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number of solved examples and exercises to give students a chance to work on
their own. An attempt has been made to present the subject in a clear, lucid and
intelligible manner.
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Chapter-1

Differential Equations: Formation and Solutions

Introduction
What are Differential Equations?

Differential equations are mathematical equatitias telate some function with
its derivatives. In simple terms, a differentigluation describes a relationship
between a function and the rate at which it chanJé®se equations are
fundamental in describing various physical phenansach as motion, heat,
and sound.

Order of Differential Equations

The order of a differential equation is the ordethe highest order derivative
involved in the equation .

Example 1.01:The equatiorj‘% = f(x,y) Is of first order while the equation

d?y dy\3 _ .
=T 3x (E) + 3xy = 0 is of second order .

Degree of Differential Equations

The degree of the differential equation is the powe the highest order
derivative in the given differential equation. Tdth&erential equation must be a
polynomial equation in derivatives for the degre®¢ defined.

2.7\ 3 4
Example 1.02:The equatior(%) + 3x (%) +3xy =0 isofdegree 3 as

the highest order derivative is of degree 3.

2
The degree of a differential equatiaan (%) + % = sinx is not defined as
the equation is not a polynomial in the derivative

Solution: A function ( or relation between a dependent andependent
variable) that satisfies the differential equati®alled a solution .

Example 1.03: Show thaty = a cos(mx + b) is a solution of the differential
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e uationdz—y+ 2y=0
q dxz m y - "

Sol:y =acos(mx + b) = % = —masin(mx + b)
=>d23’_ 2 b) = 2

5 =-m acos(mx + b) = —m=y
=Y 4 m?y =0

dx? mwy =

#1.01-Formation of differential Equations

Differential equations often arise from practicedlglems in various scientific
and engineering fields. The process of formingfedintial equation involves
translating a physical problem or a mathematidatiaship into an equation
involving derivatives.

Here are some common ways differential equationseaformed:

 From Geometric Relationships: Many differential equations originate
from geometric properties, such as curves and thegents.

* From Physical Laws:Physical laws, like Newton's laws of motion or the
law of cooling, naturally lead to differential eduas.

 From Rate of Change Problems:Many real-world problems involve
rates of change, which are naturally describeddnydtives.

 From Mathematical Conditions: Sometimes, mathematical conditions
and constraints can be wused to derive differentemjuations.

#1.02-Formation from Geometric Relationships

Consider a curve given by = f(x). The slope of the tangent to this curve at
any point(x, y) is given by the derivativ%. If the relationship betweey and

dy . . . .
é Is known, a differential equation can be formed.

Example 1.04

Given that the slope of the tangent to a curvengfmint(x, y) is equal to the
product of the coordinates, we have:

dy_

dx Y



Chapter 1: Differential Equations: Formation andl®@mns

This is a first order differential equation repnetseg the given geometric
relationship.

#1.03-Formation from Physical Laws

Physical laws often describe how quantities chaoggr time. These changes
can be expressed as differential equations.

Example 1.05

Newton's Law of Cooling states that the rate ohgeeof the temperature of an
object is proportional to the difference betweendbject's temperature and the
ambient temperature. T(t) represents the temperature of the object at time
andT, is the ambient temperature, the law can be wrdten

a  kT-T)
dt a

wherek is a positive constant.

#1.04-Formation from Rate of Change Problems

Many problems involve rates of change, such aslptipa growth, radioactive
decay, and chemical reactions. These problems d¢@mm de modeled by
differential equations.

Example 1.06

The rate of growth of a populatidt(t) at timet is proportional to the current
population. This can be written as:

dP—kP
dt

wherek is the proportionality constant.
#1.04-Formation from Mathematical Conditions

Certain mathematical conditions or constraintslead to the formation of
differential equations.

Example 1.07
Consider a functiony(x) defined implicitly by the equation? + y? = r?,

which represents a circle of raditisDifferentiating both sides with respectito
gives:
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dy
2x+2ya—0

. i s .dy _x
Simplifying, we get: il

This is a first order differential equation desorgpthe slope of the tangent to
the circle at any poirttx, y)

#1.05-Parameter of a Function

A parameter is a constant in the function's formbild its value can change
within a specified range. Unlike the main variabledich are typically the
inputs of the function, parameters modify the treteship between the inputs
and outputs.

Examples

Consider the linear functiof(x) = mx + b. Here,m andb are parameters.
#1.06-Family of Curves

Definition. Ann-parameter family of curves is a set of pointsy) defined by
a relations of the formf(x,y,cy,c,,...,¢c;) = 0 where each; (i =1,2,,n)

are parameters .

For example, the set of concentric circles defiogd? + y? = a? is one
parameter when > 0 .

Again, the set of circles, defined big —a)?+ (y —B)> =4 is a two-
parameter family.

Definition
Let g(x,v,y1, V2, .,¥,) =0 be a given nth order ordinary differential
equation. Then — A solution containimgindependent arbitrary constants is

called ageneral solution orcomplete primitive.

A solution obtained from a general solution by ggparticular values to one or
more of then independent arbitrary constants is callegaaticular solution.
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A solution which cannot be obtained from any gehsslution by any choice of
the n independent arbitrary constants is called segular solution.

#1.07-Method to form a differential Equation

To form a differential equation from a given fumctiof the form

f(x,y,a,a5 .....a,) =0 or y=f(xa,a,....a,) Where a;, i=
1,2,3..n are parameters, we differentiate the givertion n times to get
(n+ 1) relations .

From thesgn + 1) relations , we can eliminate all the parametersd the
resulting equation with no parameters is the megudifferential equation.

Example 1.08:Form a differential equation of a family of cirslex? + y? =
2
a- .

Sol: The Given relation ic and y consists of 1 parametée’ and hence we
need to differentiate only once .

we have x? + y? = a?
dy
=>x+ydx—0

The second equation is independent of the paranetand is the required
differential equation .

Example 1.09 :Find the differential equation of the family ofreas given by
y =Acosx + Bsinx

Sol: Given y = Acosx + Bsinx ( 2 parameters)

d )
=2 = _Asinx + Bcosx
dx
d?y .
= — = —(Acosx + Bsinx)
dx?
d?y
or — = —
dx? y
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#1.08-The Wronskian

Definition: The Wronskian ofn functions ¢;(x) : i =1 ton is defined
as

$1(x) P20 . Pp(x)
Wy ) @) = | P10 B2 00D

PrI(x) P3P
#1.09-Linearly dependent and independent set of futions

Definitions. The n functionsy, (x), y,(x), ..., y,(x) are linearly independent if
YL+ ey, + o+ =0=>¢=0VvVi=1,2,..n and linearly
dependent if there exist constantsc,, ..., ¢, (not all zero),

such thatc,y; + ¢y, + -+ ¢y, =0

Theorem 1.01: The two non-zero differentiable function¥x) and g(x)
defined onl are linearly dependent oh if and only if the Wronsteian
W(f,g) =0 forallxel.

Proof ;. Supposég (x) andg(x) are linearly dependent dnthen there exists

areal numbekK # 0 such thatM =K
g(x)
f fe fl g f
g % 1
Therefore, W (f, =|, |1 =1, ==, /=0
' I O A i
Conversely, suppos#/(f,g) =0
fx) g
Then forallx € I , we have‘ , , =0
e @ g
@ _ g
f(x) gx)

On integration, we get% =c=>f(x)—cglx)=0

Sothatf(x) and g(x) are Linearly dependent.
The other side of the theorem can be stated ( withuwther proof ) as
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Theorem 1.02: The two non-zero differentiable functionqx) and g(x)
defined onl are linearly independent ohif and only if the Wronsteian
W(f,g) #0 forallx €l.

The above two theorems can be extended to 3 or funcions.

#1.10: Linear differential equations

The general linear ODE of orderis
y® +p, )y D it p ()Y =q(X) e (1)

If g(x) # 0, the equation is inhomogeneous.
The Equation y® + 0, )y + ot p ()Y =0 e (2)

will be called the associated homogeneous equaifofil).

#1.11: Linear differential operators

2
If we take;—x =D ,% = D? and so on, equation (1) above can be written
as

D"+ a; D" + -+ ay)y = q(x)

or p(D)y =q(x) or L(y) = q(x)
where L=p(D)=D"+aq;D"*+--+a, We cal p(D) a Linear

differential operator in the sense that it pesee Linearity rule tobe seen
below .

Operator rules
We will state below some of these rules and asestimt the functions

involved are sufficiently differentiable upto aagder , so that the operators can
be applied to them.

Sum rule: If p(D) andq(D) are polynomial operators, then for any function
u, [p(D) +q(D)]Ju =p(D)u+q(D)u

Linearity rule: If u; andu, are functions, and, constants,
p(D)(c1uq + cauz) = ¢p(D)uy + cop(D)u,

Multiplication rule: If p(D) = g(D)h(D), as polynomials i, then
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p(D)u = g(D)(h(D)u)

Commutative Rule: For two differential operatorf(D) and g(D) and a
function u(x) , we have f(D)g(D) (u(x)) =g(D)f(D) (u(x))

Substitution rule

p(D)e™ = p(a)e™

The proof for all these are easy as they invol¥eintiation only

Theorem 1.03:Let L(y) =0 be a homogeneous linear differential equation
and lety, andy, be two solutions. Thetyy, + c,y, is also a solution for any

pair or constants; andc,.

Proof : We shall prove the theorem for a linear differanéiquation of order 2,
the result can be generalized to any order .

LetL(y) =y +py +qy

Then L(y,) =L(y;) =0

Now  L(ciy; + €2y2) = (c1y1 + €2¥2) 4+ p(t) (crys + €2y2) + q(t) (crys +
C2Y2)

=ciy1 oy, +pM®cy: +pMcy, +a®cy; +a®cy;
=y My +q®cy; +q®cy,  +pcy, +at)c,y,
= (1 +p®y: +d®y1) + c2(y2 + P®y2 +at)y2)

=c; L(y1)) +¢c; L(y2) =0+0=0

We state below another theorem ( without proofj thill be important in the
chapter to come .

Theorem 1.04: Existence and uniqueness Theorem

If a,(x),a,(x),...a,(x),q(x) are continuous (real-valued) functions on some
interval (a, b) containingx,, then an initial value problem of the form

y(n) + al(x)y(n_l) + -+ an—l(x)y' + an(X)y = q(x),
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y(x0) = Vo0, ¥ (x0) = y1, oo, Y™V (x,) = y,_, has a unique solution da, b).
#1.12: Some Geometrical Concepts

To start with , we first make an identification ariy pointP(x,y,z) in space

with a vectorOP = xi+yj+zk wherei ,j ,k are unitvectors along the
X —axis,
Y —axis and Z — axis respectively.

If OP makes an angle ,B ,y with the coordinate axes , then taking the dot
product of OP with i,j ,k respectively , we obtain the direction cosines of
OP - x S —Z

OP ascosa = or cosf op ,co.sy op e (1)
and sox,y,z isone set of direction ratios .

Using the above concept and the addition of vedtwrdhe two vectors
AB = OB — 0A , we can easily see that :

A line joining AB (whereA = (x1,y1,21) » B = (x3,y,,2,) ) has direction
cosines
Xp—X1 2—Y1 2272,

_X2 _JY —
cosa =——— ,Cos 8 = oSy === ... (2)

and one set of direction ratios amg — xy, y, —¥y1, 2, — 21
Takinga=x2—x1, b:yz_yli C= Zy — 74

It is also clear that the linéB is parallel to a vecto = ai + bj + ck which
pass through the origin as they both have saneetdin ratios.

If two proper lines AB and CD have direction ratios (or direction
cosines) a, ,b; ,c; and a,, b,,c, respectively , then the ang® between

them is same as the angle between the vectorfighdoathem and passing
through the origin . If further , AB and CD grerpendicular then using the
dot product we can easily show that

a,a, +bib, +cic, =0 ..ol (3)

Plane: If P(x,y,z) and A(x,,Y0,2,) be two points on the plane and be a

~

normal vector to the plane where= n,i+ n,j+ n,k then PA.7n =0

= (x—x)n,y + (Y —yo)ny, + (z2—29)n, =0 ......... (4)
giving the plane in terms of point and directiohg®normal normal .
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Surfaces and Curves

The mathematical definition of surfaces and curvesn be found in most
topology books and as they are not part of weatise , we shall bring up just
a few concepts that we feelmaybe required in bapters .

A relation of the form  F(x,y,z)=¢ ... (5)
always represent a family of surfaces .

If each points satisfying (5) can be describgad Iset of relations

x=filuv) ,y=FfHWwv) z=f1,v)........ (6)

Then (6) is knows as the parametric equation of the sarf¢b) .
In solving the first two equations of (6) , wen obtain realtions of the form
u=¢(x,y) ,v=1y(xy) sothat z can be expressed as a functiorocénd

ysay z=f(Yy) .ccocon... (7)
and since (7) is just a change of form of (H)yepresents a surface .

Curves in Space

In general , the intersection of two surfacgéx,y,z) =0=g(x,vy,2)
represents a curve in space .

Let the curveC be represented by the parametric equations
x=x(s),y=y(),z=2(s) ....... : (8)

where s is the distance of a poiR{x(s),y(s),z(s)) from some fixed point
P, on the the curve measured along the curve.

Let Q be a neighbouring point a? on on the curve whose straight distance
PQ = éc .

If Q is at a distancés along the curve from, then the distand®,Q along the
curve will bes + §s, and the coordinates Qfare
{x(s+6s),y(s + 8s),z(s + 6s)} .

When the poin) approacheg i.eds — 0, the two distance§c and s are

almost identical ( of coursés > §c) and we shall have
éc

lim —=1

6§r—>no 8s

10
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Using the formulae from equation (2) , we see that direction cosines of the
x(s+8s)—x(s) y(s+8s)—y(s) z(s+6s)—z(s)
chordPQ are { = , = , = }

Assuming the smoothness of the curve, we have

x(s+38s) —x(s) = (d—x) os + R C e e (9)

ds ds?2 2

N X(s+85)—x(s) _ (E)é‘)—s d?x (8s)? +
8¢ ds/ éc = ds? 26c
and since the cho®Q (whends — 0) becomes a tangent to the cu@e at
P and sinc%lim()% =1 , the direction cosines of the tangk@t to the
S—
curveC at P becomes

dx dy dz
(g,g,g) C s (10)
and alsodx,dy,dz is one set of direction ratios of the tangent .

Suppose the curvé given by the equations (8) lies entirely on theacesS
with equation F(x,y,z) = 0, then for eachs , we have

Flx(s),y(s),z(s)] =0 .......... (11)

Differentiating equation (11) with respect ¢goand suing the chain rule , we
obtain

OFdx A 0Fdy |, 0Fdz _

axds Toyas Tazas — 0 oo (12)

By the perpendicularity condition ( see equation 3
we see from (12) that the tangent to the cdrad the poinfP is perpendicular
to the line whose direction ratios/cosines are

e (13)

Also , the curvel above can be any arbitrary curve passing throglpointP
and lies on the surfacéd. Thus the line with direction ratios (13) is
perpendicular to the tangent to every curve lhongS and passing through.
Hence the direction (13) is the direction of themal to the surfacé at the
point P.

11
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If the equation of the surfaceis of the form z = f(x,y), then taking

0z 0z
F(x,y,z)—f(x,y)—z 1a_p ’E_q

aF _ of _ oz oF oF
we have T T T = =

xox Py 5= 1

Therefore , normal to the surfaece= f(x,y) atP(x,y,z) has direction ratios

(p,q,—1) and direction cosines a(&)

o]

Exercises

1. Find the differential equation of all circles whiphss through the origin and
whose centres are on the x-axis.

2. Find the differential equation of the curvey = asinx+ bcosx +
X sin x.

3. Form a differential equation of the following :
(i) ellipses centered at the origin.
(ii) parabolas with axis parallel to the axis of y
(i) y = acosmx + bsinmx.
(iv) circles with center ala, b) and radiusr .
(V) xy = ae* + be™!

4. Show that the given functions in each of the feilgg are solutions to the
given differential equations .

. . 2 dy 3 . dy

Hhy =c (x— c) , (E) = 4y (xa - 2y).
Y a — ~p5x 43 ay _ e,

(i) y = ce + < ,dx—Sy 3

o - - a’y  d% dy _
(i) y=cie™ +ce”? +cge™3* | (§+6K+11d_+6y)_0

2 x

iv) y=e™* i Py gV 1o _
(iv) y = e™*(cycos 4x + c,sin 4x) (dx3 +6 —+ 12 —+ 8y) =0

12



Chapter-2

First Order and First Degree Differential Equation

Introduction

A first-order differential equation is an equatihat involves the first derivative
of a function but no higher-order derivatives. Wiiteis also of the first degree,
it means that the highest power of the first deneain the equation is one.
The general form of the first order and first degeguation is of the form —

Y~ fxy) or f(x,y)dx + g(x,y)dy = 0

dx

#2.01: Geometrical Implication

Consider the equaticgﬂz =f(x,y) ...... (1)

Since Z—Z represents the slope of the tangent to the cyree F(x) at any

point P(x,y) on the curve , therefore ith(x,y) = ¢ ( for a constant ) is a

solution curve or integral curve of the equatfjth, then Z—i’ = —% must
y

satisfy equation (1) i,e the slope of the tanderthe curvep (x,y)=c at any

point P(X,y) on the curve must equal to f(x,y)s@ ¢ (X,y)=c is a family of

curves lying at different heights dependinglomalue of 'c' .

