ 6T�!� 
 = (�� + *+��)T� − (3�� + 2*+�)e� + (6� + 2*+)T� − 6T� + *�  
 
Exercises  

Solve the following differential Equations  ( 	­ = ���� 			 , 	­­ = ������  
1. 

������ − cot � ���� − (1 − cot	 �)	 = T�sin	 �. 

 

Ans : 	 = *+T� + *�T=�(cos	 � + 2sin	 �) − +� T�cos	 � 
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2. ��	′′ − 2�(1 + �)y′ + 2(1 + �)	 = ��. 
 
Ans :  2	 = �(*+T�� + *� − �) 

 
3. ��	′′ + 2�y′ − 2	 = 1. 

 

Ans:  	 = *+� + *��T�/� − +� 
 

4. (� + 2)	′′ − (4� + 9)y′ + (3� + 7)	 = 0. 
             

 Ans. 	 = *+T� + *�T��(2� + 3)  
 

5. 
������ − 4� ���� + 4��	 = � 

 

6. 
������ − 4� ���� + (4�� − 3)	 = T�� 
 

7. �	′′ − y′ − 4��	 = ��. 
 

Ans : 	 = *+T�� + *�T=�� − ���  

 
8. �	′′ − y′ + 4��	 = 8��sin	 ��.  

 
Ans. 	 = *+cos	 �� + *�sin	 �� − ��cos	 �� 

 
9. 	′′ − 4y′ + 4	 = T�sin	 �. 

 

Ans : 	 = (*+ + *��)T�� + +� T�cos	 � 
 

10. �	­­ − (2� − 1)	­ + (� − 1)	 = T� 
 

11. Solve 
������ − �� ⋅ ���� + �	 = � 

 
Given 	 = � is a solution of ��	­­ + �	­ − 	 = 0. 
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Chapter-8 
 

Symmetric Simultaneous and Total Differential 
Equations 

 
 
Pre-requisites  
 
Let  

$« = �� = �� 		= 			'		(c�		) 
 ⇒ � = �'		, * = !'			, J = K'	 
  
If  )	, �	, )	 are three  numbers not all zero   then  
 N$����-�
N«����-� = N«
���
�-�


N«����-� = ' = $« = �� = ��  
                         
Simultaneous Differential equations ( symmetrical form )     
 

Equations of the form     
¨§ê = ¨¥

2 = ¨B
'   ………………    (1) 

 
Suppose  from (1) we  can  find  two relations  of  the  form   
 
  N(�, 	, Z) = *+  …………….(2) 
 
and    n(�, 	, Z) = *�    ………(3) 
 
Then  the general  solution of  equation (1)  is  of  the form   �(*+	, *�	) = 0    
or   *+ = 8(*�)    for  some  function   �		, 8  . We can also  simply take the 
relations (2)  and  (3)   together as the complete  solution  of  (1) .  
 

Rule I for solving ̈
§ê 	= ¨¥

2 		= ¨B
'   

 
By equating two of the three fractions of (1), we may be able to get an equation 
in only two variables. On integrating the differential equation in only two 
variables we shall obtain one of  the relations in the general solution of (1).  
This method may be  repeated to give another relation with help of two other 
fractions of (1). 
 

Example 1: Solve the equation   
���j = ���j = �jj   
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Sol:  Given   
���j = ���j = �jj  ……………..      (1) 

 
From the first two fractions of  (1)  we have  ��� = ���     or   

��� − ��� = 0 

 
Integrating we get   log � − log	 = log *+ 
or        

�� = *+  ………….(3)  

 
from the last two fractions  of  (1)   , we have  ��� = !Z	    .  Integrating we get  , log 	 = Z + p ⇒ 	 = Tj�µ = TjTµ = Tj*�  ⇒ 	T=j = *� …………….(3)  
 
Hence , the general  solution  of  (1)  is given  by  *+ = �(*�) 
or   

�� = �(	T=j)  for  some  function   � .  

 

Example 2:   Solve      
���j = ��j� = �j�� 

 
Sol:  Taking the first two  fractions    
 

we get      
���j = ��j�    or   �!� − 	!	 = 0	   or   2�!� − 2	!	 = 0  ⇒ !(�� − 	�) = 0  

 
Integrating,  we get  �� − 	� = *+ 
 
Taking the last two  fractions ,  
 

we get  
��j = �j� 	  or   	!Z − Z!	 = 0  or   2	!	 − 2Z!Z = 0 ⇒ 		!(	� − Z�) = 0  

 
Integrating  we get ,    	� − Z� = *�  
The general  solution  is  of the form  �(*+, *�) = 0 
 or  �(�� − 	�	, 	� − Z�) = 0  for  some  function  � .  
 

Example 3:   Solve      !� = ���� = !Z  
Sol:   Given  !� = ���� = !Z   ……………..      (1)  

Taking the first two  fractions    
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we get      dx = ����     ⇒ !� − ���� = 0 

 

Integrating,  we get  � + +� = *+  
 
Taking the first and last   fractions ,  
 
we get  !� = !Z		  or   !� − !Z = 0   
 
Integrating  we get ,    � − Z = *�  
 
The general  solution  is  of the form  �(*+, *�) = 0 

 or   � �� + +� 	 , � − Z� = 0  for  some  function  � .  

 

Rule II for solving   
¨§ê 	= ¨¥

2 	= ¨B
'  

 
Suppose only one relation N(�, 	, Z) 	= 	 *+	can be found by using rule I. Then, 
sometimes we try to use this relation in expressing one variable in terms of the 
others.  
 
This may help us to obtain an equation in two variables. The solution of this 
equation  will give a second  relation of the form n(�, 	, Z) = *�.  
 

Example 4:   Solve    
���� = ���� = �jj��=���. 

 

Sol.  Given  
���� = ���� = �jj��=���   ………………     (1)   

 

Taking the first two fractions we have   
	��� = ��� = 0  

 ⇒ ��� − ��� = 0 .  Integrating  we get  , log � − log 	 = log *+ 
or   

�� = *+ ……………….        (2)  

 
   ⇒ � = *+	   …………….        (3)  
 
Taking the  second and third fractions and  suing  (3) , we have  
 

          
���� = �j�kj��=��k���  
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or        *+!	 = �jj=��k�.  
 
Integrating  we get  ,    *+	 − log	(Z − 2*�	+) = *� 
using   (3)  we get  
 
   � − log	(Z − 2��/	�) = *�.   …………..      (4)    
 
The complete solution is given   by  �(*+, *�)  for  some  functions  � . 
where  *+  and *�  are   given  by  (2)   and  (4)  .  
 

Example 5:  Solve    
��j = ��=j = �jj��(���)�. 

 

Sol :  Given   
��j = ��=j = �jj��(���)�    ……………..     (1)  

 
Taking the first  two fractions  , we have  !� = −!		 ⇒ 			!� + !	 = 0  
Intgerating  we get   � + 	 = *+  ……………..     (2)  
 
Taking  the  last  two  fractions   and  using (2)  we get   j�jj��(���)� + !	 = 0     or    

j�jj���k� + !	 = 0       

 

or   
�j�jj���k� + 2!	 = 0      

  
Integrating  we get  log(Z� + *+�) + 2	 = *�  
or  log(Z� + (� + 	)�) + 2	 = *�   ………….     (3)  
 
The complete solution is of the form   *+ = 8(*�)  where  *+	, *�  are given  by (2)  and  (3)  . 
 

Rule III for solving 	¨§ê 	= ¨¥
2 	= ¨B

'    ………     (1) 

 
The  use of  Lagrange’s Multipliers  
 
Let  �+	, ��		, ��  be  three numbers  or funtions of  �, 	, Z 
 

Then    
��i 	= ��

C 	= �j
# = �k�����������j

�ki���C���#            

 
If   �+& +��v +��ý = 0   then  �+!� +��!	 + ��!Z = 0  
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Choosing  �+	, ��		, �� in  such a  way that  �+!� +��!	 +��!Z   is  
integrable, one solution N(�, 	, Z) = *+   can be  found .  
 
The  method  can be repeated with a  different  set  of  �+, ��	, ��  to get  
another  relation  of the  form   n(�, 	, Z) = *� 
 
(Here  �+, ��		, ��		  are   known as  Lagrange’s  multipliers  )  
 

Example 6: Solve the simultaneous equations 
���j�=��j=�� = ����j = �j�=j. 

 

Sol: The given equations are    
���j�=��j=�� = ����j = �j�=j   ……………  (1)  

 
Choosing �, 	, Z as multipliers, each fraction of  (1)   are equal to  
 �!� + 	!	 + Z!ZZ� − 2	Z − 	� + 	(	 + Z) + Z(	 − Z) = �!� + 	!	 + Z!Z0  

 ⇒ �!� + 	!	 + Z!Z = 0  
 

Integrating, we get     
��� + ��� + j�� = p 

,  or				�� + 	� + Z� = *+  
 

From last two fractions of Equation (1), we have   
����j = �j�=j 

 ⇒ 	(	 − Z)!	 = (	 + Z)!Z  
 ⇒ 	!	 − (Z!	 + 	!Z) − Z!Z = 0  
 ⇒ 	!	 − !(	Z) − Z!Z = 0  
 

Integrating, we get   
��� − 	Z − j�� = p+  

 or					� − 2	Z − Z� = *�  
 
Therefore , the general solution of the given equation is of the form  *+ = 		�(*�)  
 
or  �� + 	� + Z� = �(	� − 2	Z − Z�)   for  some function � .  
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Example 7: Solve 
����j = ��j�� = �j���. 

 

Sol: Given    
����j = ��j�� = �j���    …………………….    (1)   

 
Choose multipliers  	1, −1	, 0				; 			0	, 1, −1			; 			1,1,1 
 

each fractions of (1)  are equal  to   
��=���=�    ,  

��=�jj=�   and   
�������j�(����j)  

 

Therefore     
��=���=� = ��=�jj=� = �������j�(����j)   …………    (2) 

 

From  first two fractions , we have   
��=���=� = ��=�jj=�  

 ⇒ �(�=�)�=� = �(�=j)j=�     or   
�(�=�)�=� = �(�=j)�=j  

 
On integrating, we get    log	(� − 	) = log	(	 − Z) + log	 *+ ⇒ 	(�=�)�=j = *+				   …………..        (3)  

 
Again choosing the first and the last fractions   of (2)  ,  
 

we have,    
��=���=� = �������j�(����j)     or   

�(�=�)(�=�) = − �(����j)�(����j)			 		  
Integrating we get  ,   log(� − 	) = − +� log(� + 	 + Z) + log	 p  = − log(� + 	 + Z)k� + logp  
 ⇒	 log(� − 	) + log(� + 	 + Z)k� = logp  
 ⇒ (� − 	)(� + 	 + Z)k� = p  
 	or				(� − 	)�(� + 	 + Z) = *�  ……………….     (4) 
 
Thus , the general solution  of  (1)  is  of the form  �(*+, *�) = 0   for  some  function   �  .  where   *+	, *�   are  given  by  
(3)   and  (4)  
 

Example 8:  Solve 
��j=� = ���=j = �j�=� 
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Sol:  Taking multipliers  1	, 1	, 1	 each  fraction are equal to  
 �������jj=���=j��=� = �������jY   

 ⇒ !� + !	 + !Z = 0 
 
or   !(� + 	 + Z) = 0 
 
Integrating we get     � + 	 + Z = *+  
 
Taking multipliers �	, 		, Z	  each  fractions  are equal to  
   ��������j�j�j=�����=�j�j�=j� = ��������j�jY   

 ⇒ �!� + 	!	 + Z!Z = 0  
 
or !(�� + 	� + Z�) = 0 
Integrating we get ,   
 �� + 	� + Z� = *�  
 
The general  solution is of the form   �(*+, *�) = 0  
 
or  �(� + 	 + Z		, �� + 	� + Z�) = 0   for  some  function  �	 . 
  

Example 9: Solve    
���(���)��j = ���(���)=�j = �jj(���). 

 

Sol:  Given  
���(���)��j = ���(���)=�j = �jj(���)  …………….   (1)  

 

Taking  multipliers  1	,1	, 0  each  fractions of  (1)   are equal  to  
�����(���)�  . 

 

Therefore 
�����(���)� = �jj(���)  ⇒ �(���)��� = �jj   

 ⇒ �(���)��� − �jj = 0  

 
Integrating we get   , log(� + 	) − log Z = log *+ 
or  log ���j = log *+ 	⇒ 		 ���j = *+   
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Again , taking  multipliers  �	, −		, 0  , each  fractions of  (1)  are equal  to  

  
���=����j(���)  

 

Therefore  
���=����j(���) =	 �jj(���)   or    �!� − 	!	 − 3!Z = 0  

 

Integrating we get  , 
��� − ��� − 3Z = p 

 
 or  �� − 	� − 6Z	 = *�  
 
Therefore , the general solution is given by  
 � ����j 	 , �� − 	� − 6Z	� = 0  for  some  function  � .  