Thus the general solution of the equatgén: f(x,y) is a family of curves
called integral curves whose tangent at anytpBifx,y) is f(x,y).

13
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#inyrFe,

i NI

/’;m Cyhee,

-
LY T

_mn}-/

Figure 2.01

#2.02: There are several methods to solve such equatimisding separation

of variables, integrating factors, and exact equati Here are some common
types:

(A). Separation of Variables

This method is applied when an equation can barpthe form f(y)dy =
g(x)dx which can be solved by directly integrating botides to get

J f»dy = [ g(x)dx
Example 1: Solve the differential equation:

2d_y _ y(x+1)
dx X

Sol: Separating the variables we have

2dy _ (x+1)dx or Zd_y _ (1 + 1) dx
y x y X

14
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Integrating both sides

[ 2= (1+3)dx

2logy =x +logx + K
Example 2:Solve xdy =ylogy dx giventhatx =2 when y =e.

Sol: Separating variables we have

dy dx

ylogy T ox

Integrating: [For they part, letu = logy, thendu = ‘;—y.

j dy [ dx
ylogy_ X

log(logy) =logx+ K ........... (1)

Substitutingt = 2 wheny = e

we getlog(loge) =log2 + K

= K =—log2

Substituting this (1)

we get log(logy) = logx —log?2 = log (g)

=>logy=§ or y=e*/?

(B) Reduction to Equation where Variables are sepable

Sometimes , there are equations where the vasigblenot be separated but by
some suitable substitutions , they are seperabiese Equations are mostly of
the form

dy
E—f(ax+by+c) :

Upon taking(ax + by + ¢) = v , they will be reduced to the the form
dx = g(v)dv

15
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Example 3: Solve‘;—z = sin(x + y)

dy _dv

Sol: Taking(x +y) =v = —=—-1
Therefore? — 1 = sinv = dx = —2— = Lgec? (E) dv
dx 1+4sinv 2 2

Integrating [ x dx = [ %secz (g) dv

1
=>x=—tan(z)+C
4 2
x+y

orx = ltan—+ C
4 2

Example 4:Solve (x+y—1)dx =(x+y+ 1dy

. . d +y-1
Sol: We rewrite the equation as&> = —2—. ...........
dx x+y+1
dy dv
= = —_— T —
Let x+y=v 1+dx ™
so that
& _av _
dx  dx 4 1
(1) becomes = —1=-"—
dx v+1
dv 2v
or —=-"-
dx v+1

or 2dx = (1+3)dv.
v
~ Integrating,

2x +c=v+logv or x—y+c=log x+Yy)

(C) Homogeneous Equations

(1)

Definition: A function f(x,y) is said tobe homogeneous in and y of

degreen if f(kx, ky) = k™f(x,y)

To Solve an equation of the form

16
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% = f(x,y) where f(x,y) is a homogeneous function , we use a

itutiony Y _ oy ®
substitutiony = vx so that LUt X~

d —
Example: Solve = =22
dx y+x

dv

: - — v _ @
Sol: Substitutey = vx so thatdx =v+x—

vX—X

Replacey in the given equation we get + xZ =

dx vX+x

a -1 -1
or v+ xX =X vt
dx x(v+1) v+1

dv v—-1

orx—=——v
dx v+1
dv v—1-v(v+1)
orx—=——
dx v+1

dv  v—-1-v%-v

or x—=
dx v+1
dv  —v?-1
or x—=
dx v+1
dv  —-(v?+1)
or x—=
dx v+1

dv
or x— = —-(v—-1)

v+1 dx
—dv=—[ =
ve+1 X

Integrate both sides we gét

1
v2+1

or [ —dv+ |

v2+1

dv=—In |x|+C
The first integral i%ln |v? + 1], and the second isctan (v) :
%log |lv2 + 1|+ tanv = —In |x| + C

Back-substituter = % :

(y)z + 1| + tan G) =—In x|+ C

X

%log

17
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d
Example 5:Solve=X =2 4 tan Z
dx X X

ingL=v i — & _ v
Sol. Taking —=v, le.y=vx, weget —=v+x (dx).

The given equation becomes

dv dx cos v
v+x—=v+tanv or —=——dv.
dx X sin v

Integrating, logx + logc = logsinv, ¢ being an arbitrary constant.
or c¢x = sin v,
or cx =sin (y/x)

(D) Equation reducible to homogeneous form

+by+ b
22X where = # -2, can be reduced to
a'x+b’'y+c a b

homogeneous form by expressing= ah + bk and ¢’ = a'h + b’k so that
the given equation can be written as

dy _ a(x+h)+b(y+k) ) o B ~
dx @ (rh)+b (y+k) which upon substitutiork + h=X , y+ k=Y,

the R.H.S. will be homogeneous .

Equations of the formZ—i’ =

x+y—2

Example 6: Solve the equatioﬁll =
dx x—-y+4

Sol: We chooseh, k such that
h+k=-2
h—k=4

Thereforeh =1, k = -3

The given equation reduced to

dy _ (x+1)+(y-3)
dx  (x+1)—(y-3)

Takingx+1=X,y—-3=Y
The above equation becomes

av _ X (R.H.S is homogeneous )
DX X-Y
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OntakingY = vX

. d 1+
the last equation becomes+ xZ2=2=
dx 1-v
dv 1+v 1+v2
or —_—=— v =
ax 1-v 1+v
ax 1+v . . ax 1+v
> — = i
—=——dv ,integrating we gef ~ ) — dv
ax 1 1 2v
or f Y - f1+v2 dv +Ef1+v2 dv

= logX =tan"lv + %log(l +v2) +C

_ _1y-3 1 y—3)2
orlog(x + 1) = tan T 2log(l + (—x+1) ) +C
dy
Example 7:Solve (x + y — 10) (E) —2x—y—20=0.
2x+y+20 (l)

Sol: We rewrite the equation gy = 220
dx x+y—10

Leth,k be such that

2h+ k=20 and h+k =-10
Thenh =30,k = —40
equation (1) can further be written as

EX __ 2(x+30)+(y—40)

dx  (x+30)+(y—40)
or dy _ 2X+Y

dX  X+Y

whereX = x +30,Y = y — 40

The R.H.S of the above equation is homogenengbso we put
Y = vX to get

dv 24v dv
v+ X—=— or X— = or —=
ax 1+v ax 1+v X 1-v2

integrating we get fdyx = f::z dv = fl_lvz dv _%f 1__2:2 dv

Y 2log(1—v?) +logC

1-v 2

= logX = %log
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V1 —
\/(1_U +logC log
c
ﬁX—lTv OrX(l—U)—C

or x(1-3)=C orXx-v=¢
orx—y+70=C or x—y=C, whereC—1=C+70 a constant.

(E) Exact Differential Equation: An equation of the form

Mdx+ Ndy=0 ............ (1) is said tobe exact if there existsfunnction

F(x,y) having continuous first order partial derivatives such that M =
oF OF
ax ' T ey

If such a function exists , ther(1) will become Z—de+g—5dy =0 or

dF =0 and on integrating gives
F(x,y)=C

which is a solution of (1) .

Theorem: The necessary and sufficient condition for différ@ equation
M.dx +N.dy =0

to be an exact differential equation is tha?—y -~

Proof: (P.G.Andhare , AlIRJ , Vol - V Issue-lll MARCH 2018
Necessary Condition

Suppose M.dx + N.dy= 0 is an exact differential equation. Therefore there
exist a functioru of x andy such thaMdx + Ndy = du By definition of total
differentials du = 2% dx + a—udy

0x dy

From (1) and (2) we get
Jdu Ju
M'dx+N-dy—$dx+5dy

Comparing coefficients on both the sides of dx Bygdve obtain,
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ou u
M = andN = 7y

oM _ 9 (au) _ d%u

dy - 5 5 dy 0x
0%u 0%u

But we know =
u € 0 dy 0x dx oy

. OM 0%u _ 0%u _ a(au)_aN
o dy _ayax_axay_ax

ay) ~ ox
aM _ dN
Thus E = 9x
. . oM _ ON
Sufficient Condition: Conversely suppose67 =

We Claim: The differential equatioddx + Ndy = 0 is an exact differential
equation.

We defineV = [ N.dy , x = constant
Differentiating V w. r.t. y we get

Y _N ThatisN =%
dy ay

ON 0 (av) 0%v

E o & E Y dy
2%V 0%V ON 0%V
at = T S,
But we know tha~ % = 3yor % = 3y (4)
M 0N 0%v
From (3) and (4% = 9% 3y 0%
om _ 0% oM _ 9 ()
dy - 0y 0x dy - dy \0x

Integrating w. r. t. y treating x as constant
av

M = —+ congant
0x

As we are treating constant while integrating w. r. t. y .
Therefore constant of integration may contain #rentin M not containingy .
Hence it is function of say@!(x)
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_ o 1

M=—+¢ (x)
Now

=¥+ o1 v
Mdx + Ndy = [ax+<p (x)] dx+aydy
_ov v 1
= axdx+aydy+(p (x)dx

av ov

But we know adx+$dy— dv

Mdx + Ndy = dV + ¢ (x)dx
=d[V + o(x)]
=du where u = [V + ¢(x)]

Therefore there exist a functioanof x andy thatisu =V + ¢(x) such that
Mdx + Ndy = du

Hence the differential equatioMdx + Ndy =0 is an exact differential
equation.

Method to solve Exact Differential Equations
Method 1. Given the exact differential equatiavidx + Ndy = 0

The general solution is given biy(x,y) = ¢ where

oF _

=N.
Iay

F(x,y) s a function satisfyin% =M

This method is sometimes callsdiution by inspection.

Method 2. Given the exact differential equatidiidx + Ndy = 0
The general solution is given by

[ Mdx+ [ (Terms. N not containing)dy = c
where in the first integral , we integrate w.x.t treatingy as constant and
in the second integral , we integrate wy.t treatingx as constant .

Method 3. Given the exact differential equatiddidx + Ndy = 0
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The general solution is given by

[ Ndy+ [ ( Terms.M not containing/)dx
where the integrals is tobe integrated similamathe previous method .

Example8: Solve (3xy? — x?)dx + (3x%?y — 6y? —1)dx =0
Sol: Comparing the given equation withdx + Ndy = 0

we haveM = (3xy? —x%) , N=(Bx%y—-6y2-1)

oM ON

E=6xy, Pl 6xy
: oM _ ON
Since ;;; = 9%

=~ The differential equation is exact differentialiaton.
IntegratingM w.r.tx treatingy as constant ,

we have [(3xy? —x?)dx = 3y? [(x)dx — [ x*dx =
Integrating terms oN not containge , w.r.ty we get

3x%2y?  «x

2

3

J(—6y* —1)dy =-2y3—y

Therefore the general solution is given by
3x2y2 x3

- 3 _ _
. S 2y -y=c

Example 9: Solve the equatior{ y? + 2xy)dx + (x% + 2xy)dy = 0
Sol: Taking the functionF (x,y) = x2y + xy?
we haveZ = y? + 2xy O —x2+ 2xy
dx ay
Therefore the given equation can be written as
g—idx + Z—;dy =0
ordF =0

on integrating we get a solution as
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F(x,y)=C
or x2y+xy*=C

Example 1Q Find the values of constahfor which the equation

(2xe” + 3y?) (%) + (3x2 + 2e¥) = 0 is exact.
and hence solve it.

Sol. Re-writing the given equation,

(3x2 + 2e¥)dx + (2xe¥ + 3y?)dy = 0. ......... (1)
Comparing withMdx + Ndy = 0,

we have M = 3x% + 2e¥ and N = 2xe¥ + 3y=2.

Now, for (1) to be exact we must have

M _9N  sothatde¥ = 2¢Y = 1 =2.
oy O0x

~ (1) becomes (3x? + 2e¥)dx + (2xe¥ + 3y?)dy =0

Equation (3) in exact and hence its solution isdisition is
[ Mdx + [ (termsin N not containing)dy = c

[ (3x% +2e¥Y)dx + [ (3y*)dy =¢
or x3+2xe¥ +y3 =¢

Example 11: Solve [y? — x2sin (xy)]dy + [cos (xy) — xysin (xy) +
e?*ldx =0

Sol: We haveM = cos (xy) — xysin (xy) + e**
N = y? — x?sin (xy)

oM 5 :

— = —x“ ycos(xy) — 2 xsin(xy)
dy

oN

o —x?%ycos (xy) — 2xsin (xy)

24



Chapter 2: First Order and First Degree Differertiaquation

oM ON . .
As — = — | the equation is exact.
ady 0x

S M(x,y)d = x [ (cos (xy) — xysin (xy) + e**)dx

= ~sin (xy) + xcos (xy) = ~sin (xy) +3 €% + £ ()

= xcos (xy) + %ezx
3

J (terms of N not containing x) dy = [ y?dy = y?
Therefore the general solution is given by

1 oox  V°
x cos(xy) toe +5 = C
Example 12: Solve: (1 + 4xy + 2y?)dx + (1 + 4xy + 2x*)dy = 0
Sol: Given (1 + 4xy + 2y?)dx + (1 + 4xy + 2x%)dy = 0

Compare with Mdx + Ndy = 0, we get
M=1+4xy+2y% N =1+ 4xy + 2x?

oM 4x + 4 oN 4y + 4
> — = —_—
dy XTI G T T

oM _ ON
dy T ox

~ Equation (1) is exact.

fy Mdx + [ (terms inN not containinge)dy = ¢
wherec is an arbitrary constant of integration.

= f (1 + 4xy + 2y?)dx + j (Ddy =c¢
y

yZ
=>x+4x7+2y2-x+y=c

=>x+2xy?+ 2y x+y=c
> x+y+2xy?+2y%x=c
>x+y+2xy(y+x)=c

= (x+y)(1+2xy)=c
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The Integrating Factor: If the given differential equation is not exactmay
sometimes be possible to multiply through by aegnating factor u(x,y) to
make it exact. An integrating factglx, y) is a function that, when multiplied
by the original differential equation, makes it eixaThere is no universal
method for finding integrating factors, but comnsirategies include looking
for u that depends only anor y, or using specific forms based on the structure
of the equation.

We shall list some of the commonly used stratelgedew:

. d d , : :
(i) If %[%—%] = f(x) (afunction ofx alone) then the integrating

factor of the equatiolMdx + Ndy = 0 is given byu = e/ f()dx

1 [aN oM

(i) If " 5_5] = g(y) (afunction ofy alone) then the integrating

factor of the equatioMdx + Ndy = 0 is given byu = e 90y

Example 13:Solve (3xy — y?)dx + x(x —y)dy =0
Sol: Here we have M =3xy —y2 , N =x(x —7v)

oM aN
E—Bx—Zy ,a—Zx—y

. oM ON . .
Since o * the equation is not exact.

1 [om aN_l . . . _x-y _ 1
We haveﬁ[a—a —N[3x 2y — 2x —y)] = = f(x)

x(x-y) o ;

a function only ofx .
Therefore , the integrating factor is

u = el Fe0dx

ed (1/x)dx

_ plogx

=X

Multiply the differential equation the I.F. we get

x[(Bxy — y*)dx + x(x — y)dy = 0]
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or (3x%2y —xy?)dx+ (x3 —x%y)dy =0 ............. (1)
Checking exactness of equation (1)

we haveM = 3x%y —xy? , N =x3—x2%y

M _ 5 2 ON _ 5 2

3y 3x°—2xy o 3x° — 2xy

Since Z—f = Z—: , equation (1) is exact and can be solvethbyprevious
method .

Example 14 Solve(x? + y? + 2x)dx + 2ydy = 0

Sol. Given equation (x? + y2? + 2x)dx + 2ydy =0 ....... (1)
_ 2 2 _ oM _ ON _
WhereM = x“ +y“ 4+ 2x,N =2y = % _2y,ax—0

. oM ON . .
SIHCEE * (1) is not an exact equation.

1 (oM ON 1 1
AISON(E — E) = Z(Zy —-0) = Z(Zy) = 1 = real number

~LF. = exp[f f(x)dx] =exp ([ 1dx) = e*

Multiplying (1) bye”*
we get (x? + y? + 2x)e*dx + 2ye*dy = 0........ (2)

Now (2) is of the forrM;dx + N;dy = 0

is an exact equation , whevik = (x? + y? + 2x)e* andN; = 2ye*
=~ General solution of (2) is

[F(x® +y%+2x)e*dx + [ 0dy = ¢ (= no term inN, not containingr)
= [ x%e*dx + y?[ e¥*dx + 2f xe*dx = ¢
= x%e* — [ 2xe¥dx + y?e* + [ 2xe*dx = ¢

= (x?+y»e*=c
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(i) If the given equatioMdx + Ndy = 0 is homogeneous andx + Ny) #
0, thenMler]v IS an integrating factor.

x34y3

Example 15 SolveZ—i’ =

xy?
Sol. The given equation can be written as
(3 +y3)dx + (xy?)dy =0 ............. (1)

HereM = (x3 + y3) andN = —(xy?) which are homogeneousxirandy.
Also Mx+ Ny = (x3+y3)x+ (—xy?)y=x* #0 if x#0
1 1

1
Thus I.F = Mx+Ny  (x3+y3)x+(-xy2)y x4

Multiplying the given equation by the integratirartor to make it axact
(x3+y%) (xy?)
we have x—d +—dy =0

2
The required solution is given by &) y>dx+f terms of (’;3'4) not

containing x]dy =c¢
i.e The required solution is given tﬁyG + i’—j) dx + [ (0)dy = c.

= The required solution is given by
3

y
log x——=c¢
8 3x3

(iv) If an equation is of the formf (xy)ydx + g(xy)xdy where M = yf(xy)
and N = xg(xy) then MxiNy IS an integrating factor .

(v) Inspection: Sometimes , the integrating factor can be foundnpection
when the given differential equation is of famillarm . These form can be a
differential of some standard functions as gielow :

| xy) = yax + xay ne(x< +y<) = 2xdx + 2ydy
) d(xy) d d iy (x? 2) = 2xd 2yd
2 2xydy—y?d 2yxd d
(...)d(y?):% (,V)d( ) %

y? 2x%ydy—2xy?dx ) x? 2y?xdx—2yx?dy
a(Z) -2 ) a(5) - 2

28



Chapter 2: First Order and First Degree Differertiaquation

(vii) dflog (xy)] = "2 (i) d(xy) = xdy + ydx

(iX) d (tan™? £) = 2522 (9 d(tan1 ¥) = 2oxd
() a[log ()] = =222 () dlog (2)] = 2
o [Slog 47+ )] = 222 gy a(-2) -2

0 a(5) - G s ) =
(xvii) d (%) =222 (vvii (£) = 24522

Example 16: Solve(x3® + xy? + y)dx + (y3 + yx? — x)dy = 0.
Sol. Re-writing, the given equation,

x(x% 4+ y?)dx + y(x? + y*)dy + (ydx — xdy) = 0
or xdx+ydy+w =0 ( the &' term being the differential of

x2+y2

1 X
tan~1Z=

_1£ —
or xdx +ydy +d (tan y) 0.
i x? 2 -1(X) =
Integrating we get 5ty /2 + tan (;) =c/2
2 2 -1 (X)) =
or x“+y~-+ 2tan (y) C.

(F) Linear Differential Equation of First order : An equation of the form
d
é +p()y=q(x) ceoiiiii (1)

(where p(x),q(x) are functions ofx ) is called a linear equation of first
order . If we multiply equation (1) by some Igtating Factoru(x) we get

1) o + BOOPC) Y = H@E) oo 2)

we assume that(x)p(x) = u'(x)
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So that ’;(—(;C)) = p(x)

on integrating we havéog u(x) = [ p(x)dx
= 'u(x) — efp(x)dx

From (2) we getu(x) o + 1 (0)y = u(x)q(x)

or = (uy) = u(x)q(x)

Which can be integrated to get the general solsn
= uy = [ u(x)qx)dx + C
or yelPWdx — [ o/ PWdxg(x)dx + C

Example 17:Solve the equation’ + %y =4x—3
Sol: Here p(x) = % and q(x) = 4x — 3.

The integrating factor ig(x) = e/ ®/Mdx = ¢3n ¥ = x3,
Multiplying both sides of the differential equatibg u(x) gives us

3
x3y' + x3 (;) = x3(4x — 3)
x3y' + 3x%y = 4x* — 3x3
i(x3 ) = 4x* — 3x3
dx y )

1] %(x3y)dx = [ 4x* —3x3dx

4x>  3x*
x}y=—-—-—+C
5 4
4x%  3x _
=— -4 Cx3
5 4

Example 18: Solve the differential equatio% + 3x%y = 6x°.

Sol: Comparing with the standard equation we have

P(x) = 3x? andQ(x) = 6x2.
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An integrating factor isu(x) = ef 3¥"dx = ¥’

Multiplying both sides of the differential equatibm e*’, we get

3d 3 3
e¥ 22 4 3x2eX’y = 6x2eX
dx
Or
d (,x3.0) — Ga2pX3
E(e y) = 6x“e

Integrating both sides, we have
e’y = [ 6x2e¥dx = 2e* +C
y==2+ Ce ™

Example 19: Find the solution of the initial-value problem
x2y'+xy=1 , x>0 ,y(1)=2

Sol: The given equation can be written as

The integrating factor is
M(x) — ef (1/x)dx — glnx — ,

Multiplication of Equation (1) by gives
, 1 d 1
xy'+y=~- or —(xy) =~

X

Integrating we get ,
xy = | idx=logx+C

Sincey(1) = 2, we have
2=logl+C = C=2

Hence the required solution gy = logx + 2

3x? __sin? x
1+x3 y 1+x3

Example 20:Solve % +

Sol: Given

31
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dy 3x2 __sin? x

dx = 1+x37  1+x3
Comparing with2 + Py = Q0 we have P = 2= | o =S¥
p 9 dx y= T 1+4x3 T 14x3

3x2
Thereforel. F = ef Pdx = of 153 = plog(14x%) = 1 4 43
Hence the solution is given by

sin? x
1+x3

y(1+x3) =] (1+x3)-dx+c =/ sin® xdx+¢

_1 . 2 _1 _ _1( _sin2x
=-J 2sinxdx+c=2[ (1—cos2x)dx +c 2(x - )+c

Example 21:Solve (1 + y?)dx = (tan™! y — x)dy

Sol: The given equation can be written as

dx x  tan"'y

dy 1tyZ 142

Comparing with the standard equatiéffw Py =Q,

1 tan—?

_ y
1+y2 Q= 1+y2

we getP =

1
——d -1
Therefore J.F = el P&V = o) T2 = gtanty

Hence the solution is given by

= [ B Y ygy 4 (1)
e € YAy te

1

1+y?

Puttan™! y =z so that dy = dz

Equation (1) becomes
xeta“_lyzf ez-zdz+c=zez—f 1-e?dz+c =ze?—e*+c¢

_ -1 -1
=tan"! yed ¥ — A "y 4 ¢

S>x=tan"l y—1+cen Y
Which is the general solution of the given equation
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(G) Equation reducible to Linear Form

Equations of the form

M) £ Z+pOf) =q()

Equations of these form can be reduced to lifezan by a substitution
dv

v=f@y) =2

(ii) Z—i’ +p(x)y = q(x)y™ (Bernoulli's equation) wheren € N and y™
denotes tha!" order derivative ofy w.r.t.x .

These kind of equations can be reduced to liiean by puttingv = =)

(i) A first-order homogeneous differential equation isof the form:
dy _FO/x)
dx G(y/x)

. . . _ d_y _ Q
,  Which impliesy = vx and —=UvtXx—.

Lety =2
X

Substituting these into the original equation:

w _F@ av v 1F)
v+ xdx - G(v) dx  x xG@)

which is linear .
This can be rewritten ag22 = £ _
ax G

which is separable and can be integrated todiind.

Example 22:Solve the Bernoulli Differential Equatiorﬁ% + 3y = 2y?
Sol: Divide byy? we get

—24y -1 _
y dx+3y =2

_ d _,d
Letv =y~ 1, so d—z=— Zd—z.

The given equation becomes
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which is now a linear differential equationun
Example 23:Solve the equationx% + ylog y = xye*.

Sol. Dividing by xy, the given equation reduces to

1dy

lay 1 — %
ydx+xlogy—e ............ (1)

ldy _av
y dx T dx
dv 1
(a) + (;) v=e*. ... (2)
Here , we have(x) = i and gq(x) = e*.

Now [ p(x)dx = | G) dx = log x
Therefore u(x) = e/ Pdx = glogx — 5

Let log y =v so that

Hence solution of (2) is v.u (x) = [ u(x)q(x) dx +c or vx = [ xe*dx +
corvx=xe*— [eXdx+c=xe*—e*+c or xlogy=e*(x—1)+c.

d +
Example 24:Solve : x? 2 = X&)
dx 2
xy+y?
2x2

Sol: Given equation i% =

v f(kx, ky) = f(x,y), the given equation is a homogeneous equation.
= v _ v

Puty = vx = — —v+xdx

The given equation can be written as

dv  vx?+v?x?  vi4v
v+x—= =
d 2x2 2
dv  v3+v vi4v-20v vi-v
= vy = = —p = =
dx 2 2 2
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Separating variable<: e _1) _
7 .[ dv dx 1
= - =
v(v —1) x 08¢
or2f (———)dv =log x +log ¢ = 2[log (v —1) — log v] = log cx

or log (1;1;;1)2 = log (cx) = (%1)2 = cx.

Puttingv = % the general solution of is

/0)-11% _ N2 2
[—y/x ] =cx= (y—x)° =cxy

Example 25 Solve : Z—Z = 2ytan x + y%tan? x
Sol. Given equation can be written as

dy dy
—~ — (2tan x 2tan? x=>——— 2tan x ——tan X

1 dy dz
Z=> = =—.
y y<dx dx
Then the above equation becomes :

d
é + (2tan x)z = tan? x.

This is a linear equation mwhereP = 2tan x.
Now |.F.= ethan xdx — p2logsecx — plog sec? x _ sec? x.

~ General solution is
zsec? x = [ tan? xsec? xdx —c
= zsec? x = [ tan? xd(tan x) — ¢ = (tan® x)/3 — ¢
~ The general solution of the given equation is
—lsec?x=2tan® x —¢
y 3

Example 26: Solvex = + y = y?log x

Sol. Given equation can be written as

35



Chapter 2: First Order and First Degree Differertiaquation

1dy , 1 1 logx

G Tx T e (1)
d 1d 1d d

letu=- =>—=-—-=2 —X=_=
dx y2Z dx y2 dx dx

. du 1 —log x
Equation (1) becomes— —-u=———"—............. (2)
dx x X
. . . . . —log x
which is a linear equation mmandx where P=—--, Q=

1 1

The |LF.=exp (f de) = exp (f —%dx) = e—log X = elogx =~
The General solution of (2) is

u(.LF)=[QUF)dx +c

—logx 1 1
o x+c—f—ﬁlogxdx+c

Sty

u 1 11 1 1
:;:—logx—f——dx+c——logx+ +c

Puttingu =% above
The general solution of the given equations is :

i=§logx+§+c or 1=ylogx+y+cxy

xy
Example 27 Solve the equation :% — iy = (1 +logx)y3.
Sol: Dividing by y*, we gety™ = — ~y~2 = (1 + logx),

_1d -2y 1
or —= dx( ) y = (1+logx) ....... (1)
Let y 2=z, (1) becomes % + %z =(1+logx) ......... (2)
The integrating factor is u(x) = e’ % = x2,

. . . 2 2 _ 2 3 (2

Solution of (2) is : zx? =/ —x*(1+1n x)dx = —3X (§+ln x) + c.

2
The general solution of (1) is % = —§x3 (% + In x) + c.
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Chapter 2: First Order and First Degree Differertiaquation
Exercise

3
1. Solve the initial valued probleny’ = \/% , y(0) = —1

2. Solve the following by expressing in the forni%z a homogeneous
function .

. _ .\ Ay Y . y

(i) (x%2+ xy)dy = (x? +y®)dx. (ii) — ==—+sin (;)
(iii) (x2 — y?)dy = 2xydx. (iv) (x3 —y3)dx + xy?dy = 0.
() x%ydx— (x3+y3)dy=0. i) x(x—y)dy =y(x+ y)dx.

3. Solve the following by reducing to the form as ing3tion 2.

. d_y __ 2x+2y+3 ‘s d_y — 2x+2y-2
(©) dx  4x+3y+4’ (&) dx x+3y-5

d_y _ 2x-y+1 . _ d_y _ _
(iii) ool st (iVv)(2x+y —5) (dx) + Bx+2y—-2)=0.

(v) Bx =2y — 7)dx = (2x + 3y — 6)dy.

4. Test the exactness of the following equations atekeswvhen the equation is
exact.
(@) 2xydx + (x* + 3y?)dy =0
(b) (x*—ay)dx = (ax —y*)dy.
(ce*dx+ (e?(y+1))dy =0
(d) cos xcos? ydx — sin xsin 2ydy = 0
(e)(e¥ + 1)cos xdx + e¥sin xdy = 0.
f +y)dx+(x—y)dy=0
(9) (3x2 + 6xy?)dx + (6x%y? + 4y3)dy = 0
(h) (3x?%log |x| + x% + y)dx + xdy = 0

5. Solve the following linear differential equation.
(i) 4x3y + x*y' =sin3 x

(i) y'+y =sin(e*)
(iii) sin xZ—z + (cos x)y = sin (x?)
(iv) x% — 4y = x*e*
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Chapter 2: First Order and First Degree Differertiaquation

d -1
(v) (1+ x2) (é) +y=etn X
(vi) (dy/dx) + 2ytan x = sin x, given thaty = 0 whenx = /3.

(vii) (1+y%) + (x— e ¥)(dy/dx) = 0.

4x 1

T 5% _
(VIII) dx+x2+1y_(x2+1)2'
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Chapter-3
Higher Degree Equations of First Order

Introduction: In this chapter we shall discuss some of the stane@thods in
solving the equations of first order and highegrée. The general form of
these equations is -

Py (Z_Z)n + P (Z—i)n_l + P, (Z—Z)n_z 4 Ppy' + By =

or Pop™+ Pip™ 1+ P,p" 2 ... 4Py p+Pp=0............ (1)

whereP; are constants or functions efand y andp =Z—x

(A) Equations solvable forp

Suppose the equation

Pop™ + Ppt 4 Pop™ AP p+ B, =0 (1)can be written
as the product of linear factor of as(p —q;(x,v) (P — q.(x,¥)) (p —
q.(x,y)) = 0 Equating each factor to zero we get a set dirst order and first
degree equations— q;(x,y) =0 ,i=1,2,....n which can be solved to get a
solutions asfi(x,y,¢;) =0,i=1,23........n Thesen solutions form the
general solution of equation (1) which can bettemi combinely as

f1xXy,Of2(Xy,C) cc....fn(Xy, ) =0

Example 1: Solve the following differential equationsx?p? + xyp — 6y? =
0.

Sol. Given equation isx?p? + xyp — 6y? =
or x*p? + 3xyp — 2xyp — 6y* =0

or xp(xp+3y)—2y(xp+3y)=0

or (xp+3y)(xp—2y)=0.

Equating each factor to zero we get

x(z—z)+3y=0 andx(%)—ZyZO
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Chapter 3: Higher Degree Equations of First Order

1 1 1 1
or (;)dy+3(;)dx =0 and (;)dy—z(;)dx = 0.
Integrating log y + 3log x = log c, i.e.,yx3 =c¢
and log y — 2log x = log c, i.e.,% =c

Therefore , the general solutior(jsc® — ¢) (l — c) =0.

x2

2
Example 2 Solvexy (Z—Z) + (x? + yZ)Z—z +xy=0

Sol: This is first-order differential equation of degr2. Letp = Z—i’

The given equation can be written as

xyp? + (x> +yH)p+xy=0
(xp+y)(yp +x) =0

> xp+y=0yp+x=0
:%+U;—y=0 , ydy + xdx =0

Integrating we get logxy =logc; or xy=¢; and x?*+y?=¢,
respectively.The general solution can be writtethenform
(x?2+y2—c)(xy—c)=0

(B) Equations Solvable forx

If the differential equatio®,p™ + P;p™* + P,p" 2 ......+P,_1p+ P, =0
be solvable forx . Thenx can be expressed as a functiprand p, that is,

X=f,p) ceiiiiinnnn. (1)

Differentiating (1) with respect tp we get

1 af . odf dp . . . . . .

— ==t =.— which is a linear equation of first order yn and and
p 09y Odp dy 9 n p

C

an be solved to get a solution of the fogy,p,c) =0 .............. (2)

The general solution of (1) can be found by stiistg the value op from
(2) in (1) or by eliminatingp between (1) and (2)
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Chapter 3: Higher Degree Equations of First Order

If the elimination ofp between (1) and (2) is not possible, then we s@yand
(2) to express andy in terms ofp andc in the form

X = fl(prc)' y = f2(p' C)'

These two equations together form the generalisalaif (1) in the parametric
form .

(C) Equations Solvable fory
If the differential equation

Pop™ + Pip* 4+ P,p"2......+P,_ip+ P, =0 be solvable fory . Theny
can be expressed as a functioandp, thatis,y = f(x,p) .............. (1)

Differentiating (1) with respect to we get
dy _9f L O dp o
dx ax ap dx .............

The last equation is a linear first order diffar@nequation of first degree n
andp.

It may be solved by previous methods .

After getting a solution of (2) in the form

Y(x,p)=0............ (3)

Then p can be eliminated between (1) and (3) tolgesblution of (1) .
If the elimination ofp between (1) and (3) is not possible, then we s@yand
(3) to express andy in terms ofp andc in the form

X = fl(prc)r y = f2(p' C)'

These two equations together form the generalisalaf (1) in the parametric
form.

Example 3: Solvey = 2px + p?y.

Sol. The given equation is easily seen tobe solvaiylef .
Solving fore, we get

2x = —py +y/p. i (1)

Differentiating (1) w.r.ty, we get
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Chapter 3: Higher Degree Equations of First Order

or
(1+2)+y(EGh=o

The first factor leads tgp = +i which is a singular solution and hence we
can omit .