 

Example 10: Solve    
���(��=j�) = ���(j�=��) = �jj(��=��).  

 

Sol: Given     
���(��=j�) = ���(j�=��) = �jj(��=��)  …………….   (1) 

 
Choosing �, 	, Z as multipliers, each fraction of (1)  are equal to  
 �!� + 	!	 + Z!Z��(	� − Z�) + 	�(Z� − ��) + Z�(�� − 	�) = �!� + 	!	 + Z!Z0  

 ⇒	 	�!� + 	!	 + Z!Z = 0	 or     2�!� + 2	!	 + 2Z!Z = 0.   
 
Integrating we get , 	�� + 	� + Z� = *+ ………….     (2) 
 

Again choosing 
+� , +� 	 , +j  as multipliers, each fraction of (1)  are equal to  

 !�/� + !	/	 + !Z/Z(	� − Z�) + (Z� − ��) + (�� − 	�) = !�/� + !	/	 + !Z/Z0  

 ⇒ 	!�� + !		 + !ZZ = 0   

  
Integrating we get  , 	log	 � + log	 	 + log	 Z = log	 *� 
or     log	 �	Z = log	 *� ⇒ 		�	Z = *�  …………..        (3) 
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The complete solution is given �(*+, *�) = 0  where  *+	, *� are  given  
 by the relations (2) and (3). 
 

Example 11. Solve 
���=j� = �����j = �j�����. 

 

Sol. Given  equation : 
���=j� = �����j = �j�����   …………    (1) 

 
    Choosing �,−	, Z as multipliers, each fraction of (1) are equal to   
 = �!� − 	!	 + Z!Z�(	 − Z�) − 	(� + 	Z) + Z(�� + 	�) = �!� − 	!	 + Z!Z0  

 ⇒ 	�!� − 	!	 + Z!Z = 0  or     	2�!� − 2	!	 + 2Z!Z = 0. 
 
Integrating  we get , 	�� − 	� + Z� = *+ ………….    (2) 
Again, choosing 	, �, −1 as multipliers, each fraction of (1) 
 = 	!� + �!	 − !Z	(	 − Z�) + �(� + 	Z) − (�� + 	�) = 	!� + �!	 − !Z0  

 ⇒ 		!� + �!	 − !Z = 0	 or 			!(�	) − !Z = 0  
 
Integrating we get ,       �	 − Z = *�  ………………    (3) 
The general solution is given by the relations (2) and (3). 
 

Example 12. Solve 
���=� = ����� = �j��j. 

 

Sol. Given  equation : 
���=� = ����� = �j��j   ……………..    (1) 

 
Taking the first two fractions  of  (1)  , we have  

                   
���� = ����=� ……………       (2) 

 

Let      
�� = n	  or   	 = n�			 so that  

���� = n + � �¡�� 
 
Then  (2)   becomes  
 n + � �¡�� = +�¡+=¡ 	 or    	� �¡�� = +�¡+=¡ − n = +�¡=¡(+=¡)+=¡ = +�¡�+=¡   
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or 	 +=¡+�¡� !n = ��� 	 or 	 � �+�¡� − �¡+�¡��!n = ����   

 

or  
�� !� + �¡+�¡� !n = �+�¡� 	!n 

 
Integrating we get , log �� + log(1 + n�) = 2 tan=+ n + p 
 
or    ��(1 + n�) = TµT�(ØÙ¢Úk ¡)   or   ��(1 + n�) = *�T�ØÙ¢Úk	 ¡ 
or   (�� + 	�)T=�ØÙ¢Úk	(�/�) = *+  ……………………    (3) 
 

Choosing 1,1, − +j as multipliers, each fraction   of (1)  

 = �����=(+/j)�j(�=�)�(���)=(+/j)×(��j) = �����=(+/j)�jY   

 ⇒ 		!� + !	 − +j !Z = 0  

 
Integrating  we get  ,  � + 	 − log Z = *�  ……….     (4) 
The  realtions  (2)   and  (3)   together  constitutes the general  solution  
of  the  given equation .  
 

Example 13. Solve 
��(�����) = ����� = �jj(���) 

 

Sol. Given    
������� = ����� = �j(���)j  ……………….     (1) 

 
Choosing 1,1,0 as multipliers, each fraction of (1) are  equal to  

          	 �������������� = �����(���)� ………………      (2) 

 
Choosing 1,−1,0 as multipliers, each fraction of (1)  are equal  to  

            
��=�������=��� = ��=��(�=�)�  ……………..      (3) 

 

Equating   (2) and (3)  we  have , 	    �����(���)� = ��=��(�=�)�  
 

Integrating, 	 − +��� = − +�=� + p	    or  
+��� = +�=� + *+  

 ⇒ �=���� = *+ ……………….        (4) 

 
Equating   the last fraction of (1) and (2), we have 
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�����(���)� = �j(���)j           or    
�(���)��� − �jj = 0  

 
Integrating, 	log	(� + 	) − log	 Z = log	 *� 
 
or    (� + 	)/Z = *�   …………..       (5) 
Relations (4) and (5)  together  constitute  the general  solution .  
 
Total Differential equations 
 
A total differential equation involves the total derivative of a function with 
respect to all its  variables . In three dimensional space, total differential 
equations  take the form  &!� + v!	 + ý!Z = 0   …………….      (1) 
 
where  &	, v	, ý are  functions of  �		, 		, Z  .  
If there exists a function N  of  �	, 		, Z   such that its total derivative  	!N is 
equal to the  M.ü. �  of  (1)  or its multiple   i.e  !N = &!� + v!	 + ý!Z   or  
 !N = Ä(	&!� + v!	 + ý!Z	)   then   &(§, ¥, B) = ö   obtained directly by 
integration  is a  solution of  (1)  .  In most cases however , equation (1)  cannot 
be so easily solved  or  may not be integrable  at all . We discuss below one 
theorem that guarantee the integrability  of  equation (1) called  the Necessary 
and sufficient conditions for integrability of total   differential equation.  
 
Necessary and sufficient conditions for integrability  
 
The Necessary and sufficient condition for the integrability of the  
equation :     &!�	 + 	v!		 + 	ý!Z	 = 	0.   is  
 

                  & ��C�j − �#��� + v ��#�� − �i�j� + ý ��i�� − �C��� = 0. 

 
Proof :  The condition is necessary 
 
Let        &!� + v!	 + ý!Z = 0	 ………….(1)  
 
be the given  equation  where &,v, ý are functions of �, 	, Z. 
Let  (1)  be integrable and its integral be   N(�, 	, Z) = *   
 
Then the  total differential !N must be equal to  a multiple  of   &!� + v!	 + ý!Z  . 
 
i.e     !N = Ä(	&!� + v!	 + ý!Z)                ( Ä  need  not be a constant  )  
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and since      !N = ��½��� !� + ��½���!	 + ��½�j�!Z. 
 Ä& = �½��¬ ,				 	Äv = �½��¬ 	 and    Äý = �½�j  ………………    (2)  

 
From the first two equations of (2), we get 
 

               
��½�� �� = ��� ��½��� = ��� (Ä&) = Ä �i�� + & �O��  

 

      and   
��½���� = ��� ��½��� = ��� (Äv) = Ä �C�� + v �O��     and as        

��½�� �� = ��½����  
 

We have           Ä �i�� + & �O�� = Ä �C�� + v �O��  
 

     ⇒          Ä ��i�� − �C��� = v �O�� − & �O��  ………….     (3)  

 

Similarly ,  Ä ��C�j − �#��� = ý �O�� − v �O�j   …………..    (4) 

 

       and      Ä ��#�� − �i�j� = & �O�j − ý �O��  ……………    (5) 

 
Multiplying (3) , (4 )  and (5)  by ý, & and v respectively and adding, we get & ��C�j − �#��� + v ��#�� − �i�j� + ý ��i�� − �C��� = 0.  
This proves the condition is necessary .  
 
Conversely , The Condition is Sufficient 
 
Let  the coefficients P, Q and R  satisfy the condition 
 

     & ��C�j − �#��� + v ��#�� − �i�j� + ý ��i�� − �C��� = 0.  ………….   (6)  

 
Consider the equation   P!� + Q!	 = 0  …………..    (7) 
 
We can assume that (7)  is exact for otherwise we can always multiply by its 
integrating  factor to make it exact .  
Since (7) is exact , we have   P!� + Q!	 = ! V  for some function ¿ .  
 ⇒ 	P!� + Q!	 = ∂V∂� !� + ∂V∂	 !	 
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∴ 	P = �Q��  and Q = �Q��      ………       (8)  

 

  ⇒	 	 �7�j = �� Q�j �� and  
�R�j = �� Q�j �� 

 

Also, 
�7�� = �� Q�� ��   and   

�R�� = �� Q�� �� = ��À����  
 ∴ 	 ∂P∂	 = ∂Q∂� 				 
 
Substituting the above values in Equation   (6) , we get 
 �Q�� � �� Q�j �� − �S��� + �Q�� ��S�� − �� Q�j ��� + R ��R�� − �R��� = 0  

 ⇒ �Q�� � �� Q�j �� − �S��� + �Q�� ��S�� − �� Q�j ��� = 0  

 ⇒	 �Q�� ⋅ ��� ��Q�j − R� − �Q�� ⋅ ��� ��Q�j − R� = 0  

 

⇒ H�À�� ��� ��À�j − ý��À�� ��� ��À�j − ý�H = 0. 

 

The last equation shows that the Jacobian of ¿  and ��À�j − ý�   is  zero . Hence ¿ and  ��À�j − ý�  are functionally related ( see theory of jacobian )  .   

 

which implies that there exists a relation between ¿ and ��Q�j − R�  independent 

of � and 	.  
 

Finally we  express  ��À�j − ý�	 as a function of Z and ¿ .  

 �À�j − ý = 8(Z, ¿).  ………..(8) 

 

Now,  &!� + v!	 + ý!Z = �À�� !� + �À�� !	 + ��À�j − 8�!Z      (  using (8)  and  

(9)  )  = ��À�� !� + �À�� !	 + �À�j !Z� − 8!Z = !¿ − 8!Z  
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Thus (1) may be written as 
 
 !¿ − 8!Z = 0  
which is an equation in two variables which will have solution of the form  4(¿, Z) = 0.   for some function  4  .  
 
This proves the condition is sufficient .  
                        …………………… 
The conditions for exactness of   ê¨§ +2¨¥ + '¨B = ë  
 
The necessary and sufficient condition for the equation   &!� + v!	 + ý!Z =0 tobe  exact is  
 

                   .
�i�� = �C�� ,				 	�C�j = �#��  and 

�#�� = �i�j.  
 
(Note that when the above conditions are satisfied, the condition  

              & ��C�j − �#��� + v ��#�� − �i�j� + ý ��i�� − �C��� = 0 is also satisfied ) 

We shall leave the proof  as it is easily available .  
 
Method I- Solution by Inspection 
 
When the condition of integrability is satisfied, by rearranging the terms in the  
given equation, we may be able  easily integrate to get the general  solution .  
 
Example 14:  Solve          Z(1 − Z�)!� + Z!	 − (� + 	 + �Z�)!Z = 0. 
 
Sol:  Equation can be written as 
 Z(!� + !	) − Z�(Z!� + �!Z) − (� + 	)!Z = 0  
 
or   Z!(� + 	) − Z�!(�Z) − (� + 	)!Z = 0  
 

or   
j�(���)=(���)�jj� − !(�Z) = 0  

or   ! ����j � − !(�Z) = 0  

 
Integrating  we  get   ���j − �Z = *	    which is the required  solution . 
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Example 15. Find �(	) such that the total differential equation 
 

          ��j�j� � !� − Z!	 + �(	)!Z = 0 is integrable  and  solve it. 

 
Sol. The given equation can be written as  
 
              (	Z + Z)!� − �Z!	 + ��(	)!Z = 0.  ………………   (1) 
 
Comparing (1)   with &!� + v!	 + ý!Z = 0, we have 
 
          & = 	Z + Z, 				v = −�Z    and  ý = ��(	).   
 ⇒ �i�� = Z	, �i�j = (	 + 1)		, �C�� = −Z		, �C�j =	−�		, �#�� = �(	)	, �#�� = 		��′(	)  
 
Suppose that (1) is integrable ,  then  
 

           & ��C�j − �#��� + v ��#�� − �i�j� + ý ��i�� − �C��� = 0.  
 
Using (2) and denoting !�/!	 by �­, (3) gives 
 (	Z + Z)R−� − ��­(	)S − �ZR�(	) − (	 + 1)S + ��(	)RZ − (−Z)S = 0.  
or          �Z(1 + 	)�′(	) = �Z�(	)   
 ⇒   

�E(�)E(�) = ����+ 
 
Integrating  we get ,    log	 �(	) = log	(	 + 1) + log	 %   
 or   �(	) = %(	 + 1)  ,  (  % is  constant )  
Putting this value �(	) in (1), we get 
 Z(	 + 1)!� − �Z!	 + �%(	 + 1)!Z = 0.  
 