We shall be taking the second factor

dp

p+y(3—§)=0 or ?+‘§/—y=0

Integratinglog p +log y = log ¢

or py =c.
= p =c/y. Putting this value ofp in (1), we get 2x=-—c+=—
or 2xc—y*+c¢*=0

3
Example 4: Solvex (d—y) — 122 _g=0
dx dx
Sol: Letting p = %, the given eequation becomes
xp3 —12p—8=0

which is solvable fox to get

_ 12p+8 12 | 8
X = 3 _p_2+p_3 ............... (1)

dx 12 dp 8 dp 1 24 dp 24 dp
dy p3dy p*dy p p3dy p*dy

42



Chapter 3: Higher Degree Equations of First Order

Integrating we get
24 12
=—+=+cC......... 2
y=_tn tc (2)

As p cannot be eliminated between (1) and (2herefore (1) and (2)
constitutes the general solution of the given gégnan parametric form .

Example 5: Find the general and singular solution of — 1 — p? =0
Sol: It is clear that the equation is solvablejfpto get

y=+1+p% ... (1)

By differentiating with respect to we get

dy 1 1 dp

S B
x 2./1+p2 Plax

__Pp dp
or p= 1+p? dx
1 dp| _
or p[l— 1+pza =0
.. _ p dp _
giving p=0 orl— 1+pza—0 .............. (2)

Taking the second factor we have

1 dp

_ dp _ v _ 2 _ar_ _
1 Tire? dx 0 or ™ v1+p OrJsz dx

Integrating we get

sinh™*p=x+c

or p = sinh(x + ¢)

Putting this value op in (1) we get

y = /1 +sinh2(x + ¢) = cosh(x + ¢) .......... (3) which is is a general
solution of (1)
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Chapter 3: Higher Degree Equations of First Order

(D) Lagrange’s Equation

An equation of the formy = xf(p) + g(p) where f andg are functions
of p only are known as Lagrange’s equation .

Being the special case of the form describedGh , we can follow the same
process.

Given y = xf(p) + g®) vee.... (1)

Differentiating w.r.tx we get
/ dp / dp
p=f@+xf'(®) - +9'®

or (xf'(p) +g'(p))z—z + f(p) —p =0 which is linear inx and p and
can be solved to get the solution as

X=@P,C) cceviiiininnnnnn (2)

The general solution of (1) can be found loyieating p between (1) and

(2) .

If p cannot be eliminated between (1) and (Bgnt from (2) we replace
the value ofx in (1) togety =y (p.c) .......... (2)

In this case (2) and (3) constitute the gaineplution in parametric form.
we state below a special case of Lagranggisgat®on namely

(E) Clairaut's equation: An equation of the forny = px + f(p)

where f(p) is a function ofp only . The method to solve these kind of
equations will be followed with the same methab in Lagrange’s

Equation . Given y =px + f(p) ...... (1)

Differentiating w.r.tx we get we get
— b 1)
p=p+tx—+f(p)—

:Z—Z(x+f’(p)):0 ......... (2)
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Chapter 3: Higher Degree Equations of First Order

. dp . _
Taking = 0 gives p=c
and putting in (1) gives the general solutas

y=cx+f(c) ........ (3)

which is same as replacing in the original equation with an arbitrary
constantc .
From (2) ifwetake x4+ f'(p) =0 ......... 4)

and eliminatep between (1) and (4) , we shall arrive at sangular
solution which cannot be obtained from theneyal solution (3) .

Example 6: Solve the equationy = px + (p? — 1) .

Sol: Given y =px + (p?>—1)
The general solution is given by =cx + (¢* — 1)

Example 7: Solve the equationy. = 2xy’ — 3(y’)?
Sol. Let y' = p, the equation is written in as :

y =2xp—3p% ..o, (1)
Which is in Lagrange’s form .

Differentiating both sides,

dy dp
—dx—Zx—dx+2p—6p—d
dp dp
=2x—+2p — 6p—
p xdx+ p 6pdx
dx 2
$%+_x_6— ........... (2)

which is a linear equation im and p . The integrating factor is
2
u(p) = exp (f Edp) = exp (2logp) = exp (logp?) = p*

The general solution of (2) is given by
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Chapter 3: Higher Degree Equations of First Order

xp2=j p?-6dp+C=2p3+C
=>x=2p+p— ................... (3)

As p cannot be eliminated between (1) and @erefore we replace the
value of x from (3) and putin (1) , we get

2C
y=p2+_ .................. (4)

Equation (3) and (4) together form the gahesolution of the given
equation .

Example 8:Find the general solution of the equation
3
y=sxp+ eP (1)

Sol. The given equation is a Lagrange equation

Differentiating both sides with respectitoand puttingj—z =p

3 3 d d
we have p=5p+5x—p+ep—p

dx dx
1 3 dp
—_—— —_— —_— p —
or —3p=(Gx+e?)3
dx 3 2
or —+=-x=—=eP, 0. i, 2
dp p p p (2)

The integrating factor for linear equation is
ulp) = expf%dp = exp 3logp = explogp® = p°.

Therefore, the general solution of (2) is
xp® = f—%e” Xp®dp= -2 [p’ePdp

= —2eP(p? —2p + 2) + c. after integrating by parts twice .
2eP . 5 c
= x=—p—3(p —2p+2)+p—3. ............. (3)

As we cannot eliminate between(1) and (3)
we substitute the value of from (3) in (1)
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Chapter 3: Higher Degree Equations of First Order

we get y=§p(—2;;3p(p2—2p+2)+p%.)+ep ............. 4)
Equation (3) and (4) together form the gahesolution of (1)

(F) Singular Solution

A singular solution is a solution not obtainabledasgigning particular values to
the arbitrary constants of the general solutibrs the equation of an envelope
of the family of curves represented by the gensshltion.

Let f(x,y,p) = 0 be the given differential equation and {fx,y,c) =0
be its general solution .

(i) Arelation ¥ (x,y) = 0 obtained by eliminatingp between the equations

f(x,y,p) =0 and :—p f(x,y,p) =0 is the p —discriminat of the given
equation .

(ii) If the given equation is a quadratic equatiorpirof the form
Ap?> + Bp+C =0 then

Y(x,v) = B?>—4AC =0 is thep —discriminat of the given equation

(i) Arelationy(x,y) = 0 obtained by eliminating: between the equations
¢(x,y,c)=0 and % ¢(x,y,c) =0 is the c —discriminat of the given
equation.

(iv) If the general solutionp(x,y,c) = 0 is a quadratic equation in of the
form  Ac?+Bc+C=0 then x(x,y) =B?>—4AC=0 is the
c —discriminat of the given equation

Determination of Singular Solution

(v) If the p-discriminanty(x,y) = 0 satisfy the given differential equation
f(x,y,p) =0 then ¥(x,y) = 0 is a singular solution . If it does not satisfy,
then resolvingy(x,y) =0 into simpler factor , the part that satisfy the
differential equation is a singular solution .

If the differential equation can be written as thgroduct of linear factors in

p or Ifthe differential equation is of first dgree inp , then there
will be no singular solution.
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(vi) If the c-discriminant y(x,y) = 0 satisfy the given differential equation
f(x,y,p) =0 then y(x,y) = 0 is a singular solution . If it does not satisfy
then resolvingy(x,y) =0 into simpler factor , the part that satisfy the
differential equation is a singular solution .

Example 9:Find the general and singular solution of the equat
p% +4xp—4y =0

Sol: The given equation can be written as
1
y =px+ sz ............... (1)

which is in the Clairaut's form and hence the galmnsolution is given by
Y= KA = e (2)

To find a singular solution , differentiating (Ppartially w.r.t p we get
§+x=0 OF Pp=—2X .ccvvernrinnnnn. (3)

Eliminating p between(1) and (3) we get

y =—2x*+x*=—x?

which is clearly a solution of (1) . Sincedntains no arbitrary constant ,
y = —2x Is a singular solution .

Example 10: Find the general and singular solution f — 1 —p%2 =0

Sol: It is clear that the equation is solvable yoto get

y=+1+p% ... (1)

By differentiating with respect to we get

dy 1 1 dp

= .op—~—
x  2./1+p2 Plax

__p dp
or p= 1107 dx

1 dp| _
or p[l 7 dx =0
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giving p=0 orl——2—-2=0 ... 2)

1+p? dx
Taking the second factor we have

1 dp

— dp _ a _ |/ 2 b _
1 Tire? dx 0 or ™ 1+p OrJsz dx

Integrating we get

sinh™*p=x+c

or p = sinh(x + ¢)

Putting this value op in (1) we get

y = \/1 + sinh?(x + ¢) = cosh(x +¢) .......... (3)

which is is a general solution of (1)

From (2) ,if we take the first factor we get=0

and from (1) we gety = 1 which is clearly a solution of (1)
which cannot be obtained by giving a particulaueato c in (3).
Hencey =1 is a singular solution .

Example 11: Solve the equatiop® + y? = 1.

Sol. Givenp? + y? = 1.

We rewrite the above equation as

p’+o-p+(?*—1)=0 .............. (1)

which is quadratic irp .

1
Solving we getp =g = £(1-y?): or dx = +=dy.

Integrating,x + ¢ = +sin"! y or sin™! y = +(x + ¢)

or y = sin (x + ¢) which is the general solution .

From (1), thep-discriminant relation is

0—4-1-(y>—1)=0 ory?—=1=0 or(y—1)(y+1)=0.
Now,y—1=0=p=0.

Substitutingy =1 andp =0 in (1) we have
L.HS=RHS=0
Hencey = 1 is a singular solution.

Similarly we see thay = —1,p = 0 satisfy equation (1).
l.e y =—1 is also a singular solution .
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Hence y = sin (x + ¢) IS a general solution ang= +1 are singular
solutions.

Example 12:Solve the equatiordp? = 9x

Sol. From the given equation we haye= % = i%\/E ........ (1)
= dy = i%ﬁdx

3

Integrating we gety + ¢ = +x2
or (y+c)>=x3orc?+2yc+(@y?*—x3)=0............. (2)

which is is a quadratic equationdn
Now the c-discriminant relation is of (2) is

4y2 —4x1x(y?—x3)=0o0orx3=0o0rx=0

1 __ dx

p  dy

The given equation an be written as
X 4

p? 9

Putting x =0 ,% =0 weseethal.H.S #R.H.S

l.e x = 0 does not satisfy the given equation .
Hence there is no singular solution to the givequation .

Exercises

Find the general and singular solutions (if anyf Yhe following equations .

1. p3 = pe?*
2. 4xp? = (3x — 4)?

3.y(y—2)p* - —2x+xy)p+x=0
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7.yp°+(x—y)p—x=0

8. xp? —2yp+2x =10

9. y2(1+4p?) —2pxy—1=0
10p?2 =y —x

11xp? —2yp+4x =0

d d
12.xy(y—x£) = x+y£
13y = xp — p3

14y = xp + 5p?

Chapter 3: Higher Degree Equations of First Order
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Chapter-4

Linear Differential Equations with Constant
Coefficients

Introduction: Linear differential equations with constant coménts are a
special class of linear differential equations vehé¢he coefficients of the
derivatives are constants . These equations ahedbrm:

dn dn—l dn—Zy

an—1dy
dxn+ 1dn1+ Ay o T Lt a,y = q(x) e, (1)

whereq(x) Is afunction ofx .
2
Writng D == ,p? =X

Equation (1) can be re-written as
(D" + a; D™ '+ a, D" 2 + . ap,_1D + a,)y = q(x) ... (2)

or f(D)y =q(x) where
f(D)=MO"+a, D" +a,D"?%+--..a,.4D +a,) is (ashadbeen seen
earlier) alinear operator satisfying the foliog:

Sum rule: If p(D) andq(D) are polynomial operators, then for any function
u, [p(D) +q(D)]Ju =p(D)u+q(D)u

Linearity rule: If u; andu, are functions, and, constants,
p(D)(c1uq + caup) = ¢p(D)uy + cp(D)u,

Multiplication rule: If p(D) = g(D)h(D), as polynomials i, then
p(D)u = g(D)(h(D)w)

Substitution rule:
p(D)e™ =p(a)e™

If g(x) =0 then equation (2) reduces to
(D" + a; D™ '+ a, D" 2+ a1 D+a)y=0 ............. (3)

or f(D)y = 0 which is called a homogeneous part of equat@n.

Before we proceed to the general solution of, (8ye shall discuss first a few
particular type of homogeneous equation below :
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(i) Solution of (D—m)y =0

We have(D —m)y =0 = Z—z=my

= %dy =mdx  and on integrating both sides we get
logy=mx+k

S>y= e(mx+k) — ekemx = ce™X

(i) Solution of (D —m)?y =0
We rewrite the above equation as

Then (1) becomegD —m)v =0
Using (i) we getv = c,e™ and putiing in (5)
we get (D —m)y = c,e™

d
= d—z —my =ce™ (6)
which is linear with integrating factop(x) = exp [ —mdx = e™™*
The solution of (6) isthen given by

ye ™ = ¢, [ e ™Xe™Xdx + ¢; = c,x + ¢4
= y = (Cl + C2X)emx

we shall state the generalized form ( without fertproving ) that

i) The general solution of the equatiéP — m)™y = 0 is given b
g q y g y
y=(cy + c3x + c3x% + . cpx™ D™
where thec;’s are arbitrary constants .

Complimentary Function

The general solution of the reduced homogeneouatiequ

(D" + a; D™ 1+ a, D" 2+ a1 D+a)y=0 .......... (7)
or f(D)y = 0 is called theComplimentary Function (C.F)
where f(D)= D"+ a, D"+ a,D"?+--..a,_4D +a,) Consider the
equation m" + a;m™ 1+ a,m"? 4+ a,mt+a, =0 ................ (8)
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called theauxiliary/characteristic equation of (7) or (2).

Equation (8) being a polynomial equation ofréegn will be having n
roots .

Suppose thain,, m,, ms, .....m,, be the roots of (8).

Then f(D) = 0 can be written as

f(D)=({D —-my)(D—m,)....(D—m,) =0 and hence equation (7) can
be written as

(D—m)(D—my) ... D—mMmy))y=0 ............ (9)

First we notice that the factors in equation @) obviously commutative
. d d d a a

sinceD = — (for example(a — 2) (5 + 3) y = (E + 3) (E — 2) y )

and hence can be shuffle in any order .

Now vy =c;e™* isa solution of(D—m;)y =0
= (D —my)c;ie™* =0

Also f(D)c;e™* = (D —m,)(D —m,) .....(D — my)c;e™*
=D -m)D—-my)...(D —m;_1)(D —My41) . (D —my,)(D —
m;)c;e™*

=0 e, (10)

Case I:If all the roots of equation (8) are equalertithe given equation
takes the form (iii) as discussed in the previcestion .

Case II: Suppose all roots are distinct . Legte™*, c,e™2*, ... ...c,e™*
be the individual solution to each of the e@rat(D —m;)y =0

Let y=(c;e™* + ce™* + ...+ c,e™F)

Now f(D)y = f(D)(c;e™* + c,e™* + ...+ c,e™¥)
=Y, f(D)c;e™* =0 as each term is zero as seen from (10)

Alsoc;e™* + c,e™2* + .. ...+ c,e™* consists ofn arbitrary constants.

Hence C.F = c;e™* + cy,e™* + .. ...+ c,e™* s the general solution
of the homogeneous equation (7)
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Case lll: If some of the roots are repeated then equd@ip can be written
asf(D)yy=MD-m)"*(D—my)?....(D —m)*y =0 where Yr; =n.
As seen from (iii) in the previous section ¢leadividual equation

(D —m;)"iy =0 will have solution of the form (c;; + ciox + ci3x? ... +
cirixri‘l)emi" and the general solution of (7) is given by

C.F =35 (ciy + ciox + cigx? oo+ ¢ x"71 )™
Particular Integral ( P.I)

The solution of the equatiorf(D)y = q(x) which is not part of the
complimentary function is called the particulareigtal (P.l) . Lety = v be as
particular solution .

Then f(D)v = q(x)
__*
V= f(D)lq(x)
or P.I = EQ(X)
where %q(x) is defined to be that function af which when operated
upon by

f (D) gives q(x).
For instant, %q(x) = [ q(x)dx

General Solution of the equation f(D)y = q(x)
Given an equatiorf(D)y = q(x) ....cceveennnn.. (11)

We have just seen the solution of the reduced hemsmus equation
f(D)y = 0 and the particular integral .

Let the complimentary function of (11) beC.F =u and the particular
integral beP.I =v .

Thereforef (D)u =0 and f(D)v = q(x)

Consider the relatiory = u + v

We have f(D)y = f(D)(u+v)=fD)u+f(D)v=0+qx) =q(x)
Since (u+v) consists ofn arbitrary parameters , it becomes the general
solution of equation (11) .
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Summary: The general solution of the equatigiD)y = q(x) is given by
y=C.F+P.I

Examples 1:Find the complimentary function of the equati¢p — 3)2(D —
1)y =sinx

Sol: The auxiliary equation of the given equatismgiven by
(m—-3)2*m-1)=0

whose roots aren;, =3, m, =3, mg =1

Therefore C.F = (¢, + c,x)e3* + czxe* where c¢q,c,,c3 are arbitrary

constants .

Examples 2:Find the complimentary function of the equation

a3y d?y dy
— —6—+12—=——8y =e*
dx3 dx? T dx y

Sol: The given equation can be written as

(D3 —6D? + 12D — 8)y = e*
The characteristic equation of the given equmais given by

(m3—6m?+12m—8) =0
or(m—2)3=0
whose roots aren, =2, m, =2, mg = 2
ThereforeC.F = (¢; + cyx + c3x2)e?*
where c;, ¢, ,c3 are arbitrary constants .

Examples 3:Find the complimentary function of the equation

Cy e dY Y g 2
dx3+5dx2+3dx gy =x*+1

Sol: The given equation can be written as
(D3 +5D? +3D —9)y = e*
The characteristic equation of the given equmais given by
(m3+5m?2+3m—-9)=0
or (m+3)?(m—1) =0 whose roots aren; = -3, m, = -3, m; =1
ThereforeC.F = (¢; + c,x)e 3% + cze”
where c;,c, ,c3 are arbitrary constants .

2
Example 4. Solve the differential equatio%}:c—z — 8;%' + 15y =0
Sol: Given (D?—-8D +15)y =0
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The Characteristic equation ia? — 8m + 15 = 0
>(m-3)((m—-5)=0

=>m=3,5
C.F. = ¢;e3* + c,e>*

Therefore , the general solution is given by
y=C.F
or y = ¢ e3* + cyed

Example 5 Find the Complimentary Function of the diffeiahequation
d*y d’y
- 2=

dx* dx?

+y=
Sol: Given (D*—-2D?+1)y =0

The Characteristic equation is given by
m*—2m?+1=0
>(m?*-1)?2?=0
>(m+1)2*(m—-1)%2=0
whose roots ard,1,—1,—1
CF. =(c;+cx)e™™ + (c3 + cux)e”

Note on Complex roots We know that complex root of an equation &sad
conjugate always occur together .

Supposec,;e™* | c,e™2* be parts of the complimentary function , where
m; IS a complex number ant, is the conjugate ofn; .

Thenm; =a+ib , m, =a—ib wherei? =-1 .
Now (cie™* + ce™*) = (¢ e@Hibx 4 ¢)ela-ib)x)
— eax(cleibx + Cze—ibx)

Using Euler's formulas :

e'™* = cos (mx) + isin (mx)
e "X = cos (mx) — isin (mx)

imx 4 ,—imx
cos (mx) = g re

e imx

sin (mx) =

2
—e

2i

—imx
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We have( c;e™* + c,e™2¥) = e (¢ e'P* + c,e7%)

= e%[cy(cosbx + isinbx) + c,(cosbx — isinbx) ]

= e®™{(c; + c;) cosbx + (c;i — c,i) sin bx}

= e*(Acosbx + B sin bx)
whereA =c¢; + ¢, , B=ci —c,i are arbitrary constants .
If a=0 ,thenm,; ,m, are purely imaginary
|e my = ib ,y My = —ib
i.e The equation is of or contains the fo(i? + b?) .
In this case , the C.F is given by (or eam the part) (Acosbx +
Bsinbx).
Example 6: Find the C.F of the equatiofD? + 4)y = x .
Sol: The auxiliary equation of the given equatismgiven by
m? + 4 = 0 whose roots are-2i

ThereforeC.F = A cos2x + B sin 2x
Example 7:Find the C.F of the equatio@? + 25)(D —3)y = x .
Soln: The auxiliary equation of the given equatismgiven by

(m? + 25)(m — 3) = 0 whose roots aré&i ,—5i , 3
ThereforeC.F = Acos5x + Bsin5x + Ce3*

Method to find the Particular Integral

Theorem: For a functiom(x) of x , we have
——q(x) = ™ [ q(x) e~ dx

Proof : Taking y = D—iaq(x)
>0 -a)y=q() =5 -ay=q@) e (1)

which is a linear equation of first order . itgegrating factor is
w(x) = el —adx — p-ax

So the solution of (1) is given by
ye % = [q(x) e"dx
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or y =e%[ qg(x)e *dx
i.e ﬁq(x) =e™ [q(x) e **dx

Theorem: For a functiorg(x) of x , we have
——q(x) = e™% [ q(x) edx

D+a
Proof : As above .

A repeated application of the above formulas gives

- . 1
Theorem: For any positive integer we have ,mea" = Fe“x

eax

_- ,ax _—_
Theorem: If f(a) + 0 then o )e =@

Proof. Let f(D)=D"+ ¢, D" 1+ ¢,D" %+ -+ c,_1D + c,.
We have,

Ded* = aeax, D2ed% = q2eax ) pn—leax — an—leax, DNe®* = qMedX.
s~ f(D)e** = (D" +a, D"t +a,D" %+ .. a,_4D + a,)e*

=@ +aa" 1+ +a,_1a+c,)e* =f(a)e™

f(D)e* = f(a)e™

=> ax
f(D)f(a)e
or f(a)me
1 pax =1 pax
f(D) f(a)

Theorem: If f(D) can be expressed as a functionsf say f(D) = ¢(D?)
andp(—a?®) =#0 Then

¢(;2) sinax = ﬁsin ax ¢(1 %) CoS ax = ¢(_1a2) cos ax

Theorem: If (D) can be expressed as a functionDdf say f(D) = ¢(D?)
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with ¢(— az) =0 Thenf(D) has a factor of the forifD? + a?)
and (|)

kY
(i) cosax =—fcosaxdx=—smax
D2+a? 2 2a

>sinax = —fsmaxdx = ——cosax

The proof of the above theorem is done by taking
eiax_e—iax eiax+e—iax

sinax = ———— ,cosax = ———— and use the previous two

theorems.

Using the above theorems and more that we shakdstf needed , we list
below a quick summary on the methods to find theigular integrals of some
of the standards functiong(x) .

Summary

(A) To find the P.I of the equation f(D)y = q(x) whereq(x) = e%*.

— ax_L ax
Casel: If f(a) # 0 thenP.I = f(D)e ¢

Casell: If f(a) =0 thenf(D) = (D —a)"¢(D) wheregp(a) #0

—L ax - - pax
In this case P.I 0 ¢ (D_a)%(me

1 1 ax _ _1 x_r ax

= X =
s@  O-a'° @

(B) To find the P.I of the equation f(D)y = q(x) where q(x) = sinax or
cosax . and f(D) = ¢p(D?) Wlth ¢(—a?®) #0 Then

P.l=

30 2)smax—¢(_ )smax or P.I = ¢( )

cosax

cos ax =
1
¢(-a?)

(C) To find the P.I of the equation f(D)y = q(x) where q(x) = sinax or
cosax .and f(D) cannot be expressed as a functionDéf.

In this case , we expressedf = DD?,D* = D?D?, D> = D*D and so on,
so that f(D) = ¢(D? D) . replacingD? by —a? will make the
denominator linear ib.

Now rationalize the denominator and substiite= —a?. the numerator will
become a linear factor in.
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i.e ¢(—a% D) =k(D+m) or k(D —m)

P.I = sinax = sinax = 1 sinax = 1_D¥m sin ax
T ¢(-aZD) "~ k(D+m) "~k (D%2-m?) T k(-a?-m2)
1 1 1 DF¥m )
or P.I = CoS ax = cosax = —————sinax
¢(D?) k(Dtm) k (—a?-m?2)

which can be completed by differentiation .

(D) To find the P.I of the equation f(D)y = q(x) where
q(x) is a polynomial inx .

In this case , we expres¥D) = k(1 + ¢(D))
1 1 1 -1
so thatP.l = -75q(x) = 1omsa() = (12 6(0)) q(x)

Expanding (1iq§(D))_1 by binomial theorem and differentiate  will
complete theP. I.

Note:(1+x)1=1—x+x%2—-x3...
1-x)1T=1+x+x%+x3...

(E) To find the P.I of the equation f(D)y = q(x) where q(x) is of the
forme**v(x) for some functionw(x) .

1
f(D+a)

In this case , we us@.l = Le“xv(x) = e
f(D)

can be completed by some other methods .

7 (D1+a) v(x) and v(x)

(F) To find the P.I of the equation f(D)y = q(x) where q(x) any other
form not mention above .

In this case |, resolvef(lT) into partial fractions with each denominators as

linear factor inD and use the rule
D_-ll-aq(x) = e_aqu(x)eaxdx or D_iaq(x) — eaqu(X)e_axdx

(G) To find the P.I of the equation f(D)y = xq(x)
In this case , Use the rule:
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(xq(0) = x—=q(x) — —2;q(x)  wheref"(D) = -=£(D)

1
(D) f(D) (f(D))

Example 8:Solve(D? + 4D + 3)y = e™%*,
Sol: Here Characteristic equation is

m?>+4m+3=0
>m?’+3m+m+3=0
>m(m+3)+1(m+3)=0
=>mM+3)(m+1)=0

Therefore the roots are; = -3, m, = —1
= C.F = C,e ™ + C,e™3*, whereC,; areC, are arbitrary constants.

Particular Integral (P.l.) is given by

— L — —2X _— 1 —2Xx _— 1 —2X — _p—2x
.I= f(D) q(x) = D2+4D+3 (—2)2+4(-2)+3 T i 83¢ €

The general solution of the given equation is gilbgn
y=C.F+P.I
or y=Ce ™+ Ce 3% —e %X

Example 9Solve(D? + 6D + 9)y = 3e3*
Sol: The auxiliary equation is :m? + 6m +9 = 0

or(m+3)?=0= m=-3,-3
v C.F=(c;x+cy)e 3

1
P.I = 3¢
((D2 T 6D + 9)) ¢

— 1 3x — i 3x
B ((3)2+6(3)+9) e =3¢

The general solutionis .y = C.F + P.I
ory=(cix+cy)e 3+ %83’“

Example 10:Solve(D? — 4D + 4)y = e?*.

Sol: Here Characteristic equation is
m?>—4m+4=0
or(m—2)2=0
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The roots are2, 2
ThereforeC.F = (¢; + c,x)e?*
Heref(D) = (D?—4D+4)=> f(2) =0

2 2

_ 1 2x X7 2x _ X" 2x
P.I'= f(D)q() 022 T TZE

Therefore , the genral solution of the given eaqurais given by
y=C.F+P.I

or y =(c; + cpx)e** + x?zezx
Example 11. Solve the differential equatiot®? + D — 2)y = sin x
Sol: The Auxiliary equation is given byn? + m —2 =0
or((m+2)(m—-1)=0
>m=-2,1

C.F. = cie ™ + ¢ e*

sin x

P.l = f(D) ()—msmx—Dzﬂ)_2

puttingD? = —12 = —1

P.I= ﬁsin X = ,fztgg sin x, Rationalizing the denominator
SNCLOLLEY PuttingD? = —1
—-10
—_—1(Dsinx+3 inx)—_—l( sx + 3sinx) cd=2
10 > ~ 10 ° > © T ax

Example 12:Solve the differential equation (D? — 4)y = sin 4x

Sol: The Characteristic equationiig — 4 = 0 whose roots are
m= —-2,2

Therefore complementary function (C.F.) is
C.F =Ce ™ + (C,e?*
Particular Integral (P.1.) ,

P.I = sin 4x

D?—4

1 ) 1 .
= ——sin 4x = ——sin 4x
—42_4 20

Hence the general solution is given by
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y=C.F+P.I=Cie %+ Cye** —%sin 4x
Example 13:Solve(D? + D + 1)y = sin 2x
Sol:

The auxiliary equationism? + m+1 =10
_T1Eiv3 < _L f)

=
m 2 2+t 72

Therefore C.F=ez [clcos (%) t Cpsin (%)]

P.l= ((DT‘;H)) sin 2x = ((—TlD-I-l)) sin 2x = (ﬁ) sin 2x

D+3 : D+3 . 2cos 2x 3sin 2x
=\= sin 2x =(—)sin 2x = — —
D2-9 13 13 13

The general solution is given by:= C.F + P.I

X \3 \/§x)] 2cos 2x  3sin 2x
13 13

or y=ez [clcos (Tx) + ¢,sin (T
Example 14:Solve(D? — 3D + 2)y = sin 3x.

Sol. The characteristic equation is :
m?—-3m+2=0 givingm = 1.2

C.F.=c,e* + c,e?*, ¢y, c, being arbitrary constants.

) 1 :
P.I = sin 3x = ——sin 3x
D2-3D+2 —32-3D+2
1 . 3D-7 )
= — sin 3x=—¥sm 3x
3D+7 (3D-7)(3D+7)
3D-7) . 3D-7 )
= —usm 3x = —usm 3x
9DZ—49 9(-32)-49

=L (3D — 7)sin 3x = L (9cos 3x — 7sin 3x)
130 130

Solution isy = c;e* + c,e?* + Flo (9cos 3x — 7sin 3x)
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Example 15:Solve(D? — 6D + 8)y = (e** — 1)? + sin 3x.
Sol. The auxiliary equation is

D? — 6D + 8 = 0 whose roots arer = 2,4
C.F.=c,e® + c,e™*

: 2x 2 _ 1 4x _ 9 ,2x
P.l. corresponding tGe“* — 1)° = DO (e 2e“* + 1)
1

1 1
— e4x -2 er

eO.x
(D-4)(D-2) (D-2)(D-4) (D-4)(D-2)
— L 1 4x __ 1 2x 1 0.x — l 2x 2x l
" D-4 (4-2) € 2 (D-2)(2—-4) (0—4)(0-2) € 2 xe +xe T 8

P.l1. corresponding tein 3x =

sin 3x =

————sin 3x
—-32-6D+8

D?—-6D+8

1 _ 6D —1
——6D+1sm 3x=—msm 3x = —

(6D — 1)sin 3x
36(—32) -1

1
=35c ——(18cos 3x — sin 3x)

~ The general solution is
y=CF+P.I

y =ce** + ce™ + ge‘” + xe?* + =+ — (18cos 3x — sin 3x)

2
Example 16:Solve the differential equatiofﬂll—f —2%y 10y =e

Sol: = (D? — 2D + 10)y = e**
The characteristic equation 182 — 2m + 10 = 0

whose roots aren = 2+'z 20 _ =1+4+3i

C.F. = e*(cscos 3x + c,sin 3x)

P.l L F(x) = L e?x L o by puttingD = 2
.. = = —02e y =
70 TONEIO yP
— er — ie
22—2(2)+10 10

Complete solution isy = C.F. + P.I
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=y = e*(c,cos 3x + c,sin 3x) + 1_10€2x
Example 17:Solve the differential equatiob? + 2D + 1)y = cos?* x

Sol: The auxiliary equation isn? + 2m +1 =0
or (m+ 1) =0 whose roots aren = —1,—1
Therefore C.F=e (c; + c,x)

_L _L 2 — 1 1+cos 2x
I:)'I'_f(D)F(x)_f(D)COS x D2+2D+1( 2 )

1 1 1

= —-——(C0S 2Xx
2 (D2+2D+1) 2 (D2+2D+1)

_1 1 0x

1 1
= 2 (D2+2D+1) t S 5o €08 2X (1)

(D?%+2D+1)

1 1 1 1 1
NOW——eox = - er = -
2 (D%+2D+1) 20+0+1) 2

1 1 1 1
and —————cos 2x =-———cos 2x
2 (D%2+2D+1) 2 (—4+42D+1)

11 ,
_2(2D—3)COS X

1 2D+3

= Emcos 2x, Rationalizing the denominator
1 2D+3

1_ 2D+3 .
2 (a(-a)-32) °0° 2x , Puttin* = —4

_ (2D + 3)cos 2x
B —50

1 1

~ Pl =§—%(—451n2x+ 3 cos 2x)

Nowy = C.F. + P.|

=>y=e *(c; +cx) + % - 5—10 (—4sin 2x + 3cos 2x)
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Example 18:Solve the differential equatiotp? — 6D + 9)y = 1 + x?

Sol: The characteristic equation ia? — 6m +9 = 0
or (m—3)? =0 whose roots aren = 3,3
Therefore C.F.=e3*(c¢; + c,x)

P.I. = f(D)F( ) =

D2-6D+9 (1 tx )

1

2
9<1_2+D_)
3 9

:% 1_(2_D_2)>_1(1+x2)

(x +x3)

3 9

-2 @

= ﬁ 1+ % - D;z + % + ] (14 x?) (neglecting higher degree df)

2

+ --](1+x2)

=1+24+ 24| a+ad)
=z [1+x2+ 542 = Z[3x% + 4x + 5]

The general solution is given by
y=C.F+P.I= e3(c, + czx)%[sz + 4x + 5]

Example 19: Solve the differential equatioGb? + 4)y = x2?e3*
Sol: The auxiliary equation isn? + 4 = 0

whose roots aren = +2i
ThereforeC.F = c¢; cos 2x + ¢, sin 2x

P.l = ——x2e3% = ——x2¢3*  (of the form ﬂeaxv(x) )

=e —_X
D2+6D+13
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_ e’ 1 x2
13 (148D D_Z)
<1+13+13

3 2 -1

e3% 6D | D
== (1+(Z+2%)) «?