 
��� − ����++ T�jj = 0. 
 
Integrating,    log	 � − log	(	 + 1) + %log	 Z = log	 *.   
 

or  log �j���+ = log *    ⇒		 �j���+ = *     which is the required   solution  .  
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Example 16:  Find �(Z) such that �(���j�=��)�� �!� − 	!	 + �(Z)!Z = 0 is 

integrable  and  solve it. 
 
Sol. The given equation can be written as  
 (	� + Z� − ��)!� − 2�	!	 + 2��(Z)!Z = 0.  ………..    (1) 
 
Comparing (1) with &!� + v!	 + ý!Z = 0, we have 
 
 & = 	� + Z� − ��, 	v = −2�	, 	ý = 2��(Z).  
 ⇒ �i�� = 2				,			 �i�j = 2Z		, 	�C�� =	−2			, �C�j = 0	, �#�� = 2�(Z)		, �#�� = 0  

 
If  (1) is integrable then  
 

       & ��C�j − �#��� + v ��#�� − �i�j� + ý ��i�� − �C��� = 0.  
 ⇒	(	� + Z� − ��)(0 − 0) − 2�	(2�(Z) − 2Z) + 2��(Z)[2	 − (−2	)] = 0 
  
 
or  ⇒	−4�	(�(Z) − Z) + 8�	�(Z) = 0  
or   �(Z) = −Z.   
 
Putting 		�(Z) = −Z    in (1), 
We have   	(	� + Z� − ��)!� − 2�	!	 − 2�Z!Z = 0. 
 
or (�� + 	� + Z�)!� − 2��!� − 2�	!	 − 2�Z!Z = 0 
 
or   (�� + 	� + Z�)!� − �(2�!� + 2	!	 + 2Z!Z) = 0 
 (�� + 	� + Z�)!� = �(2�!� + 2	!	 + 2Z!Z)  
 

or            
��� = �(������j�)������j�   

Integrating we get  ,  	 log � = log(�� + 	� + Z�) + log *   or 	� = c(�� + 	� + Z�). 
 
Method II - Coefficients are homogeneous of same degree 
  
 Let  &!� + v!	 + ý!Z = 0  …………..      (1) 
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 be the given equation and we assume it is integrable  
 

i.e  & ��C�j − �#��� + v ��#�� − �i�j� + ý ��i�� − �C��� = 0. 
 
If  &	, v	, ý  are homogeneous of same  degree , then : 
 
Case I : General Method for Homogeneous coefficients  
  
Taking  � = NZ		, 	 = nZ			 . Then !� = N!Z + Z!N	 and 	!	 = Z!n + n!Z . 
The given equation will reduce to the form  
 

           
Ek(½,¡)�½�E�(½,¡)�¡E(½,¡) + �jj = 0  ………….     (3) 

 
If  (3)  can be integrated  directly , then the solution  follows .  
Otherwise , the numerator of the first fraction of  (3)  can be express as  
 !� ± 4(N, n, !N, !n	)  and  express the  fraction as the sum of  partial fractions  
 

to get   
�E(½,¡)E(½,¡) ± F(½,¡,�½,�¡	)E(½,¡) + �jj = 0			  ……………    (4) 

 
Upon solving  (4)  , The general solution  is found putting  N = �j 	 , n = �j .  
 
Case II : If &� + v	 + ýZ ≠ 0  
 
Let  8(�, 	, Z) = &� + v	 + ýZ	 . 
 
Then  !8 = &!� + v!	 + ý!Z + (�!& + 	!v + Z!ý	) 
 ⇒ &!� + v!	 + ý!Z = !8 − (�!& + 	!v + Z!ý	) 
 

The given equation on dividing by 8  becomes     
i���C���#�j� = 0 

 

or   
��=(��i���C�j�#	)� = 0   or  

��� − ��i���C�j�#� = 0 …………..(2) 

 
The general solution  is found by integrating  equation  (2) .  
 
Example 17: Solve    	(	 + Z)!� + Z(� + Z)!	 + 	(	 − �)!Z = 0. 
 
Sol:  Given   	(	 + Z)!� + Z(� + Z)!	 + 	(	 − �)!Z = 0  ……….  (1) 
Comparing with  &!� + v!	 + ý!Z = 0 
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we have  & = 	(	 + Z)	, v = Z(� + Z)	, ý = 	(	 − Z)  
 ⇒ �C�j = � + 2Z	, �#�� = 2	 − Z		, �#�� = 0	, �i�j = 		, �i�� = 2	 + Z	, �C�� = Z		  
 

Now , & ��C�j − �#��� + v ��#�� − �i�j� + ý ��i�� − �C��� 
 
       = 	(	 + Z)(� − 2	 + 3Z) + Z(� + Z)(−	) + 	(	 − Z)(2	)  
 = 0    ( verify)  
 
Therefore , the given equation is integrable .  
 
Let � = NZ			, 	 = nZ	……………..       (2) 
 
Then   !� = N!Z + Z!N				, !	 = n!Z + Z!n	 
Substituting these in (1)   we get  
 nZ(nZ + Z)(N!Z + Z!N) + Z(NZ + Z)(n!Z + Z!n) + nZ(nZ − NZ)!Z = 0  
or  Z�n(n + 1)!N + Z�(N + 1)!n + 
 
    RZ�Nn(n + 1) + Z�n(N + 1) + Z�n(n − N)S	!Z = 0	  
or Z�n(n + 1)!N + Z�(N + 1)!n + Z�n(n + 1)(N + 1)!Z = 0  
 

or    
�½½�++ �¡¡(¡�+) + �jj = 0	  

 

or  
�½½�++ �¡¡ − �¡¡�++ �jj = 0	  

 
 Integrating we get ,  
 

 log	 (½�+)¡j¡�+ = log *  
 

or  
(½�+)¡j¡�+ = *	    or   

�(��j)��j = *   .  
 
Example 18:  Solve    (	Z + Z�)!� − �Z!	 + �	!Z = 0 
 
Sol: Given (	Z + Z�)!� − �Z!	 + �	!Z = 0  …………..   (1)  
 
Comparing with  &!� + v!	 + ý!Z = 0  we  have  & = 	Z + Z�, v = 	−�Z		, ý = 	�		 
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�C�j =	−�			, �#�� = �	, �#�� = 			, �i�j = 	 + 2Z	, �i�� = Z		, �C�� =	−Z  
 

Now , & ��C�j − �#��� + v ��#�� − �i�j� + ý ��i�� − �C��� 
 
   = (	Z + Z�)(−2�) − �Z(−2Z) + �	(2Z) = 0 
 
Therefore the given equation is integrable .  
 
Let  8(�, 	, Z) = &� + v	 + ýZ = �	Z + �Z� − �	Z + �	Z 
i.e  8(�, 	, Z) = �	Z + �Z� ≠ 0	 ……………  (2)  
 
( We can use case II of the above method .)  
 
Then   !8 = (	Z + Z�)!� + �Z!	 + (�	 + 2�Z)!Z   …………   (3) 
 
The given equation can be written as : 
 (�j�j�)��=�j������j� = 0    

 

or   
(�j�j�)����j���(�����j)�j=�����=��j�j� = 0     

 

or     
(�j�j�)����j���(�����j)�j=��j(����j)� = 0  

    

or    
��� − ��j(����j)� = 0    ⇒ ��� − �(����j)��j = 0  

 
Integrating we get , 
 
  Log8 − log(	 + Z)� = log * 
 ⇒		 �(��j)� = *    or   

�j(��j)(��j)� = *   or     �Z = *(	 + Z)  
 
Method III - Use of auxiliary equations  
 
Let        &!� + v!	 + ý!Z = 0  …………..      (1)  
 
be the given equation which is not exact . If  (1)  is integrable  then  & ��C�j − �#��� + v ��#�� − �i�j� + ý ��i�� − �C��� = 0.  ……………..   (2)  
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If the previous method are not suitable to solve equation (1) , then  Comparing 
The coeficients of &,v, ý  in (1) and (2), we obtain a  simultaneous  equations,  
(called the auxiliary equations  of  (1)  )  as   
 ��UVU*=UWU� = ��

UW
U�=UXU* = �j

UX
U�=UVU�.  ……………..       (3)  

 
( note that the denominators above are not zero as the equation is not exact )  
Equations (3) can be  solved by methods previous chapter.  
 
Let   N(�, 	, Z) = *+ and n(�, 	, Z) = *�  ……………    (4) 
 
be two solutions  of (3) .  
If (4)  constitutes the general solution of  (1) then  (1) is identical to an equation 
of the form :    6!N + 7!n = 0.  …..       (5)  
 
Comparing   (1) and (5) will  get the  values of 6 and 7  and upon solving  (5), 
we shall get the general solution .  
 
Example 19: Solve the equation Z(Z − 	)!� + Z(Z + �)!	 + �(� + 	)!Z = 0  
 
Sol: Given : Z(Z − 	)!� + Z(Z + �)!	 + �(� + 	)!Z = 0  ……  (1) 
 
 Comparing the given equation with &!� + v!	 + ý!Z = 0,  
 we get     & = Z(Z − 	), 	v = Z(Z + �), 	ý = �(� + 	). 
 

Therefore 
�i�� = −Z	, �i�j = 2Z − 		, �C�� = Z	, �C�j = 2Z + �	, �#�� = 2� + 		, �#�� = � 

Now   & ��C�j − �#��� + v ��#�� − �i�j� + ý ��i�� − �C���  
 = Z(Z − 	)(2Z + � − �) + Z(Z + �)(2� + 	 − 2Z + 	) + �(� + 	)(−Z − Z)= 0 
 
Therefore , the given equation is  integrable. 
The auxiliary equations of the given equation are : 
 !��C�j − �#�� =

!	�#�� − �i�j =
!	�i�� − �C�� 

 ⇒ ��j = �����=j = �j=j  …………        (2) 
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From first and third fractions of (2)  , we get !� + !Z = 0.  
Integrating we get , � + Z = *+   or N = *+ where N = � + Z.  
 

Using Multipliers 1,1,0  , each  fractions of  (2)  are  equal  to  
��������  . 

 
Equating this with the thirs  fraction of  (2)    we get  

    
�������� = �j=j   or   

�(���)��� + �jj = 0  

 
Integrating we get , log(� + 	) + log Z = log *� 
 	⇒ (� + 	)Z = *�    or   n = *� where   n = (� + 	)Z 
Let (1) be  identical with 
 6!N + 7!n = 0  …………        (3) 
 
Now  6!N + 7!n = 0 ⇒ 			6!(� + 	) + 7!(�Z + 	Z) = 0 ⇒ (6 + Z7)!� + Z7!	 + (6 + � + 	)!Z = 0 …………….   (4) 
Comparing  (1)  and (4)    
 
we get 6 + Z7 = Z(Z − 	)			; Z7 = Z(Z + �)   and 6 + � + 	 = �(� + 	),  
From  the second  relation above , we get  
 7 = (� + Z) = N  
and 6 = Z(Z − 	) − Z7 = Z(Z − 	) − Z(Z + �) = −n.  
Therefore (3)  becomes   
 

  −n!N + N!n = 0	 ⇒ �½½ − �¡¡ = 0.  

 
On integrating we get,   log N − log n = log * ⇒ ½¡ = *  ⇒ N = *n			or 			� + Z = *Z(� + 	)  is the required solution of the given 
equation. 
 
Method IV - General Method  
 
Let  &!� + v!	 + ý!Z = 0   …………….      (1)   
be the given equation  . Assuming that it is integrable , we proceed as below to 
find  its solution .  
 
Step 1. We  treat one of the variables, say Z as a constant  so that !Z = 0 .  
Then  (1) becomes    Pdx +  Qdy = 0  …………     (2) 
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Step 2. Let the solution of (2)  be N(�, 	) = �(Z), where �(Z) is an arbitrary 
function of Z  tobe determined . 
 
Step 3. Differentiate  N(�, 	) = �(Z)  totally  and then compare the result with 
the given  equation &!� + v!	 + ý!Z = 0. After comparing we shall get an 
equation in two variables � and Z. If the coefficient of � or Z involve functions 
of �, 	, it will always be possible to  remove them with the help of N(�, 	) =�(Z). 
 
Step 4. Solving the equation obtained in step 3 to  obtain �. Putting this value of � in N(�, 	) = �(Z), we shall get the required solution of the required equation. 
 