13 13 13

e3* [ 6D , D? 6D | D%\? 2
=1 (=+=)+(=+=) +|[x

13 | 13 13 13 13

3x 2 2

e 6D D? | 36D
=—1-—=-=+ +--]x2

13 13 13 169

3xXr 2 3x

e 6D | 23D e3*[46  12x
=_[1-=+ 4~4x2=———"“—+xﬂ

1307 13 169 13 l169 13

Therefore , the complete solution of the given #&iquas
y=C.F+P.I

3x
ory= c1c052x+czsin2x+el—3 %—112—;+x2]

Example 20:Solve(D? — 4D + 3)y = e*cos 2x

Sol: The characteristic equation is :
m?2—4m+3=0
or(m—1)(m-3)=0=>m=1,3
~C.F =cie* + cye’”

1
P.I'= ((D2—4D+3)

= ( e’ )cos 2x = ( :xZD) cos 2x

(D+1)2-4(D+1)+3

x 1 ax
)e cos 2x ( ofthe formf(D)e v(x) )

1/ e* eX (D=2
= —= COS 2x = —— cos 2x
2 \D+2 2 \D2-4

_f[W] — —f(—Zsin 2x — 2c0s 2x)
2 8 16

= % (sin 2x + cos 2x)

The general solution isy = C.F + P.1

X
or y=ce*+ce’— %(sin 2x + cos 2x)
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Example 21: Solve the differential equatiob? + 16)y = xcos 5x

Sol: The auxiliary equation isn? + 16 = 0
whose roots aren = +4i
Therefore C.F.= (c;cos 4x + c,sin 4x)

P.l = X coS 5x

D2+16

cos5x +
D2+16 (D2+16)2

cos 5x

=X

20 .
—or1e COS 5x + Casr10y2 08 5x, Putting D2 = —25

=X

X COS 5x 2D cos 5x

-9 81

XCOS X 10sin x
+
-9 81

~ PUo=

The general solution is given by = C.F. + P.1
XCO0S X + 10sin x

-9 81

or y = c;c0s 4x + c,sin 4x +

Method of Variation of Parameters

2
Let S22+ P2+ Qy=Roocooieieican, 1)

dx?

be the given equation . wher@,Q are constants . The case wher@ are
functions of x will be seen later .

. : 2y dy
Supposey =u and y =v be independent solutions 03‘; + PE + Qy =
0 (i.,e u and v are part of the complimentary solution of (1)

Therefore u, + Pu; + Qu =0 ,v, + Pv; +Quv=0....... *)

Then vy =au+ bv - (2)

. . d?
is also the general solution 8 + P=>+ Qy =

Let y = Au+ Bv -—----mmmmmmmeeee e (2)

be the general solution of equation (1) , whére8 are functions ofx.
Differentiating we get
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y; = Auy + Bv, + (ud; + vBy) ------mee- (3)

dA
where A; = —.

In order to simplify the process , we take one axtondition called the
Auxiliary Condition namely -

uAl + UBl = 0 """"""""" (4)
so that (3) becomey; = Au; + Bvy----------- (5)
= yz = Auz + sz + Alul + Blvl """""" (6)

Putting the value ofy,y; and y, from (2), (5) and (6) in (1)

we get (Auz + BUZ + A1u1 + Blvl) + P(Au1 + Bvl) + Q(Au + BU) == R
or A(u, + Pu; + Qu) + B(v, + Pv; + Qv) + Aju; + Bjv;) =R

= A1u1 + 31171 == R """"""""""" (7)
using (*)
Now ,A, and B; can be solved from (4) and (7) to get
dA d
A== h(x), B =22=g(x) say

Sothat A and B can be obtained by integration .
A quick method to find A and B
Solving (4) and (7) we get get

_ dA _ VR VR _ dB _ UR UuRr

Ay

T dx UV UV w 17 ax — uvg—uv . w
u v .
(Where W = (uv; —uyv) = |u1 v1| called the Wronskian ofu and v )
from which we shall get
R R
A=—[=dx+C , B=[=dx +C,
The general solution is then given py= Au + Bv

or y=—uf%dx+vf%dx

2
Example 22: Solve the equationzx—i + 9y = secx by the method of variation
of parameter .
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Sol: The auxiliary equationtn? + 9 =0 > m = +3i
ThereforeC.F = c¢; cos 3x + ¢, sin 3x

We have ,u = cosx , v = sinx are parts of the complimentary function .
The wroskian ofu and v is given by

W= |u, v’| _ | cos x smx| _1
u v —sinx cosx _
Lety = Au + Bv be the complete solution .
Then A = —f% dx +C;, = — [sinxsecx dx +c¢; =logcosx + ¢;
B:f%dx+c2=fcosxsecx dx+c, =x + ¢,

Therefore , the complete solution of the given équas given by
y = (logcosx + c¢;)cosx + (x + ¢,) sinx

Equations Reducible to Linear Form with Constant Cefficients
Cauchy — Euler's / Homogeneous Linear DifferentiaEquation
The differential equation of the form:

d" 1y

dy - dy
o tox” 1W t+——— =t x "+ ey = Q(X) (1)

xn

where thec; ‘s are constants is called Cauchy — Euleiitsedr equation
These kind of equations can be reduced to lidé&erential equations with
constant coefficients by following substitutions:

V4

x=e? =>log x=1z

dy dydz _ 1 dy

dx dz dx x dz

dy _ dy _ - _ N _ 4
=>x—=— or xDy =D,y i1exD =D, whereD—dy ,D; =

In a similar way we will find that

2 2
247y _ d%y 2n2 _
X @—a or x*“D —Dl(Dl—l)

X3D3 = Dl(Dl - 1)(D1 - 2) etC .
Equation (1) will then reduce to the form
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Chapter 4: Linear Differential Equations with Caast Coefficients

(D! + a; D} 1 + a, D2 ... ... +a, )y = q(2)

Which can be solved as in previous section .

2
Example 23: Solvex? Z—y — Bx% +4y=0

x2

Sol. The given equation can be written as
(x2D? —=3xD +4)y =0 e cee v e

where D = <
dx
Letx = e” so that z = log x

Then,xD = D, andx2D? = D,(D, — 1)where D, = =

dz ’

with these substitution , (1) reduces to

or (D;—2)2%y=0 ..............

The characteristic equation {gn —2)2 =0
with roots 2 , 2.

As R.H.S of (1) is 0 , The general solutissame as C.F.

Therefore The general solution is given by
y = (¢c; + c,2)e?? = (¢; + c,log x)x?

Example 24: Solve the differential equation:
2 dz_y — Zx ﬂ —

X
dx? dx

Sol: The given equation can be written as
(x%2D? — 2xD — 4)y = x? + 2log x

Letx =e? ~logx =2z

4y = x? + 2log x, x > 0

Then x2D2 =D, (D, —1) , xD = D; whereD == ,D;
With these substitutions , equation (1) becomes

(Dl(Dl - 1) - 2D1 - 4‘)y == 622 + ZZ

or(D? —=3D; —4)y=e% 2 +2Z ..ccoeennn.n.

Aucxiliary equation of (2) ism?-3m—4=0
(m+1)(m—4) =0 whose roots aren = —1, 4
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Chapter 4: Linear Differential Equations with Caast Coefficients

Therefore C.F=cie™ + ce®” =2+ 2
1
P.l=— (e?? + 22)
(Df —3D; —4)
1 - 1 ,
= e
(D? — 3D, — 4) (D? —3D, —4)“*
1 5, 1
=—e“* + 2z
= )
2 2 -1
__ef_ 14 _(Pi_3
T 6 2<1 (4 4D1)> z
__e_"_l(1+(D_f_ﬂ)+ )
6 2 4 4 z
e?? 1 3 2 1
=-S5 -3 (2-3) =~ —jlogx+3
The general solution is
2 1 3
y=3 %—%—zlog”g
Example 25:Solvex +2 2dy+3 ——3y—x

Sol: Taking D = = , the given equatlon can be written as

(x3D3 + 2x%2D?% + 3xD — 3)y = x* ........ (1)
Let x=e* «~ z=logx
dz

Then (1) becomes

[Dl(Dl - 1)(D1 - 2) + 2D1(D1 - 1) + 3D1 - 3]y == ezz

or(D3 —D?+3D; —3)y=e%? ............. (2)
A Eof 2isim®—m?+3m —-3=0
or (m?+3)(m—-1)=0

whose roots arem = 1, +iv3
C.F of (2) = c,e? + c,cos (v/3z) + c3sin (V32)

1 2z
D3 -D?+3D;-3
— 1 2z _ 1 2z 1822
D3-D2+3D,-3 8—4+6-3 7
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Chapter 4: Linear Differential Equations with Caast Coefficients

Therefore , the complete solution of (2) is
2Z
y =C.F + Pl = ¢;e? + ¢, cos(V3z) + ¢3 sin(v3z) + eT

Hence the complete solution of the given equaton i
2
y = ¢1x + ¢; cos(V3logx) + ¢z sin(v3logx) + x7

- 2y g 2
Example 26.So|vea; 2 X 3y = x“logx
Sol: TakingD = — the given equation can be written as
(x?D? —xD —3)y = x%log X .............. (1)

Letx = e .~ z=Ilogx andletD, = —
Then (1) becomes

[D;(D; —1) =D, — 3]y = e**z
(D — 2D, —3)y = ze?? .......... (2)

The auxiliary equation of (2) is:
m?—2m—3=0 or (m+1)(m—-3)=0
> m=-1, 3

CF=c¢e %+ ce3

P.l = ! ze?? = e?? ! z
' D§—2D1—3 (D, +2)2-2(D;+2)—-3
ooz 4 er 2 1517t
= ¢ Drp, 347 3[1 3D1 3D1] z
1 oy 2 1 - 2
=—§€ [1+§D1]Z=—§e (Z+§>
Therefore

_ — -z 3z_e_zz E
y=C.F+P.I=ce*+ce 3(Z+3)

_a 3_x_2( E)
~ CoX . logx+3

Which is the complete solution of (1)
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Legendre's Linear Differential Equation

The differential equation of the form:

(ax + b)n—+ ¢, (ax + b)) 1d ey Y+t (ax + b)—+ ¢,y = Q(x)
..(Dis caIIed Legendre's linear equation .

These equations can be reduced to Cauchy-Eulems by a substitution
(ax+b) =z

or reduce to linear differential equations withnst@ant coefficients by a
substitutions -(ax + b) = e? = z = log (ax + b)

d dy d d
Sothat =22 =2 (1)
dx dz dx dz \ax+b

= (ax + b)Dy = (ax + b)— = aZ—y =aD,y, whereD, = %

or (ax + b)% = (ax + b)Dy = aD,y
Similarly (ax + b)2 = (ax + b)?D?*y = a*D,(D; — 1)y

(ax + b)3 = (ax + b)3D3y = a®D;(D; — 1)(D; — 2)y

Equation (1) will then reduce to linear form witbnstant co-efficient of the
form (DI + a, D} + a,D}* ? ..........+a,, )y = q(z) . which can be solved
by the method discussed before .

1
(2x+1)2

2
Example 27: Solve 2(2x + 1)? % —(2x + 1)% +3y =

Sol: The given equation can be written as

{22x+1)*D? - 2x+ 1D+ 3}y =(1+4+2x)"2% ........... (2)
where D = %

Let (2x + 1) =e” or log (2x + 1) = z,

Then, we havg2x, + 1)D = 2D,, (2x + 1)2D? = 22D,(D; — 1)

Using These , equation (2) becomes

{(8D,(D; — 1) — 2D, + 3}y = e~ 2%
or (8D2 —10D; +3)y =€ 2%, ..cccerven.... (3)
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Here auxiliary equation for (3) is
8m3> —10m?+3 =0
10+v/100-96

T 3 1
whose roots aren = ——=- ,-
16 4 "2

3 1 3 1
ThereforeC.F = ¢, e¥” + cze(E)Z =c;2x+ 1)+ + c,(2x + 1)z
-2z
Pl=————e 2=t =—(2x+1)7

8D?-10D;+3 55
the general solution is then given by

3 1 1
y=c2x+1)r+c,2x+ 1)z + 5—5(2x +1)72

Example 28:Solve the equatlo[(x + 2)2 d” y —(x+ 2) + 1] y=3x+4

Sol. The given equation can be written as
[(x+2)’D* = (x+2)D+1]ly=3x+4 ...cccnn.on. (1)

Let x+2=¢e’"=z =log(x+2)
Therefore (x+2)%=D1 , (x+2)2dy—D1(D1—1)

Equation (1) becomes

[Dy(D, — 1) — 2D, + 1]y = 3e% — 2
or [DZ — 2D, + 1]y = 3e? — 2

Its auxiliary equation is
m? —2m+1=0 whose roots aren =1 ,1
ThereforeC.F = (¢; + cyz)e? = (¢; + ¢y log(x + 2)) (x + 2)

1
P.l _2—(36 —2)_2—362——602
D2-2D,+ D?-2D;+1 D?-2D;+1

1
= 5o 1)238 -2

= Ezzez —-2= %(log(x +2)%(x+2)-2

The general solution is given by=C.F + P.1

Exercices

42 d . .
1. Solvex? di’—4xd—z+6y=x4smx ,Ans: y = ¢;x% + cyx3 — x? sinx
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2. Solve(D — 1)*(D + 1) = sin® = +e* +x

2
AnS:y=(c1+c2x)ex+(c3+c4x)e‘x—%cos x+%ex+x+%
D2y dy . L
3. ?—25+y—exlogx Ans: y = (c; + cpx)e* +
X o _E)
e (logx .

4. (D> —2D+ 1)y =xe*cosx , Ans: y = (c; + cyx)e* + e*[—xcosx +
2 sin x|

5. (D> —4D +4)y =x% , Ans:y = ¢,e?* + c,e3* —%69( +1)

6. (D? + 2D + 1)y = 2x + x2.
7. (D —2)3y = xe?*.
Ans.y = (c; + cx + c3x2)e?* + %eu
8. (D? — 4D + 1)y = e**sin x.
Ans.y = c;e* +ce™ + %ex(ZSin X — COS X)
9. (D2 + 1)y =e™* + cos x.
Ans.y = ¢y cosx + ¢, sinx + %e‘x + %xsinx

3x

10.2D?>—-D—6)y =e 2z +sinx

Ans.y = cie® + cze_(z_x) + w — ;e—(i—x)
Find the solution of the given initial-value protvle
11.y"+y —2y=x; y(0) =0,y (0) = 1.

12.y" +4y =x*>+e* ; y(0) =0,y (0) = 1.
13.y" =5y + 6y =sin2x ; y(0) = 1,y'(0) = —1.

14.y" — 2y +y =xe*X; y(0) = 1,y'(0) = 1.
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Chapter-5

Simultaneous Linear Differential Equations

These kind of equations arise from the case whiegee are two or more
functions of the same variables , i.e there isiodependent variable and two
or more than two dependent variables. To solvénr ®guations completely,
there must be as many equations as there are dEperariables.

In this unit we shall be considering only the casehere there are two
dependent variables and one independent variable

Suppose thatc and y are functions of't’ . Then the differential quations
that arise take the form :

fID)x+fLMD)y=F(@) .oovviieinennnn. (D)

g1(D)x + g, (D)y =G(t) ovvvvannnnnn (2)
where D = <
dt

Skippinng aside the case whefg f, are proportional tqy;, g, , the above
equations can be solved by the processination ,the general idea where
we eliminate one variable or y by equation the co-efficients of either
or y in both the equations and subtract to get ridra& of them . (the way we
solve linear equations in two variables ).

Example 1: Solve the eequations

D+1Dy—x=et.............. (1)

and —y+ D+ Dx=e" ........... (2)

d
where D = —
dt
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Operating (2) byD + 1), we get
—D+1Dy+ D+ x=D+1et =2e° ............ (3)

Adding (1) and (3), we get
DD +2)x=3et............. (4)

We first solve equation (4) to get the valuexof
The auxillary equation of (4) is

m(m+2) =0 sothat

C.F=ce’ + e =¢; + e

P.l=—L 3¢t =pt

" D(D+2)

Therefore the general solution of (4) is givgn b
x=c tee et (5)

Putting this value ofx in (2) we get
y=MD+Dx—et =D+ 1)(c; +ce ? +et) —et

=c —cettet (6)
The general solution of the given equations garen by (5) and (6) .
( notice the choice of putting the value ofin equation (2) , if we put the
value ofx in (1) , then to get the value of we will have to follow the
method of finding
P.I , which may take a bit longgr

Example 2 Solve the equations
dx
I +2x+3y =0,
ﬂ+3x+2y = 2e%t
dt '
Sol. LetD = i,
dt

the given equations become
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D+2)x+3y=0 ..ccovviiennn.n. (1)
3x+ (D +2)y=2e%* ... (2)

Operating (2) byD + 2) and multiplying (1) by 3 and subtracting,
we get [(D +2)? — 9]y = (D + 2)2e?*

or (D*+ 4D —5)y =8e%........... (3)
We now solve equation (3) to get the valueyof

The auxiliary equation of (3) is
m>+4m—-5=0 =>m=1,-5

C.F. of(3) = Cyet + C,e™, ¢; andc, being arbitrary constants

1 1 8
P.l = 8e?t =8 e?t =-e?t
D24+4D-5 2244.2-5 7

~ The general solution of (3) is given by
y=cet+ce S+ geZt ........................ (4)

Differentiating w.r.t.t we get

d _ 16
d_Jt/ = clet — 5C28 5t + 7€2t .................. (5)
From (2),

_ 9,2t _ 9., _AY
3x = 2e 2y ”

_cp . 8 sy . 16
or 3x=2e?-2 {clet + ce 5t + —eZt} — {clet — 5c,e™ >t + —eZt}
7 7

(using (5))

or 3x = —3c;et + 3c,e >t — ge“
x =—Ciet + Cre™>t —(6/7)e? i (5)

The required solution is given by (4) and (5).

Example 3: Solve the equations :

dx dx L
E—3x+8y s = Xt 3y

Also find the solution given that(0) =6 and y(0) = —2.
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Sol: Taking % = D , the given equations can be written as
Dx—3x—8y=0=> (D—-3)x—8y=0.......... (1)

and Dy+x+3y=0= D+3)y+x=0 .............. (2)
Multiplying (1) by(D + 3) and (2) by 8 adding we get

D =1Dx=0...cun...... 3)
The auxiliary equation of (3) is :

m?—1=0>m?=1

>m=+1

o CF: Clet‘l'CZe_t y PI=0

Therefore , x = Ciet + C,e™t ........ (4)
From (1) we get(D — 3)[C,e* + C,e™*] = 8y

= 8y = _Clet - Cze_t - 3C1€t - SCZQ_t

= 8y = —2C,et — 4C, et
>y =—-(Cret + 20,70 oo, (5)

The general solution is given by (4) and (5)
Initially when t = 0 thenx = 2.

From(4)weget 2=Ce’+Ce’=>C+C, =2 ........ (6)
Also whent = 0,y = —2.

From (5), — 2 = —; (C1e® + 2C,e°)

= 8 - Cl + 2C2 ............. (7)
Solving (6) and (7), we geC; = —4 andC, =6

Hence, the required solution is :x = —4et + 6et andy = —%(—4et +
12et)

Exercise

.dx _ ¢t dy _ t
1. Solve.dt+x—y+e,dt+y—x+e

81



Chapter 5: Simultaneous Linear Differential Equatio

Ans ix =c¢; +ce?t+et \y=c, —ce?t +et

d3y d?y  dy 2 .
. —+2—+—=—=e**+5sin 2x
dx3 dx? dx

Ans:y =c  +e*(c, + c3x) + %ezx + %(6cos 2x — 8sin 2x)

. Solve the following set of simultaneous differehtieequations
%—7x+y=0,%—2x—5y:0

Ans :x = e%(c;cos t+cysint) , y=e%(c; —cy)cos t+
(c1 + cy)sin t)

MD+x+@D+1Dy=et; D-Dx+D+1y=1
Ans: x = ciet + c,e 2+ 2e7t | y=3cet +2c,e7?t 4+ 3e7t

. Solve % —3x+4y = e‘Zt,Z—Jt/ —x+ 2y = 3e7 %,

giventhat= 12,y =7 fort = 0.

ANns. x = 6e%t +9e7t —3e72%t,y = geZt +9e~t — %e‘“
. Solve = +2x +3y =0, 3x+2+2y=2e%
Ans.x = cyet + c,e™dt — geZt,y = —ciet + et + gez’f

ax _ Lty o 2t
.dt+5x+y—e,dt+3y xX=e

_ 4 1 _
Ans. x = (¢, +ct)e ™ + Eet — ge”,y = —(c; + ¢y +cyt)e ™ +
1 7
—el +—e?t
25 36

dx dy _ d_y _
ottt 2x+y=0,—~+5x+3y=0

. 1 1 .
Ans. x = cycos t+ c,sin t,y = E(c2 —3cy)cos t — E(Cl —3c,)sin t

X gy — 2y W =3y —
.dt—4x 2y,dt—3x y
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_ 2t 2t 4, — t 2t
Ans.x-;cle + ety = ciet + e

dx

10. m

dy _
X + 2y, i
Ans. x = c et + 2¢ te?t,y = cret
dx _ _ d_y _
11.5 =7x -y, = 2x + 5y

Ans.x = e%(c,cos t + cysin t),y = e®{(c; — ¢;)cos t + (¢; + ¢;)sin t}

ax — 0% — 2p2t
12.dt+2x+3y—O,dt+3x+2y—26
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Exact Linear Differential Equation of Higher Order

Definition

A differential equation is said tobe exact if it abtained by differentiating the
next lower order equation .

For Example: An equation

xdz—y+(1+sinx)d—y+(cosx) = 2x (1)
T2 ™ Y =2X ...

Is obtained by differentiating the equation

xj—z + (sinx)y =x%+5.............. (2)

So, according to our definition , eequation {4 exact .

Solution of exact differential equation

Let Pyy™ 4+ Py 4 p,ym=2 4. Py=¢dx) .......... (A)

be a differential equation of order , wherey™ = Zl

s
If equation (A) is obtained by differentiatingetequation

Poy®™ D + Q,y@ 2 + Q,y®@ 3 L Q1Y = (X)) FCp e (B)
then the equation (B) is called thest Integral of (A)

It is obvious thatgp, (x) = [ ¢(x) dx

If further, (B) is exact and is obtained by driééntiating the equation
Poy(n_z) + Rly(n—3) + Rzy(n_4) . Rn_zy == ¢2 (X) + C2 ......... (C)

then (C) is called theirst Integral of (B) and th&econd Integral of (A).
etc .
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Condition of exactness of a linear differential egation of order n

Let the linear differential equation of ordebe

Pyy®™ + Py 4 p,y®=2) 4 ... Py =p(x) ........... (1)
whereP,, P,, ..., P, andg are functions ok .

Let (1) be exact so that it is obtained from guation of next lower order
simply by differentition.

Let Poy™ ™V 4+ Q™2 + Quy™ ™ + - . Qu 1y = [ P(x)dx + C

.......... (2)
be the first integral of (1) .
Differentiating (1) we get
Poy™ + (P'o + Q)y ™™V + (Q1 + @)y ™™ + -
...... Q2+ Qn-))y' +Q" _y=0¢(x) oo (3)

Equation (1) and (3) are identical , hence theesponding co-efficients of
the derivatives must be equal . Therefore —

P,=Py+Qy, P,=Q1+Q; P3=0Q;+0Q3 ...y =0Qp_5+Qy4
and P, = Q1 v vern e (4)

Expressing th@;,s interms ofP,s from above we have
Q=P —P ,

! d ! ! 1)
Q=P — Q4 =P2—E(P1_Po)=P2_P1 — Py )

! d ! 124 ! 124 1224
Q3 = P; — Q; =P3_E(P2—P1 +P)=P;—P,"+P " =P,
etc..

Qn—l = Pn—1 - Prll_z + Pr,1,—3 o (_1)n—1po(n—1) ’

! d ! 14 _ -1
P, =0Qp-1 = E[Pﬂ_l — P, ,+ P g — -+ (=D 1P0(n )]
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=P,_,—P/,+P"; ..._|_(_1)n—1P0(n)
= Pp— Py + Py —Pyg— -+ (—1)"PP =0 ..., (5)

Which is the required condition for equation {bpe exact .
Again if we put back the the above value®9ofQ,, ..., Q,,—; in (1), we get

Poy ™ + (P = Py + (P, — P + Py @D + -
I} " - -1
A {Pucy = Pig + Py = (DR Yy = [ p()dx + C.

which is always the form of an equation tobe exact

We list below , for quick use , the equation (8hen n = 2,3,4.

(i) The equation P0 — + P1 — + P,y = ¢p(x) is exact if
P, — P/ + Py =0 and the First integral is given by

Poj—§+(P1—Pa)y=f¢(x)+c

(i) The equation P0 + P1 2 2+ P2 + P;y = ¢p(x) is exact if

P;—P,+P/'—Py =0 and the First integral is given by

d ! r
Po2 b (P —P)2 4 (P~ Pi+ PNy = [$(x) +¢

(iif) The equation P + P1 F + P2 ﬁ + P3 + P,y = ¢p(x) is exact if
P,—P;+P,’—P/'" +P'"=0 and the First integral is given by
! d ! r d ! 14} III
PoL2 (P — P2+ (P, — P+ P+ (P — Py + P — Py )y =

o) +c

Example 1 Show that the equatior{1 + x2)y" + 4xy’' + 2y = sec? x
Is exact and solve it .

Sol. Given equation(1 + x2)y" + 4xy’ + 2y = sec? x ........ (1)

Comparing (1) withPyy" + Pyy' + P,y = ¢p(x)
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We haveP, =2 +x2%, P, =4x, P, =2, ¢(x)=sec?x
Since P, —P,"+ Py =2—-4+2=0,

The given equation is exact.
The first integral of (1) is given by

d '
P, ﬁ + (P, — P))y = [ sec?xdx + ¢,
or (1+x2)3—z+2xy=tan X+ CL i, (2)
Comparing (2) withP, Z—i’ + Py = ¢p(x)

we haveP, = (1+x2?), P, =2x . SinceP, —Pj =2x—2x =0
therefore (2) is also exact andits firségral which is also the general
solution of (1) is given by

Poy = | ¢(x)dx + c;

or (1+x%)y = [(tanx + ¢;)dx + ¢,

or (14 x2?)y =logsecx +c;x + ¢,

Example 2: Solve cosx (dz—y) + sinx (d—y) + 2ycosx =0. ........ (1)

dx? dx
Sol. Comparing (1) wittPyy" + Pyy' + P,y = ¢(x),
We have Py =cosx, P, =sinx , P, = 2cosx

P, — P{ + Py = 2cos x — cos x —cos x = 0.
Hence the given equation is exact and its firggrdl is

Po(z_z)+(P1_P0’)y=C1-

or cosx (Z—z) —(2sinx)y =c¢q, ovvnvennnn. (2)
which is not exact. Rewritting equation (2) as

(Z—z) — (2tanx)y = cysec x

which is linear and its integrating factor (I.Fs)given by
|LE. = ef (—2tan x)dx — p2log cos x — g2 y
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=~ The solution of (2) (which is the general smintof (1)) is
ycos?x =c¢; [ secxcos®xdx+c, =c; [cosxdx + c,
or ycos?x=c¢ sinx+c,

: : 2y 4y d*y dy
Example 3: Solve the equation(1 + x + x )ﬁ + (3 + 6x) —+t6—=0

2

Sol: Comparing the given with the standard equationhaxee
P0=(1+x+x2),P1:(3+6x),P2:6,P3:0
Clearly ,P;— P, + P —P{" =0

so the given equation is exact and its firstgnal is given by
d?y dy
(1+x+x2)ﬁ+(4x+2)a+2y=cl .............. (1)

Again comparing (1) with the standard equati@nhave
P(): (1+x+x2) ,P1 == (4x+2) ,PZ =2

P,—P{+P/=2-4+2=0

Therefore (1) is also exact and its first imgdgs
(1+x+x2)2—z+(2x+1)y=clx+c2 ........ (2)
Comparing (2) with the standard equation we have

Po=(1+x+x%) ,P,=QQx+1)

PP—Py=2x+1)—2x+1)=0
Therefore (2) is exact. Its first integragisen by

2
(1+x+x2)y=%+c2x+c3
which is the general solution of the given edurati

Example 4: Show that the differential equation
2
(1+x2) % + Sx% +y =0 isexact and hence solve it.

Sol: Comparing the given equation with the standardaggn , we have

P0=(1+x2),P1=3x ,P2=1
AlSOP, — P! + P/ =1—3+2=0
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Therefore the given equation is exact and itst fintegral is given by
1+ xz)‘;—z +xy =c; whichis not exact but can be written as

dy x .
dx N ((1+x2)) y= 1+x2 7 (1)

which is linear and its integrating factor is

2x 1
p(x) = epr T %2 dx = expfmdx = expzlog(l + x?)

= explog V1 + x2 = V1 + x?

Therefore the solution of (1) is given by

yV1 + x2 =fc1‘1+x2dx + ¢,

1+x2
or y\/1+x2:f\/1c+17 dx+c, =c;log|x +V1+ x?|+ ¢,

which is the general solution of the given doum.

Example 5: Test for exactness and solv@ + x2)y" + 4xy’ + 2y = sec? x
given thaty = 0, y' = 1 whenx = 0.

Sol: Comparing the given equation with the standardaggn , we have
P0=(1+x2) ,P1=4‘x ’ P2=2

Now ,P, —P{+ Py =2—-4+2=0
Therefore the given equation is exact . Its firdegral is given by
Py + (P —Py)y = [0 dx

or (1+x2)3—z+2xy=c1 ......... (1)

Again Comparing the last equation with the staddagquation , we have

Therefore equation (1) is also exact and iitd integral is
1+x)y=cx+cy «oeennnn. (2)

which is the general solution of the given equatio
Differentiating (2) w.r.tx we get

Usingy =0, yy=1whenx =0 in (1) and (2) weget; =1 ,c, =0
= (1 +x%)y = x is the solution with the given initial valuek »,y,y’ .
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Example 6: Solve(x3 4x) + (9x?2 12)— + 18x— + 6y = 2.

Sol: Comparing the given equation with the standagidagon
Poy"" + P1y" + Py" + P3y = ¢(x)
we have Py =x3—4x, P,=9x*-12, P,=18x, P; =6.
Then
P;—P+P'—P'"=6—-184+18—-6=0.

Therefore, given equation is exact. Its First Ind&gs given by

d’y ;
Pod + (P, — Po) +(P2 P{+ Py = [ ¢(x)dx + ¢,
Or (x3 4x) +(6 2 8)%+6xy=2x+c1 ........ (1)

Again Comparing equation (1) with the standardiagign

Poy" + Piy' + P,y = ¢(x)

We have ,P, = (x3 —4x) , P, = (6x>—8), P, = 6x
AlSOP, — P! + P} = 6x — 12x + 6x = 0 .

Therefore equation (1) is also exact an€lrds integral is given by

dy
Pod + (P — Py = f¢(x)dx+cz
or (x3—4x)%+(3x2—4)y:2x2+c1x+c2 ........... (2)

Again , comparing (2) witrPOZ—z + Py = ¢p(x)
we haveP, = (x3—4x) , P, =3x>—4 andP, —P; =0
Therefore (2) is exact , its integral is

3 2 3 1 2
(x°> —4x)y = §x + 561X +cox + ¢4
and is the general solution of the given equation

Exercises

1. Show that the equation

. d? : d . :
smxd—x); + (sinx + cos x)é + (cosx )y = e* is exactand solveit.
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Ans. ysinx =e* 4+ c;x + ¢,

d%y
2. Solve : sin? xﬁ—Zy—O

3. Show that equationx?(1 + x)y"” + 2x(2 + 3x)y’ + 2(1 4+ 3x)y =0

Is exact and solve it . Also find the partanusolution given that

x=1y=1,2=0

Ans: yx*(x+1)=c¢x+c¢, andyx?(x+1) =5x—3
4. Solve the equatiofx? + 3x) + (6x + 3)— + 2y = (x + 1)e”*.

Ans. y(3 + 2x) = e* + ¢ylog x + ¢,
5. Show (1 + x?)y"” + 4xy’ + 2y = sec? x is exact and solve ,

given thag =0,y’ =1 whenx = 0.

6. Solve(1+x2) +4x—+2y+ =0

(1+ 2)2

C2

Ans:y =28

+c—+
1+x2 114x2 1+x2

7. Solvex +(x +x+3) +(4x+2)—+2y—0.

1 —<x+£) x2 c —(x+£)
Ans y=-e 2 [ (cyx + ¢c)e™ zdx + Ze V2
. a? d .
8. Solve: sin x—JZZ — cos x =2 + 2sin xy = 0.
dx dx

. . X
Ans. y = ¢;sin? x + c,cos x — ¢,sin? xlog tan E

3 2
9. Solve : (1 +x+x2)%+ (3+6x)%+63—z= x2.
5
Ans.(1+ x + x?)y =%+C1x2 + cyx + ¢
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Chapter-7

Linear Differential Equations of Second Order

Th general linear equations of second order ta&dédrm
d*y dy _
ﬁ + PE + Qy =R ........... (1)

where P,Q ,R are constants or functions of.
. d%y dy _
The equation— + P —+ Qy=0 .o, (2)

Is called the homogeneous part of equation (1) .
The solutions of equation (2) are called thenlamentary Function of (1) .

Some standard solutions of 22 + P2 + gy = 0 -
utl dx? dx Qy o )
(A) Taking y = x™ , we have

ay _ o .n-1

a’y _ n-2
— = nx ' 1oz =nn—1)x

2
Therefore% + P% +Qy=0=>nn—1Dx"2+Pnx"1+Qx" =0
>nn—1)+Pnx+Qx?2=0
(B) Taking y = x ,i.e takingn=1 in (A) we have

dy _ 4 4

dx " dx?

d?y dy
Therefored—+Pa+Qy: 0=>0+P+Qx=0

xZ
S>P+Q0x=0
(C) Taking y = x? ,i.etakingn =2 in (A) we have

dy
dx " dx?
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Therefore—+P +Qy—0=>2+2Px+Qx =0

(D) Taking y = e** |, we have

d d?
2= gewr | 22 =g2
dx

dx? €

2
Therefore =2 + P2 + Qy = 0 = a?e™ + aPe™ + Qe™ =0

>a’?+aP+0Q0=0

(E) Takingy =e* , i.ea=1 in (D) we have

dx " dx?

d d?
Y _ px Y — pX

Therefore—+P +Qy—0=>e + Pe* + Qe”*

>1+P+0Q=0
(F) Takingy =e™ |, i.ea=—1 in (D) we have

ay _ _ _x >y _
dx

" dx?
Therefore—+ P + Qy=0=>e*—Pe*+Qe* =
=1-P+Q=0

Summary: We take a Iist below the above six complimentéumctions of the
general equatlon— + P + Qy = R depending on the relation é¢fand Q .