Example 20:   Solve 	Z!� + 2Z�!	 − 3�	!Z = 0 
 
Sol:  Comparing the given equation with  &!� + v!	 + ý!Z = 0 
 
we have   & = 	Z			;v = 2Z�			;ý = −3�	 
 ⇒ �i�� = Z	, �i�j = 				, �C�� = 2Z		, �C�j = 2�		, �#�� = −3			, �#�� =	−3�	  
 

Now & ��C�j − �#��� + v ��#�� − �i�j� + ý ��i�� − �C��� 
 = 	Z(2� + 3�) + 2Z�(−3	 − 	) − 3�	(Z − 2Z) 
 = 5�	Z − 8�	Z + 3�	Z = 0  
 
Therefore, the given equation is integrable.  
Assuming   � = Constant  so that  !� = 0  
The given  equation reduces to 2Z�!	 − 3�	!Z = 0 ⇒ 		2Z!	 − 3	!Z = 0 ⇒ 	2!		 − 3!ZZ = 0	 
 
Integrating we get ,  2 log 	 − 3 log Z = �(�)  ………..    (1) 
Differentiating we get   
 �­(�)!� = �� !	 − �j !Z	  
or   −	Z	�­(�)!� + 2Z	!	 − 3		!Z	 = 0  
or  	−�	Z	�­(�)!� + 2�Z	!	 − 3�		!Z = 0  
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Comparing the above  equation with the  given equation we have  
 	−�	Z�­(�) = 	Z    ⇒ �­(�) = 	− +� ⇒ 		!R�(�)S = 	− +� !�	  
 
integrating we get  �(�) = 	− log �	 + log * = log ��		  
 
Putting this value of  �(�)		in		(1)	  we get , 
 2 log 	 − 3 log Z = log ��    or   log ��j� = log ��	 
 ⇒ ��j� = ��   or   

���j� 	= *	     is the required  solution  .    

 
Example 21. Solve   Z	!� + (��	 − Z�)!	 + (��Z − �	)!Z = 0. 
 
Sol. Given  : Z	!� + (��	 − Z�)!	 + (��Z − �	)!Z = 0.  …….  (1) 
 
Comparing with &!� + v!	 + ý!Z = 0 
 
we have   & = Z				, v = ��	 − Z�		, ý = ��Z − �	 
 ⇒ YvYZ = 	−�	,YýY	 = 	−�	,YýY� = 2�Z − 		,Y&YZ = 		,Y&Y	 = Z	,YvY� = 2�	 − Z 
  

Now , P ��R�j − �S��� + Q��S�� − �7�j� + R ��7�� − �R��� 
 = Z	(0) +	(��	 − Z�)(2�Z − 2	) + (��Z − �	)(2Z − 2�	) = 0  
 
Therefore , the given  equation is  integrable .  
Treating � as constant so that !� = 0, (1) reduces to 
 (��	 − Z�)!	 + (��Z − �	)!Z = 0	 or 	��(	!	 + Z!Z) − �(Z!	 + 	!Z) = 0  
or  ��(	!	 + Z!Z) − �!(	Z) = 0  
 
Integrating , we get 
 ��(���j�)� 	− �	Z = �(�)		  
or  ��(	� + Z�) − 2�	Z = 2�(�) …………………    (2)  
  
where � is  function  tobe determined .  
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Differentiating (2), we have 
 2�(	� + Z�)!� + ��	(2	!	 + 2Z!Z) 	− 2�	!Z − 2	Z!� − 2Z�!	 =2�­(�)!�  
 [�(	� + Z�) − 	Z − �­(�)]!� + (��	 − �Z)!	 + (��Z − �	)!Z = 0  
Comparing the above equation with (1), we have 
 �(	� + Z�) − 	Z − �­(�) = 	Z  
or   �(	� + Z�) − 2	Z = �­(�)    or    

	��(���j�)� 		− �	Z = �� �­(�)	  
 �(�) = �� �­(�)     ⇒ E¬(�)E(�) = ��    ⇒ +E(�) 	!�(�) = �� !� 

 
 Integrating we get   log �(�) = log �� + log * 
 ⇒ 		�(�) = *��. 
 ��(���j�)� 		− �	Z = *��    or    ��(	� + Z� − 2*) = 2�	Z 
 
Example 22: Solve the equation 
                    2	Z!� + Z�!	 − �	(1 + Z)!Z = 0. …………   (1) 
 
Sol: Comparing Equation (1) with P!� + Q!	 + R!Z = 0, we get 
 P = 2	Z, Q = Z� and R = −�	(1 + Z)  
 ⇒ �7�� = 2Z, �7�j = 2	,			 �R�� = Z, �R�j = �, �S�� = −� − �Z, �S�� = −	 − 	Z    
 

Now  P ��R�j − �S��� + Q��S�� − �7�j� + R ��7�� − �R��� 
 
   = 2	Z(� + � + �Z) + Z�(−	 − 	Z − 2	) − �	(1 + Z)(2Z − Z) 
 
   = 2	Z(2� + �Z) + Z�(−3	 − 	Z) − (�	 + �	Z)z  
 
   = 4�	Z + 2�	Z� − 3�	Z − �	Z� − �	Z − �	Z� = 0  
 ∴  the given  equation is  integrable .  
Taking Z as constant  so that  !Z = 0   Equation (1) can be written as 
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2	Z!� + Z�!	 = 0				 ⇒ 2	!� + �!	 = 0  ⇒ 		2 ��� + ��� = 0 

 
Integrating, we get log	 �� + log	 	 = log	 �(Z)  ⇒ log ��	 = log �(Z) 					⇒ ��	 = �(Z)  ……………..    (2) 
 
Differentiating totally , we get 
 2�	!� + ��!	 = �­(Z)!Z				 ⇒ 2�	!� + ��!	 − �­(Z)!Z = 0  ⇒ 	2	Z!� + �Z!	 − j�8­(Z)!Z = 0  …………….     (3)  

 
Comparing Equations (1) and (3), we get 
 
          

j� �­(Z) = �	(1 + Z)  
 ⇒ �­(Z) = ��	 �+�jj � ⇒ �­(Z) = �(Z) �+�jj �  
 ⇒		  �E(j)�j = �(Z) �+�jj � 				:'			 �E(j)E(j) = �+�jj � 	!Z		  
 
Integrating, we get     log	 �(Z) = log	 Z + Z + log	 * 
or     log E(j)�j = Z   ⇒ �(Z) = *ZTj    or   ��	 = *ZTj  
 
which is the solution of the equation. 
 
Example 23:  Solve (�� + 	� + Z�)!� − 2�	!	 − 2�Z!Z = 0. 
 
Sol :  Given         (�� + 	� + Z�)!� − 2�	!	 − 2�Z!Z = 0  …………. (1) 
Comparing the given equation with  &!� + v!	 + ý!Z = 0  we have  
 & = �� + 	� + Z�  ,  v = 	−2�				, ý = 	−2�Z  
 ⇒ �i�� = 2			, �i�j = 2Z			, �C�� =	−2			, �C�j = 0		, �#�� =	−2Z	, �#�� = 0	  
 

Now  P ��R�j − �S��� + Q��S�� − �7�j� + R ��7�� − �R��� 
 = (�� + 	� + Z�)(	0) − 2�	(−2Z − 2Z) − 2�Z(2	 + 2	) = 0  
Therefore , the given equation is integrable .  
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Let � be treated as constant, so that !� = 0. Then (1) becomes −2�	!	 − 2�Z!Z = 0  or   		2	!	 + 2Z!Z = 0 
 
Integrating we get ,     	� + Z� = �(�)				 (say)  ……………   (2) 
 
Differentiating (2)  we get , 
 
 	2	!	 + 2Z!Z = �­(�)!�	 
 or 	��­(�)!� − 2�	!	 − 2�Z!Z = 0… …..      (3) 
 
Comparing (3) with (1) we get   
 ��­(�) = �� + 	� + Z�	 or     	��­(�) = �� + �(�)  
 

or  
�E(�)�� 	− +� 	�(�) = �		, which is a differential linear equation 

 

I.F. = T∫=k��� = T=���	 � = T���	 �Úk = +�     
 +� 	�(�) 	= ∫ �� !� + * = � + *  
 
or   �(�) = �� + *� 
 
or      	� + Z� = �� + *� 
 
which is the general solution  of  (1)  
 
Exercises 
 
Solve the following equations 
 

1. 
���(�=j) = ���(j=�) = �jj(�=�) 

 
Ans. � + 	 + Z = *+			, �	Z = *� 

 

2. 
���(��=j�) = ���(j�=��) = �jj(��=��) 

 
 Ans : �� + 	� + Z� = *+, �	Z = *� 
 

3. 
����=�j = ����=j� = �jj�=�� 
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Ans : 
�=��=j = *+, �	 + 	Z + Z� = *� 

 

4. 
����=�j = ����=j� = �jj�=��. 

 

5. 
����j� = ��=�=�j = �j��=��. 

 

6. 
��+�� = ��+�� = �jj  

 
Ans : Z(� − 	) = *+, 2 + � + 	 = *�Z 

 

7. 
�����=��Ð = ����Ð=��� = �j

�j(��=��). 
    		Ans ∶ 	 ��	�Z = *+		, ��� + ��� = *�  

8. 
���� = ���� = �jj��=���. 
 	Jð� ∶ �	 = *+		, T=� �Z − 2�	� = *� 
 

9. 
���� = ���� = �j����j�. 
 

Jð� ∶ 	 �� − 	� = *+, �� + �j = *�  
 

10. 
�����j = ��j� = �j�� 
 
Ans. �� − 	� = *+, �� − Z� = *� 
 

11. Solve  3��!� + 3	�!	 − (�� + 	� + T�j)!Z = 0, 
 
Ans. ��Z� − 2	 = *Z� 
 

12.  Solve  (	� + Z� − ��)!� − 2�	!	 − 2�Z!Z = 0, 
 
Ans. �� + 	� = T�j + *Tj 
 

13. Solve (	� + Z� + ��)!� − 2�	!	 − 2�Z!Z = 0, 
 
Ans. 	� + Z� = �� + *� 
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14. Solve  Z	!� + (��	 − �Z)!	 + (��	 − �	)!	 + (��Z − �	)!Z = 0 
 
Ans. 					�log	 Z = *	  ,    ��(	� + Z� − 2*) = 2�	Z 
 

15.  Solve 2�Z!� + Z!	 − !Z = 0. 
 
Ans. �� + 	 − log	 Z = *. 
 

16.  Solve Z�!� + (Z� − 2	Z)!	 + (2	� − 	Z − Z�)!Z = 0. 
 
Ans. �Z + 	Z − 	� = *Z� 
 

17. Solve (	� + 	Z)!� + (Z� + Z�)!	 + (	� − �	)!Z = 0. 
 
Ans. 	(� + Z) = *(	 + Z) 
 

18. Solve Z(�� − 	Z − Z�)!� + (� + Z)�Z!	 + �(Z� − �� − �	)!Z = 0. 
 
Ans. �(	� + Z) = Z(� + 	)(1 − *	) 
 

19. Solve 3	!� − 3�!	 − 	�!Z = 0. 
 
Ans. 	 = �(* − Z�) 
 

20. Solve 	�!� − 2��!	 + (�	 − Z	�)!Z = 0. 
 
Ans. �log	 Z = *	 
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Chapter-9 
 

Introduction to Partial Differential Equation 
 

 
Introduction 
 
Partial differential equations arise from a situation  when the number of 
independent variables in the problem is two or more. Under such a situation, 
any dependent variable will be a function of more than one variable and hence it 
possesses not ordinary derivatives with respect to a single variable but partial 
derivatives with respect to several independent variables.  
 
Origin of Partial Differential Equation  
 
Elimination of arbitrary constants/functions  
 
Consider a relation  s(�, 	, Z, �, �) = 0   ………….        (1) 
 
between �, 		, Z  where � and � are  arbitrary constants  and  Z  is a function  of 
two  variables �   and 		  and where  s  is a known relation . Differentiating  this 
equation  with respect to � and  	  partially  and  using the  chain rule .  we  
shall obtain two relations  
 

            
���� + ���j �j�� = 0   and    

���� + ���j �j�� = 0  

 

      or  
���� + J ���j = 0	  and   

���� + K ���j = 0           ………….   (2) 

 

           where  J = �j�� 		,			K = �j��   
 
The two  arbitrary constants � and �, can be eliminated from the three relations  
given by (1)  and  (2)  to obtain another relation of the form :  
                                   �(�, 	, Z, J, K) = 0  ……………….    (3)  
 
which is the partial differential  equation arises from the system of   surface  (1).  
 
Example 1: Eliminate the arbitrary constants from the relation  
                   ��� + �	� + Z� = 1  ……..(1) 
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Sol: Differentiating partially w.r.t �  and  	  in turn   
 
         2�� + 2ZJ	 = 0 ⇒ ��� = −�ZJ				; 
 
       		2�	 + 2ZK = 0 ⇒ �	� = −		ZK	  
 
        Adding the last two equations and using  (1)   
 
        (��� + �	�) = −Z(�J + 	K)  
 

            or  (1 − Z�) = 	−Z(�J + 	K)  or   J� + K	 = Z − +j  
 
 Example 2: Eliminate the constants  �	, �	  from  
 
                  2Z = (�� + 	)� + � 
 
    Sol:  2J = 2�(�� + 	)					,			2K = 2(�� + 	)		 
 
     ⇒ J = �(�� + 	)			, K = (�� + 	)  
 

     ⇒ JK = 		�(�� + 	)� = (�=�)��� 	   
 
Example 3: Eliminate the constants  �	, �	  from  
                  Z = (� + �)(	 + �) 
 
    Sol:  J = (	 + �)					, K = (� + �)		 
        ⇒ JK = (� + �)(	 + �) = Z  
 
Example 4:  Find the differential equation  of all planes having equal intercepts  
on the  X and  Y axis .  
 
Solution:  Equation  of  the plane  having equal intercepts with the X and Y-
axis is :       

�$ + �$ + j� = 1.   …………       (1)  

 
Differentiating partially  wr.t  ' � ' we get 
 +$ + 0 + +� �j�� = 0   or  

+$ + +� J = 0  or   
+$ = − +� J  …..    (2) 

 

Differentiang (1)  partially w.r.t  'y' we get   0 + +$ + +� �j�� = 0  



Chapter 9: Introduction to Partial Differential Equation 

150 

    
+$ + +� K = 0      or      

+$ = − +� K   ……..      (3)  

 

From (2) and (3) ⇒ − +� J = − +� K   ⇒  p = q which is the required equation. 

 
Suppose on the other hand , we have two known functions N  and n  of three 
variables �	, 		, Z		   connected by an arbitrary function s  of the form : 
                                      s(N, n) = 0  ………………….    (4) 
 
Then, differentiating equation (4)  totally  with respect to � and 	,  we shall 
obtain two  more equations  
 ���½ ��½�� + �½�j J� + ���¡ ��¡�� + �¡�j J� = 0  ……….     (5) 

 ���½ ��½�� + �½�j K� + ���¡ ��¡�� + �¡�j K� = 0  ……….     (6) 

 

Eliminating   
���½ and 

���¡   from  equations    (5)  and (6)  , we  obtain an equation 

                     

 J �(½,¡)�(�,j) + K �(½,¡)�(j,�) = �(½,¡)�(�,�)   ………………      (7)  

 

where the jacobian   
�(E	,F)�(
	,~) 	 is given by  H�E�
 �F�
�E�~ �F�~ 	H 

 
Since  N		 and  n  are known  functions  of  �	, 		, Z	  ,  then so are   N�, N�	, Nj, n�, n�	, nj  Thus,  equation (7)  is a partial differential equation of the 
same form  as  (3)   namely : 
 
                                   �(�, 	, Z, J, K) = 0   
 
Example 5: Eliminate the arbitrary function � from the equations: 
                   Z = �	 + �(�� + 	�) 
 
Sol: We have ,       J = 	 + 2��′(�� + 	�)     
 ⇒ �­(�� + 	�) = �=���   

 
and    K = � + 2		�′(�� + 	�)  
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 or  K = � + 2	 ��=��� �   or  K� − J	 = �� − 	�  
 
Example 6: Eliminate the arbitrary function � from :  Z = � + 	 + �(�	) 
 

Sol:  [ = 1 + 	�­(�	) 	⇒ 				 �­(�	) = �=+�   

 

and   K = 1 + ��­(�	) = 1 + �(�=+)�   or   J� − K	 = � − 	  

 
Exercise  
 
1. Eliminate arbitrary constants from ��� + �	� + *Z� = 1. 

 
2. Eliminate ' � ' and ' � ' from   Z = ��� + �	�. 

 
3. Form the partial differential equation by eliminating arbitrary function �	�)!	4 from the  following relations 

 
(a)  �(�	Z, �� + 	� + Z�) = 0           

(b)  Z = �(�	) + 4 ����. 
(c)  Z = T$��(� + 	).                        
(d) �	Z = �(�� + 	� + Z�) 
(e) �(�� + 	�, Z − �	) = 0                      
(f)  Z = �(��) 

 
Order and Degree  
 
Order and degree of a partial differential equation  are defined in the same way 
as  those of  ordinary differential equations .  
 
Linear Partial differential equations of  first ord er 
 
An equation of the form  �(�, 	, Z, J, K) = 0   where the highest degree of J  
and K  is  1 and there is no term containing the product JK . The most common 
of these equations   are of the form  
 &J + vK = ý  …………..        (1) 
 
known as  Lagrange's equation or quasi-linear , where &,v, and ý are given 
functions of  �, 	, and Z (which do not involve J or K ). A  relation of the type s(�, 	, Z, �, �) = 0  …………        (2) 



Chapter 9: Introduction to Partial Differential Equation 

152 

containing  two arbitrary constants � and � and which  is a solution of a partial 
differential  equation   �(�, 	, Z, J, K) = 0    of the first order is called  a 
complete solution or a complete  integral of that equation.  A relation of the 
type 
 s(N, n) = 0 ………..         (3) 
 
involving an arbitrary function s connecting two known functions N and n of �, 	, and Z and  providing a solution of a first-order partial differential equation �(�, 	, Z, J, K) = 0    is called  a general solution or  a general integral. 
 
Theorem:  The general solution of the linear partial differential equation &J + vK = ý  ……….         (1) 
 
is of the form  �(N, n) = 0 where � is an arbitrary function and N(�, 	, Z) = *+ 
and n(�, 	, Z) = *�  are  two independent  solutions of the equations      

 
��i = ��

C = �j
# 		.	 …………        

 (2) 
 
Proof:    Since    N(�, 	, Z) = *+ and n(�, 	, Z) = *�   are independent solutions 
of (2) therefore  N and  n  must satisfy the equations  
 & �½�� + v �½�� + ý �½�j = 0 ……………       (3) 

 

and       & �¡�� + v �¡�� + ý �¡�j = 0 ……………      (4) 

 
From (3)  and   (4)  we have 
 

    
i

U\
U�	U]	U* 		=		U\U*	U]U� = C

U\
U*		U]U�		=	U\U�	U]U* = #

U\
U�	U]U�		=	U\U�	U]U�    

 

or               
i

U(\,])
U(�,*) = i

U(\,])
U(*,�) = i

U(\.])
U(�,�)    ………..      (5)  

 

or   
U(\,])
U(�,*)i = U(\,])

U(*,�)
C = U(\.])

U(�,�)
#   

 ⇒ �(½,¡)�(�,j) = %&		, �(½,¡)�(j,�) = %v			, �(½.¡)�(�,�) = %ý	     . ………..    (6)  
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Now , differentiating  s(N, n) = 0 with respect to � and 	, respectively, we 
have 
 ���½ ��½�� + �½�j �j��� + ���¡ ��¡�� + �¡�j �j��� = 0  

 ���½ ��½�� + �½�j �j��� + ���¡ ��¡�� + �¡�j �j��� = 0  

 

Eliminating 
���½ and 

���¡ from these equations, we obtain 

 �j�� �(½,¡)�(�,j) + �j�� �(½,¡)�(j,�) = �(½,¡)�(�,�)  …………..      (7)  

 ⇒ %&J + %vK = %ý    using  (6)  
or  &J + vK = ý  
 
Hence, we have seen that �(N, n) is a solution of the  (1)  if only if N(�, 	, Z) =*+ and  n(�, 	, Z) = *� are the solutions of            

��i = ��
C = �j

# . 
 
Note: The  equation (2) is called the characteristic  equation   or  Lagrange’s 
auxiliary equation  of    (1) .  
 
Summary: To solve the equation 	PJ + QK = R 
 

1. Form the auxiliary equations   
��
7 = ��

R = �j
S  

 
2. Solve the auxiliary equations by the method of grouping or by the method of 

multipliers or both to get two independent solutions N = *+ and n = *� 
 

3. Then f(N, n) = 0 or N = �(n) is the general solution . 
 
Example 7: Find the general integral of the equation 
                     Z(� + 	)J + Z(� − 	)K = �� + 	�.  
 
Sol. The characteristic equations are 
 ��j(���) = ��j(�=�) = �j�����              ……….      (1) 

 
Using multipliers  �	, −		, −Z   each fractions of  (1)  are  equal to  
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�!� − 	!	 − Z!Z0  

 ⇒ �!� − 	!	 − Z!Z = 0	   or   2�!� − 2	!	 − 2Z!Z = 0	    
 
or  !(�� − 	� − Z�) = 0  and integrating  we get  
 (�� − 	� − Z�) = *+  ………….       (2)  
 
Using multipliers  		, �	, −Z   each fractions of  (1)  are  equal to  

           
�������=j�jY   	!� + �!	 − Z!Z = 0  or  ! ��	 − j�� � = 0 

 
Integrating we habe  2�	 − Z� = *�  
 
Thus, the general solution iss(*+, *�) = 0  
 
or   s(�� − 	� − Z�	, 2�	 − Z�) = 0, 
 
where s is an arbitrary function. 
 
Example 8:  Solve     Z(�J − 	K) = 	� − ��. 
 
Sol:  The  Lagrange’s auxiliary equations are  
 ��i = ��

C = �j
# 				or			 ��j� = ��=j� = �j��=��   ………     (1) 

 

From the first  two fractions we get  
��j� = ��=j�  or  

��� + ��� = 0  

 
Integrating ,  ):4 � + ):4 	 = log c+ ⇒ 	�	 = *+ 
 

Taking multipliers  1,1	,0  each fractions of  (1)  are equal to  
�����j�=j�   .  

 

 Therefore   
�����j�=j� = �j��=��   or   

������j = �j�(���) 
 
    or  2(� + 	)!(� + 	) − 2Z!Z = 0	 
 
Integrating , (� + 	)� − Z� = *� 
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The general solution is  �(�	,			(� + 	)� − Z�) = 0   for  some  functions  � .  
 
Example 9. Solve 	�J − �	K = �(Z − 2	). 
 
Sol.  Given   		�J − �	K = �(Z − 2	) 
The auxiliary equations are 
 ���� = ��=�� = �j�(j=��)      ………….       (1) 

 
From the first two fractions of  (1)  we have  
 ��� = ��=� 	 or 	2�!� + 2	!	 = 0  

 
Intregrating   we get  �� + 	� = *+   ………..     (2)  
 
From last two fractions of (1) we have  
 

 − ��� = �jj=��  
or       −Z!	 + 2	!	 = 	!Z	  or 	2	!	 = 	!Z + Z!	 = !(	Z)  
 
On integration, we get 	� = 	Z + *� 
 or  	� − 	Z = *�  ……….        (3)  
 "ℎT	4T)T'�)	c:)N#/:)	/c		4/nT)	�				*+ = �(*�)  
 
or   (�� + 	� = �(	� − 	Z) 
 
Example 10. Solve (�� − 	� − Z�)J + 2�	K = 2�Z. 
 
Sol.  Given  (�� − 	� − Z�)J + 2�	K = 2�Z 
The auxiliary equations are 
 ����=��=j� = ����� = �j��j   ………………..      (1)  

 
From the last two  fractions  of (1) we have 
 ��� = �jj   or   

��� − �jj = 0 

Integrating we get    log 	 − log Z = log *+ 				 or    log	 �j = log	 *+ 
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⇒			�j = *+   …………….        (2)  

 
Using multipliers �, 	, Z  ,  each fractions of  (1)  are  equal  to  
 

                   
��������j�j�(������j�)   

 
Equating the above fraction with the last fraction  of (1)   we have  
 

        
�����������j�j(������j�) = �jj   

 
Integrating  we get  :   log	(�� + 	� + Z�) = log	 Z + log	 *� 
 

or   
������j�j = *� 

 
Hence , the general solution is given by :  
 � ��j� = (������j�)

+ 	    
 
Example 11. Find the general solution of the equation �ZJ + 	ZK =−(�� + 	�). 
 
Sol: The Lagrange’s auxiliary  equations  are :  
 ���j = ���j = �j=(�����).  …………        (1) 

 
Taking the first two integrals , we have  
 

 
���j = ���j 				⇒ ��� = ��� ⇒ log � − log 	 = log *+				 
 
         ⇒ N(�, 	, Z) = �� = *+. 
 

Using multipliers  �	, 		, 0  , each fractions of  (1)  are  equal to   
�������j(�����)	 .  

 
Equating  with the third fraction of  (1)   , we have  
 

          
�������j(�����) = �j=(�����)  
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⇒ �!� + 	!	 + Z!Z = 0  
Integrating we  get  �� + 	� + Z� = *� 
 
The general solution of the given equation is 
 � ��	 , �� + 	� + Z�� = 0 

 
where � is arbitrary function. 
 
Example 12: Find the general integral of the quasi-linear equation 
 Ô§(B− ì¥ì) = (B− Õ¥)(B− ¥ì − ì§�). 
 
Sol: The given equation can be written as 
 �(Z − 2	�)J + 	(Z − 	� − 2��)K = Z(Z − 	� − 2��). 
 
Lagrange's auxiliary equations are 
 ���(j=���) = ���(j=��=���) = �jj(j=��=���)  ……………….    (1) 

 

The last two fractions of (1) give   
��� = �jj   

 ⇒ 		 = *+Z       Thus ⇒ 		N(�, 	, Z) = �j = *+ …………    (2) 

 
Taking multipliers  0	, 2		, −1   , each fraction  of   (1)  are  equal  to  
 ����=�j���(j=��=���)=j(j=��=���) = �(��=j)(j=��=���)(���=j)	  
 
Equating with the first fraction , we have  
 ���(j=���) = �(��=j)(j=��=���)(���=j)  
 

or 	 ��� = �(��=j)��=j���� = �


���� ,   where ' = 	� − Z  

 
 or 	2��!� + '!� − �!' = 0  
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or 			2�!� − ��
=
���� = 0	 ⇒ 		2�!� − ! �
�� = 0  

 
Integrating, we have �� − 
� = *�,  
 

Hence   n(�, 	, Z) = �� + j� − ���� = *�  …………….    (3) 

 
The general  solution is  given by  *+ = �(*�)  for  some function  �	  ,   where  *+  and  *�  are  from (2)  and  (3) .  
 
Example 13: Solve   	�J − �	K = �(Z − 2	) 
 
Sol. Given equation is      	�J − �	K = �(Z − 2	) 
Langrange's auxiliary equations are 
 ���� = ��=�� = �j�(j=��)   …………….        (1) 

 
Using 1st  and 2nd  fraction of (1)  we have  
 ���� = ��=�� ⇒ �!� = −	!	    ⇒ �!� + 	!	 = 0  

 

Integrating  we get  
��� + ��� = *   or   �� + 	� = *+  ………..   (2)  

 
Again ,  taking 2nd  and 3rd  fraction of (1)  we get  
 ��=�� = �j�(j=��)    	⇒ �j�� = =j����  	⇒ �j�� + j� = 2  ………    (3) 

 
Which is a linear differential equation .  
 IF = T∫ 	�(�)�� = T∫ 	k��� = T���	 � = 	.  
 
Hence the solution of (3) is : Z	 = ∫ 	 2	!	 + *� 
 ⇒ Z	 = 	� + *�    or   	Z − 	� = *�  …….      (4)  
 
From (2) and (4), the complete solution is 
 8(�� + 	�, Z	 − 	�) = 0   where  8  is an arbitrary  function .  
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Example 14:  Solve (	 + Z�)J − (� + 	Z)K = �� − 	� 
 
Sol: Given, (	 + Z�)J − (� + 	Z)K = �� − 	�  
 
The Lagrange's Auxiliary equations are 

              
����j� = ��=�=�j = �j��=��   ………..      (1)  

 
Choosing 	, �, 1   as multipliers, we get 
 	!� + �!	 + !Z	� + �	Z − �� − �	Z + �� − 	� = 	!� + �!	 + !Z0  

 
Thus, 	!� + �!	 + !Z = 0 ⇒ �	 + Z = *+  ………..    (2)  
 
Choosing �, 	, −Z an multipliers ,  we get 	  
 �������=j�j�����j=��=��j=j(��=��) = �������=j�jY   

 ⇒ 	�!� + 	!	 − Z!Z = 0 ⇒ �� + 	� − Z� = *� 
 
Therefore  the complete solution is  �(�� + 	� − Z�	, �	 + Z) = 0   where  �  is 
an  arbitrary  function .  
 
Example 15: Solve  J�(� + 	) = K	(� + 	) − (� − 	)(2� + 2	 + Z) 
 
Sol:  The given equation can be written  as  
 
 J�(� + 	) − K	(� + 	) = 	−(� − 	)(2� + 2	 + Z) 
 
The Lagrange’s auxiliary equations are  
 ���(���) = ��=�(���) = �j=(�=�)(������j) ………………    (1) 

 
Now from first two fractions of equation (1), we have  
 ���(���) = ��=�(���)   	⟹ ��� + ��� = 0 

 
On  integration, we get log � + log 	 = log *+ ⇒ �	 = c+ ……….   (2)  
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Choosing multipliers  2	, 2	, 1   each  fractions of (1)  are equal to  
���������j=(�=�)j       

 
 Equating this with the last fraction of  (1)  we have  
 

         
�j������j = ���������jj   or   (2� + 2	 + Z)!(2� + 2	 + Z) − Z!Z = 0  

 
On  integration, we get  (2� + 2	 + Z)� − Z� = *� 
 
The complete solution is given by  *� = �(*+)    or  (2� + 2	 + Z)� − Z� = �(�	) for some function   � .  
 
Exercises 
 
Find the general integrals of the linear partial differential equations: 
 
1. �(�� + 3	�)J − 	(3�� + 	�)K = 2Z(	� − ��) 

 
2. ��J + 	�q = (� + 	)Z. 

 

3. (	 + �)J + (� − 	)K = �����j  

 
4. J + ZK = 6�  satisfying the condition Z(0, 	) = 3	. 

 
5. (2�	 − 1)J + (Z − 2��)K = 2(� − 	Z)  
 

Integral Surfaces Passing through a Given Curve 
 
Let the curve * be given in  parametric equations as  
                  � = �(#), 		 = 	(#), 	Z = Z(#)  ………..    (1)  
 
where # is a parameter 
Let   N(�, 	, Z) = *+, 	n(�, 	, Z) = *�    …………     (2)    
 
be the particular  solutions of the equation  &J + vK = ý , where 
   N(�, 	, Z) = *+, 	n(�, 	, Z) = *�   are  as described in the last  section .   
 
In order  to find the integral surface which passes through the curve *  ,   
the particular solution  N = *+		, n = *�  must satisfy the conditions  
 N{�(#), 	(#), Z(#)} = *+, 	n{�(#), 	(#), Z(#)} = *�  ……..    (3) 
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If we eliminating  ′#′  from  (3)    , we shall obtain an equation of the form  
               s(*+, *�) = 0	    
 
The required integral surface will then be given by s(	N, n) = 0   .  
 
Example 16: Find the equation of the integral surface of the differential 
equation 
              2	(Z − 3) J + (2� − Z)K = 	(2� − 3) which passes through the circle 
               Z = 0, �� + 	� = 2�. 
 
Sol: The  Lagrange's auxiliary equations are 
 ����(j=�) = ��(��=j) = �j�(��=�) ………………..     (1)

  
 
From the first and last fractions, we get 
 ��j=� = ��j��=�  ⇒  (2� − 3)!� − 2(Z − 3)!Z = 0  

 ⇒ 		N(�, 	, Z) = �� − 3� − Z� + 6Z = *+   …………….    (2) 
 
Using multipliers  1	, 2			, −2	  , each fractions of  (1)  are equal  to  
 �������=��j��(j=�)���(��=j)=��(��=�) = �������=��jY     

 ⇒ 			!� + 2(	!	 − !Z) = 0  
 
Integrating we get  ,   n(�, 	, Z) = � + 	� − 2Z = *� 
 
Hence the general solution of the given equation is 8(N, n) = 0 
 
or    8(�� − 3� − Z� + 6Z, � + 	� − 2Z) = 0. 
 
The  parametric equations of the given curve are 
 � = 1 + cos # , 	 = sin # ,			Z = 0 
 
Therefore  (1 + cos	 #)� − 3(1 + cos	 #) = *+ 
 ⇒ cos�	 # − cos	 # = 2 + *+ 
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and 1 + cos	 # + sin�	 # = *� ⇒  cos	 # − cos�	 # = *� 
 
so that *+ + *� + 2 = 0 
 
Thus the required equation of the integral surface is (�� − 3� − Z� + 6Z) + (� + 	� − 2Z) + 2 = 0 
or �� + 	� − Z� − 2� + 4Z + 2 = 0 
 
Example 17: Find the integral surface of the equation  
                         �(	� + Z)J − 	(�� + Z)K = (�� − 	�)Z,  
 
which contains the straight line � + 	 = 0, Z = 1. 
 
Sol:  Auxiliary equations are 
 ���(���j) = ��=�(���j) = �jj(��=��) …………………     (1) 

 
By Choosing multipliers �, 	, −1,  we have  
 �!� + 	!	 − !Z��	� + ��Z − ��	� − 	�Z − ��Z + 	�Z = �!� + 	!	 − !Z0  

 ⇒ 	�!� + 	!	 − !Z = 0   
 
Integrating we  get ,   �� + 	� − 2Z = *+   …………    (2)  
 

Choosing multipliers 
+� , +� , +j, we get 

 

              
D�� �D�� �D**���j=��=j���=�� = D�� �D�� �D**Y   

 

           ⇒ ��� + ��� + �jj = 0		  
 
Integrating we get  , log �	Z = log *� ⇒ 		�	Z = *� ……………..  (3) 
The Parametric equations of straight line are  � = #, 	 = −#, Z = 1 
 
Substitute in  (3)   we have    #(−#)(1) = −t� = *� 
and from  (2)   we have  
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 #� + (−#)� − 2(1) = *+ ⇒ 			2#� − 2 = *+   
Eliminate #   we have   −2*� − 2 = *+ 
Or    *+ + 2*� + 2 = 0 
 
Hence, the integral surface, which contains the straight line �� + 	� − 2Z + 2�	Z + 2 = 0 
 
Example 18. Find the integral surface of the linear partial differential equation �(	� + Z)J − 	(�� + Z)K = (�� − 	�)Z 
 
which contains the straight line � + 	 = 0, Z = 1. 
 
Sol: The auxiliary equations have integrals 
 !��(	� + Z) = !	−	(�� + Z) = !Z(�� − 	�)Z�	Z = *+, 	�� + 	� − 2Z = *�  

 
For the curve in question we have the freedom equations � = #, 		 = −#, 	Z = 1 
 
Substituting these values in the pair of equations (4), we have the pair −#� = *+, 	2#� − 2 = *� 
 
and eliminating # from them, we find the relation 2*+ + *� + 2 = 0 
 
showing that the desired integral surface is �� + 	� + 2�	Z − 2Z + 2 = 0 
 
Example 19:  Find the general integral of the partial differential equation (2�	 − 1)J + (Z − 2��)K = 2(� − 	Z) and also the particular integral which 
passes through the line   � = 1, 	 = 0.  
 
Sol. Given          (2�	 − 1)J + (Z − 2��)K = 2(� − 	Z).  
 

Lagrange's auxiliary equations  are 	 �����=+ = ��j=��� = �j��=��j   …………. (1) 

 

Taking Z, 1, � as multipliers, each fraction of (1) 	are equal   
j��������jY     

  ⇒ 	Z!� + !	 + �!Z = 0        or   !(�Z) + !	 = 0 
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Integrating,   �Z + 	 = *+.  ………       (2) 

Taking �, 	, +�		 as multipliers, each fraction of (1) are equal  to  	  ���������k��j�Y    

 ⇒ 	�!� + 	!	 + +�!Z = 0	 or 	2�!� + 2	!	 + !Z = 0 

 
Integrating,   �� + 	� + Z = *�.  …….      (3)  
 
The particular integral passing through the line   � = 1, 	 = 0  is  found  by  
putting � = 1 and 	 = 0 in (2) and (3)   . 
 
Now  Z = *+   and    1 + Z = *�    ⇒  1 + *+ = *� 
 
or 1 + �Z + 	 = �� + 	� + Z  
 
or   �� + 	� + Z − �Z − 	 = 1.  
 
Example 20:  Find the integral surface of the partial differential equation 
        (� − 	)	�J + (	 − �)��K = (�� + 	�)Z  passing through the curve 
          �Z = ��, 	 = 0. 
 
Sol. Given   (� − 	)	�J + (	 − �)��K = (�� + 	�)Z 
 

Lagrange's auxiliary equations  are 
��(�=�)�� = ��(�=�)�� = �j(�����)j ………. (1) 

 

Using multipliers 1,−1	, 0 . Each fraction of (3) = ��=��(�=�)(�����) 
 ∴ 		 ��=��(�=�)(�����) = �j(�����)j 	⇒ 		 	 �(�=�)�=� − �jj = 0  

 
Integrating  we get , 

�=�j = *+   . . . . . . . . .       (2) 

 

Taking the first two fractions, we have  
���� = ����    ⇒ 	3��!� + 3	�!	 = 0  

 
Integrating we get , 	�� + 	� = *�.   . . . . . . . .      (3) 
 

The parameteric equation of the given curve is 	Z = #, 	� = $�Ü , 		 = 0 

Substituting these values in (2) and (3), we get 
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$�Ü� = *+ ⇒			 #� = $��k ⇒ #� = $��k�	    
 

and  �$�Ü �	�	 = *� ⇒	#� = $��� ⇒		 #� = $k_���   

 ⇒ $��k� = $k_���     or  *�� = *+���  ⇒ (�� + 	�)� = $�(�=�)�j� 		 	
or    Z�(�� + 	�)� = ��(� − 	)�.  
 
Exercises 
  
1. Find the integral surface of the linear first order partial differential  equation 	J + �K = Z − 1 which passes through the curve 
           Z = �� + 	� + Z, 	 = 2� 
 
2. Find the general solution of the equation 2�(	 + Z�)J + 	(2	 + Z�)K = Z� and deduce that     	Z(Z� + 	Z − 2	) =��    is a solution. 

 
3. Find the general integral of the equation    (� − 	)J + (	 − � − Z)K = Z 
     and the particular solution through the circle Z = 1, �� + 	� = 1. 
 
4. Find the general solution of the differential equation �(Z + 2�)J + (�Z + 2	Z + 2�	)K = Z(Z + �) and  the integral surfaces 

which pass through the curves: (a) 	 = 0, 	Z� = 4��      (b) 	 = 0, 	Z� +�(Z + �)� = 0 
 

5. Find the equation of the integral surface of the differential equation (� − 	)	�J + (	 − �)��K = (�� + 	�)Z which passes through the curve    �Z = 1, 	 = 0. 
 
Surfaces Orthogonal to a Given System of Surfaces 
  
Suppose we are given a one-parameter family of surfaces characterized by the 
equation 
 �(�, 	, Z) = *  …………(1)  
 
The surfaces orthogonal to the system (1) are the surfaces generated by the  
integral curves of the equations 
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��E� = ��E� = �jE*      

 
Example 21: Find the surface which is orthogonal to  system  Z =*�		(�� + 	�) and passes through the hyperbola �� − 	� = ��, 	Z = 0. 
 

Sol: The given one parameter system is 
��(�����)j = +� = p    

 

Let 	�(�, 	, Z) = ��(�����)j  

 ⇒	�� = �(�����)�����j    ,    �� = �(�����)�����j  ,   �j = =��(�����)j�  

 
The  auxiliary  equations are for the orthogonal surface  are :  
 

         
���R��×��S×����
*

= ���R��×��S×����
*

= �jÚ��R��×��S
*�   

 

or          
���(�����)����� = ���(�����)����� = j�j=��(�����)				………….  (1) 

 
Using multipliers (�, 	, 1), each ratio of (1)  are  equal to 
 ��������j�j�����������������=���=��� = ��������j�j���(�����)   

 

Equating this with 3rd  fraction  of (1), we get 
 

 
��������j�j���(�����) = j�j=��(�����)   ⇒ 	�!� + 	!	 + Z!Z = −3Z!Z 
 ⇒ 	�!� + 	!	 + 4Z!Z = 0  
 

Integrating we get  
��� + ��� + �j�� = �k�  

 
or   �� + 	� + 4Z� = *+  ……………..      (2)  
 
Using multipliers (�, 	, 0) and (�, −	, 0) in  (1)  and equating the two fractions 

we get  
������������������������ = ���=�����������=���=���� 

 ⇒ ���������������� = ���=�������=����  
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 ⇒ ������������ = �(���=���)��=��  

 
Integrating, we get   log	(�� + 	�) = 2log	(�� − 	�) + log	 *� 
 ⇒ �����(��=��)� = *�  …………..(3)  

 
Also , given hyperbola :  �� − 	� = ��, 	Z = 0 
 
Its  parametric equations are  :  
 � = �sec	 q, 	� = �tan	 q, 	Z = 0  
 ∴ from (2),  *+ = ��sec�	 q + ��tan�	 q 
 
            *+ = ��(sec� q + tan� q) 
  
And from (3)     we have  
  *� = $��å��	`�$�ØÙ¢�	`($��å��	`=$�ØÙ¢�	`)�    or  *� = �å��	`�ØÙ¢�	`$�(�å��	`=ØÙ¢�	`)�  
 

or   *� = �å��	`�ØÙ¢�	`$�(+)�       ⇒ *� = ak��$�(+)�   

 *� = �k$Ð    or   
�k�� = �� 

 ∴ 	 The required surface orthogonal to the given system is 
 (��=��)�(�������j�)����� = ��  
 
Example 22:  Find the surface which intersects the surfaces of the system Z(� + 	) = *(3Z + 1) 
orthogonally and which passes through the circle �� + 	� = 1, Z = 1. 
 

Sol: Let  � = j(���)�j�+   ,  

 

Then  �� = j�j�+ 				 , �� = j�j�+ 			 , �j = +(�j�+)�	  
 
The auxiliary  equation of the system orthogonal  to the given system   is  
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��E� = ��E� = �jE*      or      
��j(�j�+) = ��j(�j�+) = �j(���)    ………….   (1) 

 
From  the first  two fractions of  (1)   we have   !� − !	 = 0 
 ⇒ 	� − 	 = *+	   . . . . . . .         (2)  
 
Choosing  �	, 			, (−3Z� − Z)  as  multipliers  , each fraction of  (1)   are equal  
to  �������=(�j��j)�jY 	    Therefore  �!� + 	!	 − (3Z� + Z)!Z = 0  

 

Integrating  we get  
��� + ��� − Z� − j�� = p  

 
or    �� + 	� − 2Z� − Z� = *�  ……….      (3)  
 
Thus any surface which is orthogonal to the given surfaces has equation of the 
form 
 
      �� + 	� − 2Z� − Z� = �(� − 	)  
 
If the above  surface passes through the circle �� + 	� = 1, Z = 1  
 �(� − 	) =  �� + 	� − 2Z� − Z� = −2  
 
Hence , the required  surface is  �� + 	� − 2Z� − Z� = −2	  
or  �� + 	� − 2Z� − Z� + 2 = 0  
 
Example 23: Find the equation of the system of surfaces which cut  the system  
 �� + 	� + Z� = *�	   and  passes through  � = 0, 	+ + Z� = 1  . 
 

Sol: The given system of surfaces is �(�, 	, Z) = ������j��� = *.   
 ⇒ �� = +� − ��� − j���� 		 , �� = − �� + +� − j����	 , �j =	 �j�� 
 

 The auxiliary equations are   
��E� = ��E� = �jE*   

 

  or   
��k�= ���= *���� = ��=���k�= *���� = �j�*��    or    

�����=��=j� = ���=�����=j� = �j�j  …… (1)  
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Using multipliers  1	,1	, Z we have   �!� + 	!	 + Z!Z = 0  
 
Integrating we get  �� + 	� + Z� = *+   ………….     (2)  
 
Using  multipliers  1,−1	, 0   and   equating with the last fraction of  (1)  
wehave  
 ���=�����=�� = �jj      or   

�(��=��)��=�� − ��jj = 0  . Integrating  we get  

 ��=��j� = *�   …………..         (3)  

 
Thus , The general quation of the required system of orthogonal surfaces is 

  �� + 	� + Z� = � ���=��j� �   where  �  is an arbitrary  function .  

 
if the  surface contains the circle  � = 0, 	� + Z� = 1    
 

Then  � ���=��j� � = 1				 
 
Thus , the particular surface is given by  �� + 	� + Z� = 1  
 
Nonlinear Partial Differential Equations of the First Order 
 
The partial differential equation   s(�, 	, Z, J, K) = 0  …..(1) in which the 
function s is not necessarily linear in J and K. A solution of  �(�, 	, Z, �, �) = 0  
of    (1)  that contains two arbitrary constants is called   a   complete solution .  
A solution of  �(�, 	, Z, �Y, �Y) = 0   obtained by giving �  and  �  some 
particular values  is called a particular integral  / particular solution  .  
 
The relation between x, y, and z obtained by eliminating �  and  �  from  �(�, 	, Z, �, �) = 0	, �E�$ = 0		,			 �E�« = 0    is called a singular solution of  (1) .  

Compatible  System of First order Equations :  
 
The two  first order partial differential equations �(�, 	, Z, J, K) = 0   and   4(�, 	, Z, J, K) = 0     ………….   (1) 
 
are said tobe compatible  if   any solution of  one is a solution of the other.  

Let      b = �(E,F)�(�,�) ≠ 0 

 
Then from  equation (1)  ,   J  and K  can be solved   as functions of  �, 		, Z	  
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say          J = 8(�, 	, Z),				K = u(�, 	, Z)  …………….    (2)  
 
Thus , the two equations in  (1) will be compatible if  equation (2)  is integrable 

and  since     !Z = �j�� !� + �j�� !		 = J!� + K!	  ,  

 
Therefore , (2)  is integrable  if   !Z = J!� + K!	  is integrable .  
or        	8	!� + u!	 − 1	!Z = 0 ………….      (3)   
 
is  integrable .  
Also  , (3)  is of the form  (	&!� + v!	 + ý!Z = 0)  is  integrable  if  
 8(uj − 0) + u(0 − 8j) + (−1)R8� − u�S = 0	  
 
or 8uj − u8j − 8� + u� = 0  
 
or         u� + 8uj = 8� + u8j  ……….      (4)  
 
Now , differentiating the first equation of (1)   w.r.t  � and  Z   and using (2) 
 �E�� = �� + ��J� + ��K� = �� + ��8� + ��u� = 0  ……………   (5)    

 
and    �j + ��8j + ��uj = 0 ………..(6)  
 (6) × 8 + (5) ⇒	  �� + 8�j + ��(8� + 88j) + ��(u� + 8uj) = 0  
 
Similarly     4� + 84j + 4�(8� + 88j) + 4�(u� + 8uj) = 0   
 
From the last two equations we can  solve to get  
 

 u� + 8uj = (E���E*)Fù=(F���F*)EùEùFc=EcFù = +
d ��(E,F)�(�,�) + 8 �(E,F)�(j,�)�.  ….   (7)  

 

Similarly ,    8� + u8j = − +
d ��(E,F)�(�,�) + u �(E,F)�(j,�)�   ……………   (8) 

 
Thus ,  Equation  (3)  is  integrable  if   or         u� + 8uj = 8� + u8j 
 

i.e if   
+
d ��(E,F)�(�,�) + 8 �(E,F)�(j,�)� + +

d ��(E,F)�(�,�) + u �(E,F)�(j,�)� = 0       

 

or  [�, 4] = 		 �(E,F)�(�,�) + J �(E,F)�(j,�) + �(E,F)�(�,�) + K �(E,F)�(j,�) = 0   ……..   (9) 
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and is   the condition for the compatibility  of  the equations in  (1) . 
 
Summary: Given  two equations �(�, 	, Z, J, K) = 0   and   4(�, 	, Z, J, K) = 0, 
 
verify condition  (9) . Solve for  J and  K . Put  J and  K  in  !Z = J!� + K!	   and solve .  
 
Example 24:  Show that equations �J = 	K,			Z(�J + 	K) = 2�	 are 
compatible and  solve them. 
 
Sol:  Let   � = �J − 	K = 0   , 4 = Z(�J + 	K) − 2�	 = 0  
 

Then    
�(E,F)�(�,�) = �E�� �F�� − �E�� �F�� = 	JZ� − �(ZJ − 2	) = 2�	 

 

             
�(E,F)�(j,�) = −J�� − �	K	  ,   �(E,F)�(�,�) = −2�	   ,  

�(E,F)�(j,�) = �	J − K	�  
 

Now  [�, 4] = �(E,F)�(�,�) + J �(E,F)�(j,�) + �(E,F)�(�,�) + K �(E,F)�(j,�) 
 
               = 2�	 − J��� − �	JK − 2�	 + �	JK − K�	� = 0  
 ∴ 	 Equations are compatible. 
 

Solving given equations   J = �� K   and   Z(��� K + 	K) = 2�	  ⇒ K = �j	  and   J = �j	 
 
Putting these in  !Z = J!� + K!	  we have  
 
  !Z = �j !� + �j !	    or    Z!Z = 	!� + �!	 

 ⇒ 		Z!Z − !(�	) = 0  
Integrating,    Z� − 2�	 = * 

 
1. Show that the equations   �J − 	K = �, 	��J + K = �Z	are compatible and 

find their solution. Show that the equation Z = J� + K	 is compatible with 
any equation  
 

2. �(�, 	, Z, J, K) = 0 that is homogeneous in �, 	, and Z. 
     Solve completely the simultaneous equations 

   Z = J� + K	, 	2�	(J� + K�) = Z(	J + �K)  
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Charpit's Method 
 
Let  the given  partial differential equation  be  �(�, 	, Z, J, K) = 0  …………..        (1) 
 
We introduce another   compatible differentail  equation  4(�, 	, Z, J, K, �) = 0  …………       (2) 
 
and  such that  J	 and  K   can be solved to solved  to get  J = J(�, 	, Z, �), 	K = K(�, 	, Z, �)  
 
and that     !Z = J(�, 	, Z, �)!� + K(�, 	, Z, �)!	 
is integrable. Since  � and  4  are compatible , we must have    
 [4, �] = 		 �(F,E)�(�,�) + J �(F,E)�(j,�) + �(F,E)�(�,�) + K �(F,E)�(j,�) = 0  

    
or 4��� − 4��� + JR4j�� − 4��jS + 4��� − 4��� + KR4j�� − 4��jS = 0  
 

or   �� �F�� + �� �F�� + RJ�� + K��S4j − (�� + J�j)4� − R�� + K�jS4� = 0  

 
and its  subsidiary equations  are  
 ��Eù = ��Ec = �j�Eù��Ec = ��=(E���E*) = ��=RE���E*S    …………..    (3) 

 
These equations, which are known as Charpit's equations .  
 
From  (5) we can solve  for  J  and K  as functions of   �	, 		, Z	, �	  and  the 
complete solution is found  by solving   !Z = J(�, 	, Z, �)!� + K(�, 	, Z, �)!	  
It should be noted that not all of Charpit's equations (3) need be used, but that J 
or K must occur in the solution obtained. 
 
Example 25: Solve: J� + K	 = JK  ………….     (1) 
 
Sol: Let �(�, 	, Z, J, K) = J� + K	 − JK = 0 
 
then       �� = J, �� = K, �� = 0, �� = � − K, �� = 	 − J. 
Charpit's auxiliary equations are 
 ��Eù = ��Ec = �j�Eù��Ec = =��E���E� = ��E���⋅E*.	  
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⇒ 	 ���=� = ���=� = �j�(�=�)��(�=�) = =��� = =���    ………..    (2) 

 

from (2), we have         
=��« = − ��� 		⇒ ��� = ���  

 
on integration, we have  log J = log K + log� 
 
 ⇒ J = �K 
putting value of J in (1), we have  (�� + 	)K = �K� 
 ⇒ K = $���$   

therefore,   J = �� + 	.  
 
The complete solution is given by the solution of    
 	 	!Z = J!� + K!	 
 ⇒ !Z = (�� + 	)!� + �� + 	� ⋅ !	 

 ⇒ �!Z = (�� + 	)(�!� + !	)  
 

on integrating, we get   �Z = ($���)�� + �­ 
 
or  	2�Z = (�� + 	)� + 2�­ = (�� + 	)� + � 
 
Example 26: Find a complete integral of J�	 + JK + K	 = 	Z 
 
Sol. Given �(�, 	, Z, J, K) = J�	 + JK + K	 − 	Z = 0    ……   (1) 
 ⇒ �� = J			, �� = J� + K − Z	, �j =	−			, �� = �	 + K		, �� = J + 		  
Charpit's Auxiliary equations are 
 ��UeUù = ��UeUc

= �j��UeUù����UeUc� = �õ=�UeU���UeU*� = �õ=�UeU���UeU*�   
 

or   
��(����) = ��(���) = �j�(����)��(���) = ��Y =	− ������)���  

 
The fourth fraction gives  !J = 0 so that J = � 
Putting J = � in (1),  we have   ��	 + �K + K	 = 	Z 
or     K(� + 	) = 	(Z − ��) 
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or      K = �(j=$�)($��)  

 
Puting these values of p and q in   !Z = J!� + K!	,  we get  
 !Z = �!� + �(j=$�)$�� !	    or   !Z − �!� = 	 �(j=$�)$�� !	     

 

or   
�	(j=$�)j=$� = �$�� !	 = !	 − $$�� !	  

 
Integrating we get ,   log	(Z − ��) = 	 − �log	(� + 	) + c 
 
or   log	(Z − ��) + log	(� + 	)$ = 	 + *  
 
or     log(Z − ��)(� + 	)$ = 	 + * 
 (Z − ��)(� + 	)$ = T�T� = �T�	  
 
Example 27: Solve  Z� = JK�	  by  Charpit's method . 
 
Sol: We have  	�(�, 	, Z, J, K) = JK�	 − Z� = 0 
    �� = JK			, �� = JK�		, �j =	−2Z		, �� = K�			, �� = J�	  
 
Charpit's Auxiliary equations are :  
 

  
��Eù = ��Ec = �j�Eù��Ec = ��=(E*��E*) = ��=RE���E*S   

 

or     
����� = ����� = �j��������� =	− �����=�j� = − �����=�j�   …...……….  (1) 

 

using multipliers  0	, 0	, 0		, − +� 		 , +�	   each fractions of   (1)  are equal  to  
Dùù =Dcc(��=õ�)		    ………..         (2) 

       

using multipliers  
+� 	 , − +� 		 , 0		,0	, 0		   each fractions of   (1)  are equal  to  

D�� =D����=��		  ……………….         (3) 

 
Equating  (2)  and  (3)   we have  
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		 ��� − ��� = ��� − ���       or			 ��� + ��� = ��� + ���  

 
Integrating we get   log	 J + log	 � = log	 	 + log	 K + log	 � ⇒ 	J� = K	�    ⇒ 		J = ��$�  

 

Form given equation , we get     	Z� = ��$����  

 

    ⇒ 	K = j
√$� = j

«�	     where    � = √�	      So that 	J = «j�  

 
Putting  the value of J and K in !Z = J!� + K!	  ,  we have  
 !Z = «j� !� + j«� !	        or    

�jj = «� !� + +«� !	  

 

Integrating we get   log Z = � log � + +« log 	 + log * = log �«	kf* 
or  Z = *�«	kf      which is required complete integral. 
 
Example 28:  Find complete integral of the equation �J + 3	K = 2(Z − ��K�). 
 
Sol:  Given     �J + 3	K = 2(Z − ��K�)  ………     (1)  
 
Let  �(�, 	, Z, J, K) = �J + 3	K − 2(Z − ��K�) 
 
Then  �� = J + 4�K�	, �� = 		3K	, �j =	−2	, �� = �	, �� = 3	 + 4��K	  
 
Charpit’s Subsidiary equations are 
 ��� = ��������� = �j������������ = ��=�=������� = ��=�  
 

First and  last fractions  give   
��� = ��=� ⇒	 ��� + ��� = 0 

 
integrating gives  , log	K� = log � ⇒ K = $�    
 

Substituting in Eq. (1) gives  J = �(j=$�)� − ��$��   

 
Putting the value of  J  and  K in  	!Z = J!� + K!	  we have  
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!Z = Â�(j=$�)� − ��$�� Ã !� + $� !	  

 
or ��!Z = 2�(z− ��)!� − 3�	!� + ��!	 
 
or  ��!Z − 2�(z− ��)!� = −3�	!� + ��!	 
 ⇒ 	��! �j=$��� � = −3�	!� + ��!	  

 ⇒ 	! �j=$��� � = $��� !	 − �$��Ð !�  

 ⇒ 	! �j=$��� � = ! �$����  
 

Integrating, 	 j=$��� = $��� + �     ⇒ 	Z = � �� + ��� + ��� 
 
Example 29. Find a complete integral of the equation    J�� + K�	 = Z   …………..        (1) 
 
Sol:  Charpit’s auxiliary equations are 
 ����� = ����� = �j�(�������) = ���=�� = ���=��  
 ⇒	 ������������� = �������������   

 ⇒ �(���)��� = �(���)���    . Integrating  gives    J�� = �K�	  ……….   (2)  

 
where � is a constant. Solving equations (1) and (2) for J, K, we have J = � $j(+�$)��k� , 	K = � j(+�$)��k�  
 
Putting these values off J  and  K  we have  
 �+�$j �k� !Z = �$��k� !� + �+��k� !		  
 

 ⇒ {(1 + �)Z}k� = (��)k� + 	k� + �  
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Exercises 
 
Find the complete integrals of the equations: 
 
1. (J� + K�)	 = KZ 

 
2. J = (Z + K	)� 

 
3. J�� − 4K��� + 6��Z − 2 = 0 

 
4. 2(	 + ZK) = K(�J + 	K) 

 
5. 2(Z + �J + 	K) = 	J� 

 
Special Types of First-order Equations 
 
In this section we shall consider some special types of first-order partial 
differential equations  whose solutions may be obtained easily by Charpit's 
method. 
 
(I)  Equations Involving Only Ô and Õ.  
 
For equations of the type   �(J, K) = 0  ………     (1) 
 

Charpit's equations reduce to     
��Eù = ��Ec = �j�Eù��Ec = ��Y = ��Y  

 
An obvious solution of these equations is     J = � 
 
the corresponding value of K being obtained from (1) in the form �(�, K) = 0  
 
so that   K = v(�)    a constant. The solution of the equation is then Z = �� + v(�)	 + �  
 
where � is a constant. 
 
We have taken here  !J = 0  . Sometimes it is easier to take !K = 0  
and  proceed in a similar way .  
 
Example 29. Find a complete integral of the equation JK = 1. 
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In this case v(�) = 1/�, so that we see, from equation (4), that a complete 
integral is Z = �� + 	� + � 

which is equivalent to 
 ��� + 	 − �Z = * 
 
where �, * are arbitrary constants. 
 
(II) Equations Not Involving the Independent Variables.  
 
If the partial differential equation is of the type 
 �(Z, J, K) = 0  ………         (3)  
 
Charpit's equations take the forms 
 ��Eù = ��Ec = �j�Eù��Ec = ��=�E* = ��=�E*  
 
the last of which leads to the relation    J = �K  ………    (4) 
 
Solving (3) and (4), we obtain expressions for J, K from which a complete 
integral of  !Z = J!� + K!	  can be found .  
 
Example 30. Find a complete integral of the equation J�Z� + K� = 1. 
Putting J = �K, we find that 
 K�(1 + ��Z�) = 1, 	K = (1 + ��Z�)=k�, 	J = �(1 + ��Z�)=k� 
Hence 
 (1 + ��Z�)°!Z = �!� + !	 
 
which leads to the complete integral �Z(1 + ��Z)k� − log	 Â�Z + (1 + ��Z�)MMÃ = 2�(�� + 	 + �) 
 
(III) Separable Equations.  
 
If the  partial differential equation  can be written in the form �(�, J) = 4(	, K)  
For such an equation Charpit's equations become 
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��Eù = ��=Fc = �j�Eù=�Fc = ��=E� = ��=F�  
 
so that we have an ordinary differential equation 
 ���� + E�Eù = 0  

 
in � and J which may be solved to give J as a function of � and an arbitrary 
constant � . 
 
Hence we can determine J,			K from the relations �(�, J) = �, 	4(	, K) = �  
 
and solve the equation  !Z = J!� + K!	 . 
 
Example 31: Solve the equaiton K = �	J� 
 
Sol: The given  equation can be written as �J� = K	 

 
Let  �J� = �    and     

�� = � 

 

Then  J = g$�  and  K = �	 

 
Using the values of J and K in   !Z == J!� + K!	 
 

We have , !Z = g$� !� + �	!	  

 

Integrating, we get   Z = 2√�(�)k� + � ��� + � 

 
or   2Z = 		4√�� + �	� + 2�    or    
 16�� − (2Z − �	� − 2�)� = 0  
 
which is the complete integral. 
 
Example 32: .Find a complete integral of    J�	(1 + ��) = K��. 
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Sol. The given equation can be written as :  
 ��(+���)�� = �� 	   
 

Let   
��(+���)�� = �� 	 = �� 

 ⇒ J = $�√+���,     and   K = ��	. 
 
Putting  J	  and  K  in   !Z = J!� + K!	   yields 
 !Z = $�√+��� !� + ��	!	  

 	Z = �√1 + �� + $���� + �  

 
where � and � are arbitrary constant . 
 
Example 33: Solve J� + K� = � + 	.   J� + K� = � + 	 
 
Sol: Let  J� − � = 	 − K� = � 
 J� − � = �			 ⇒ J� = � + �		 ⇒ J = (� + �)k�  
 

and 		 − K� = � ⇒		 K� = 	 − � ⇒ 	K = (	 − �)k�  
 
Now, !Z = J!� + K!	 ⇒ !Z = (� + �)k�!� + (	 − �)k�!	  
 
Integrating  we get  ⇒ Z = �� (� + �)Ð� + �� (	 − �)Ð� + �  

 
(IV) Clairaut Equations .  
 
A first-order partial differential equation is said to be of Clairaut  type if it can 
be written in  the form   Z = J� + K	 + �(J, K)  
 
The corresponding Charpit equations becomes:  ����Eù = ����Ec = �j�������Eù��Ec = ��Y = ��Y   
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The last two fractions give   J = �	, K = �  so that  
 Z = �� + �	 + �(�, �)  ………..(5)    becomes the complete  solution.  
 
The singular solution of the given equation is found by eliminating  �	, � from  �j�$ = 0		, �j�« = 0  and  (5) . 

 
Example 34: Find the general  and singular solution of  
                    Z = J� + K	 + J� + K� 
 
Sol: The equation is of Clairaut's form therefore its complete solution is given 
by Z = �� + �	 + �� + ��  …………….      (1)  
 
Differtiating (1) partially with respect to � and � we get 
 �j�$ = � + 2�	 and 	 �j�« = 	 + 2�  

 

Now   
�j�$ = 0 ⇒ � = − ��  

 

and   
�j�« = 0 ⇒ � = − �� 

 
Using these values of � and � in (1) we get 
 Z = − ��� − ��� + ��� + ���    which is the required singular solution .  

 
Exercises  
 
1. J + K = JK                        

 
2. Z = J� − K�  

 
3. J�K(�� + 	�) = J� + K    

  
4. J�K� + ��	� = ��K�(�� + 	�)  

 
5. Z = J� − K�                         
6. J(1 + K) = KZ 

 



Chapter 9: Introduction to Partial Differential Equation 

182 

7. J� + K� = � + 	 
 

8. ZJK = J�(�K + J�) + K�(	J + K�) 
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