Condition integral of C.F
1inn—1)+Pnx+Qx?>=0|y=x"
2/P+0Qx=0 y=Xx
3|2—Px+0Qx*=0 y=x"1
412+2Px+Qx*=0 y = x?
5/|a*+aP+Q=0 y =e%
6|1+P+Q=0 y=e*
711-P4+Q=0 y=e™
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General Solution when one integral of the compleméary function is
known

d*y dy _
Let ?+PE+Q)/—R .............. (1)
be the given equation and %2+ P% 4 9y =0 (2)
— —+Qy=0 ...

be the homogeneous part .

Let y =u be aknown part of the complementary function.
Thusy = u is a solution of (2)

d?u du
=>E+PE+Qu—O. .............. (3)
Now let the complete solution of (1) be

y = uv
wherev is a function ofx.

. . - d d d
Differentiating we get —= = v— + u—
dx dx dx
d?y d?u du dv d?v
and ﬁ—Uﬁ‘l‘ZEaﬁ'uE

Therefore (1) reduces to

d%u du dv d%v du dv
(Uﬁﬁ' Zaaﬁ'ua) +P(UE+UE) + qu =R

d?u du d%v dv du dv
or U(E+PE+Qu)+u(E+PE)+ZEE_R

d%v dv du dv )
or U(@-FPE)-FZEE—R, using (3)

d%v 2 du\ dv
or m%”za)a-

S

.............. 4)
2
Now putting % =q Sothat % =

Equation (5) will reduce to % + (P + Zﬂ) q= X

udx u

which is a linear equation that can be solveddoand ultimately solve far

94



Chapter 7: Linear Differential Equations of Secabdler

x dy hY%

—Ddx -1 X 1.

2

Example 1 :Solve £ —
dx

Sol. Comparing the given equation with the standard equation

d%y dy .
dx2+P dx+Qy—R

X 1

We have P=-c Q=g R=x-1

X 1

axnten*=0

Now, P+ Qx = —

~u=x Isa part of the Complimentary Function
Lety = vx be the general solution of of the given equation
*Differentiating y = vx twice we get

dy dv d’y d?v dv
—=v+x— and S =x-—+2—
dx dx dx? dx? dx

Putting these in the given equation we get,

d2v+2dv x ( N dv>+ VX (- 1)
X—+2—— v+ x— = (x —
dx? dx x-—1 dx) x—1
**oor xﬂ+(2—x—z)ﬂ= (x—1)
dx? x—1/ dx
d?v 2 x \dv x-1
or ) + (; — (x—l))a =T e (1)
2
let =722 -% then (1) becomes
dx dx dx
dz 2 x _ (x-1)
=+ (x—1)) z="2 2)
which is a linear equation in.
.X'Z —x
I.F = ef (i—l—x—il)dx — p2log x—x-log (x-1) — el(’g (ﬁ)_x — x?e

The solution of (1) is:

x2e™% x—1) x? _
= oD X o-¥gx + ¢
1 X x—1

xX—

95



Chapter 7: Linear Differential Equations of Secabdler

2

x‘e ¥ —x
or z——=[ xe¥dx +¢

2,—-X
or z25—=—e¥(x+1)+¢,

x—1

_—(x?%-1) (x—1) dv _ —-(x?-1) (x—1)
or z=———+¢"— e* = =t e*
= dv = [ 1+ >+ e (l——)]dx
Integrating we get
v=[ [—1+i+c ex(l—i)]dx = —x——+cle +c

x2 1 x  x? 2

Hence the general solution of the given equatan i

Cle

y—vx—(x——+ + ¢, )X

or y=—x%—1+ce*+cyx

(Note : readers can skip line to ** , instead can remember equation (4) in
the discussion and write the reduced equatniy)o

Example 2: Solve — — Ed—y + 22y = x log x.
L~ d?y 2dy
Sol: Given =5 T 2y =xlogx. ......... (1)

Comparing the given equation with the standatdaggn

+P > +Qy =R, we haveP = — 2, Q=xz—2, R = xlog x

X
Clearly P +Q0x=0

~u=xisapartofthe CFof (1)
Lety = vx be the general solution
Thenv is fround from the equation :

d?v 2du\dv R
@+(P+Za)dx_; (Whereu—x)
d<v 2 2 dv _ x-log x

dx2+( x+x 1)dx_ X
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v
== log x .......... (2)

-2 (&) ox = 4 ()= tox

d d
:d—z = [logx dx = (logx)fldx—f(alogx [ 1dx) dx

=xlogx—x+ ¢

2 2 2
=>v=[(xlogx—x+c¢)dx = x?logx—x:—x?+clx+cz

Hence the complete solution of (1) is

x? x?  x?
y=vx = (?logx—7—7+clx+c2)x

. d*y 2 dy _ .3
Example 3: Solve X txy=x
Civen -&Y _ 24y _
Sol: Given S TXT XY =X (1)

Comparing the given equation with the standatdaggn
d*y dy _
E"’P E+Qy—R , we have

P=-x%*,Q0=x,R=x
Since P + Qx = 0 therefore
u =x isa partofthe C.F. of (1)

Let y = uv = vx be the complete solution of (1)
Thenv is given by the equation

£ (pe2)ti=t

dx? uldx  u
d?v 2, 2\dv _
or E+(—x +;)a—1 ............. (2)
2
Let d—vzq sothatd—127=d—q
dx a dx
Then (2) becomes;l—z + (% — xz) g=1 ......... (3)

which is linear and first order .
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2.2 2 %3 I _x3
I.F = ef(x x?)dx _ el08* 5 — plogx® 5 — 42575

Therefore , solution of (3) is :

X

3 X3 %3
qx’e 3 = fxze_?dx =—e 3 +¢

x3
1 c1e3
> :f(—;+ 1x2 )dx + ¢,
The general solution is then given by= vx where v is given by the last
equation .

Example 4: Solve(x + 1)— —2(x + 3) -+ (x+5)y=e¢e*

Sol. The given equation can be written as :

d?y  2(x+3)dy , x+5 eX

Y= (1)

dx? x+1 dx  x+1 x+1

. . d2%y dy
Comparing (1) W|thdx—2 + PE + Qy = R, we get

X
P=—2(x+3), Q=x—+5, R=2C
x+1 x+1 x+1
Here 1+P+ Q —1— 2x+6 4 x+5 _ x+1-(2x+6)+x+5 —0 .

x+1 x+1 x+1
Therefore u =e¢e*

Is a part of the Complimentary Function of (1).

Let the general solution of (1) be y = uv.
Thenv is given by the equation :

d?v 2du\dv R
Ty (py2oyie
dx? Y udx/ dx u
d?v 2x+6 2 deX\ dv eX
or Lly(-Egiind
dx? x+1 eX dx/d eX(x+1)
d%v 2x+6\ dv 1
or <=+ ( - ) =L
dx? x+1/ dx x+1
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d?v 4 \ dv 1
or E — (m) E = m .............. (2)
2

Let g sothat £2=%

dx X dx
Then (2) becomes
dg _ 4 o _ 1
E - mq =g e (3)

which is linear ing andx.

4
Its integrating factor I.F. = e~ Galdx = g—4log (x+1) = glog(x+1)™ —

(x + 1)™*. and solution of (3)is
1
gix+ 1) = j 1 (x+ 1) *dx+C, = f (x + 1) dx + ¢,

d 1 1
orZ=—2 o (x+D* or dv=|-I +c(x+1)*dx.

Integrating , we get v = —=+ 2 (x + 1)° + c,.
Hence , the complete solution of (1) is given by

y:uvzex(—z-l-cs—l(x-l-l)sﬁ-cz)

2
Example 5: Sole the equatiorix—z + (1 - cotx)% — (cotx)y = sin? x .

Sol: Given &y +(1- cotx)d—y — (cotx)y = sin? x (1)
' dx? dx Y= SIE X

Comparing the given equation wigﬁi—’; + P Z—Z +Qy=R
we haveP = (1 —cotx ), Q = (—cotx), R =sin?x
Since(1-P+Q)=0 , therefore,
u=-e* ispartofthe€.F of (1)

Let y = uv be the complete solution of (1) .

Thenv is given by

d?v 2du\dv R
(P e=
d?v v x .. o
or — (1+cotx)dx—e sin“x .......... (2)
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2
Let g=2 sothatil =22
dx dx x2

Equation (2) becomes
Z—Z — (1 + cotx)q = e*sin? x
which is a linear equation of first orderts II.F is given by

| F = e ~(+cotx)dx — e’”
) sinx

Therefore , its solution is given by

= [

sin

e—x

X
q e*sin’x dx = [sinxdx = —cosx + ¢;
X

sinx

: : 1, :
= q=ex(—smxcosx+clslnx)=ex(—zsm2x + ¢, sinx)
dv . 1 .
= — =c;e*sinx —-e*sin2x
dx 2
: 1 :
=>v=[ce sinxdx - [esin2xdx

e* . . 1 e*, .
= C17(51nx —cosx)—z?(sm2x —2cos2x) + C,

= Cie*(sinx —cosx) — i_o (sin2x —2cos2x)+C, : where(; = Cz—l

Hence , the complete solution of (1) is given by

y=uv = (Clex(sinx —CcoSx) — i—;(sin 2x —2cos2x) + Cz) e

= C,(sinx —cosx) — 1—10(sin 2x —2cos2x)+ Cre™*

Changing the dependent Variable / Reducting to Nor@l form / removal of
first derivative

d?y dy _
Let @‘l‘Pa‘l‘Qy—R .............. (1)
Let the general solution of (1) be

Y=UV ......... (2)

whereu andv are functions ok.
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Differentiating (2) twice we get

dy du dv d’y d?u du dv d?v

—=—v+u— and —=—v+2——+u—

dx dx dx dx? dx? dx dx dx?
d?y

Putting the values o% and

dx?

d?u du
Ty, 42
dx? dx

du

dv d?v dv
E+uE+P(dxv+uE)+qu—R

d?v du\ dv d?u du
or u@+(Pu+ZE)E+v(ﬁ+Pa+Qu) =R

d?v 2du\dv . 1 [(d%u du R
or (PGP u)v=T

udx/) dx  u\dx? u

2du

If we take P + = 0, the first order derivative in (3) will be remexV

d?v 1 [(d?*u du R
and reduce to E"’Z(@"’ PE"' Qu)v ==

NowP+3d—u=0=>d—u=—lde=>logu:—ldex
udx1 u 2 2

or u=ePPE ...

du _ Ifpax( 1p\_ Pu d _

S ¢’ (_Ep)_ 2 (dfodx—P)

—=—zP——-—u

= =
dx? 2 dx 2dx

2
= d—’:= —lP(—lPu)—ld—Pu, putting du M
dx 2 2 2dx dx 2
1(&u | pdu _1(lpz, 1P, _1p )
iu(dx2+de+Qu)_u(4Pu deu 2Pu+Qu
—0_lpz_1d°P _
=Q—P*—-—=1 (say)

Therefore , equation (4) reduces to

dZv
@‘FIU—S ..........
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R 1 1dP
whereS == ,1=Q —-P% —-—
u 4 2 dx

Equation (6) is called theormal form of equation of (1)

Equation (6) can be solved easily if is constant or [ = % for some
constantk ..........ccoeiiiiiinnnn,

Example: Solve the equat|0H— + Ed—y +y= —sm 2x

Sol: Comparing the given equation with the standarchegn we have
2 1 .
P=; , Q=1 ,R=;sm2x

1 1
= [ Pdx - [dx

Let u =e 2 log_

= X =

RIr

=e
Let y = uv be the general solution . Then the given goguaeduces to

2 2
Loy (Q-T-ldny, _k

dx?

or (D2+1Dv=sin2x ....ovvvnnennn. (1) whereD = ;—x

The auxiliary equationof (1) B> +1=0= m=+i
Therefore C.F = acosx + bsinx

1 1. 1 .
P.I = = ——sin2x = —-=sin2x
D2+1 4+1 3

. 1 .
>V = acosx+bsmx—§sm2x

Thus , the general solution of the given equai®ny = uv
1 . 1 .
ory= ;(acosx + bsinx —gsm2x)
2
Example 6: Solve &y _ 4x + (4x2 — 1)y = —3e*’sin x

dx?

Sol: leen A i ~+ (4x%2 — 1)y = —3e*’sin x .......... (1)
Comparing W|th the standard equatlgy% + PE +Qy =R

We haveP = —4x, Q =4x2—1, R = —3e* sin x
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1 x?
J Pdx _ e_Ef (—4x)dx _ 0?7 = exz

_1
Let u = e 2

lety = uv be the complete solution of (1)
With this substitution , equation (1) reducesdomal form

d?v
) +lv=S ............ (2)
where I =Q — P2 -1 =452 1 _4x24+2=1
4 2 dx

R —3e*’sin x
and S = - = ———— = —3sinx

u ex ,
Therefore (2) becomeéix—z +v=—3sinX........ (3)

The characteristic equation of (3) isn?+1=0
=>m=4i and C.F = ¢, cosx + ¢, sinx

1
D2+1

1

P.I= D241

(—3sinx) = (—3)

sinx = (—3) (—gcos x)

The complete primitive of the given equation is

2 . 3
y=uv =e* [clcos X + ¢psin x + - xcos x]

2
Example 7: Solve% + (4 cosec Zx)fi—z + (2tan? x)y = e* cotx reducing
to normal form.

2
Sol. Given % + (4 cosec Zx)Z—z + (2tan? x)y = e* cotx ........... (1)
. . d?y dy _
Comparing with — T PE +Qy =R

We have P = 4 cosec2x, Q = 2tan? x and R = e*cot x

1 2 1
Let u = e_Ef Pax _ ef (=2 cosec2x)dx — ef “sinzx®¥ = e fsinxcosxdx

_fSEszd
tanx &% = elogtan x — 4t

=e

Let the complete solution of (1) be
y = uv

Thenv is given by :
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@‘FIU =8 (2)
where
_ 1., 1dP _ 2 1 2 1
| =Q—-P°—>-—=2tan“x — - (16 cosec” 2x) — = (—8 cosec 2x cot 2x)
4 2 dx 4 2

= 2tan® x — 4 cosec? 2x + 4 cosec 2x cot 2x
= 2tan®x — 4 cosec?2x + 4 cosec?2x cos 2x
= 2tan?x — 4 cosec?2x (1 — cos 2x)

= 2tan?x — 4 cosec?2x ( 2sin®x)

sin? x 2 2(sin? x + cos? x)

=2tan?x —8 ——— = 2tan’x — = 2tanx — = -2
an-x (sin 2x)? an-x cos? x an-x cos? x
and S:B:(excotx)zex
u cotx
Then (2) becomes
dZ
Z —2v =e*
dx
or (D2 —2v=e* ........... (3)

The auxiliary equation of (3) is
m2—2=0= m= +V2

C.F. of(3) =c¢e*V2+ce™V2
1

1
P.l = e* = e¥ = —e”*
D%2-2 (1-2)

Hence y=C.F+P.I = cle’“/E + cze‘xﬁ —e”*
The general solution of (1) is given by

y =uv
or y = cot x(cle’“/E + cze_"‘/E — ex)
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Changing the independent variable

2
Let T+P—x+Qy=R .............. (1)

be the given equation .
Let the independent variable be changed froimz by some relation

d dy dz
ThereforeZ = 2. 22
dx dz dx

d? d (d d (dy dz d (dy\ dz = dyd?z

dx? dx \dx dx \dz dx dx \dz/ dx dz dx?

_d (dy) dzdz | dyd?z _ d2y (dz)z dy d?z
T d

z \dz/ dx dx dz dx2  dz? \dx dz dx?

2’y

replacing these values O% and — , equation (1) reduces to

d%y (dz\% . dy d%z dy dz
(@) tomtPrat o
d2z dz
or % —<dx2dz de) ZZ+ Ly=—5
(@) @ (@)
2
Or g;% +'191.%§'+'(21)7:: 121 ......... (2)
(dzz dz)
+
where p, = ~22_% i ~ and R, i s (3)
(@) () (&)

Equation (2) is of the same form as equatigngid as such will be useful if
P; ,Q,; are constants .

2
If Q =+k f(x)then choosingz such that(j—i) = f(x) will reduce Q,
to a constant .

If further , P; also becomes constant , then (2) is a lireguation of order
two with constant coefficient and can be soleggrevious methods .
Also in equation (3), if we make, =0
2 2
Then d—+P—— 0> 2= _pZ o ii(ﬂ) =—-P

dx? dx? dx 9z qx \dx
dx

105



Chapter 7: Linear Differential Equations of Secabdler

= log (%) = — [ Pdx

d _ —
=>d—i=e [Pdx = z=[(e IP¥¥)dx ............. (4)
If with this substitution ,Q; becomes constant , then (2)

2
will be of the formZ2 + Qqy = Ry ...c.ccoocove.c. (5)

where z = [(e /P4)dx , Q=

1R1=

e
N
@)

We shall stress to remember relation (2) , @ (5) and (6) for direct use
in the examples and exercises

We give an example below where we started by ngalin= 0 and hope that
Q, becomes constant .

) 3dy ., 9 1
Example 8: Solve — + ool s Aot
Sol: Given d—y+§d—y+1y:i .............. (1)

x© x10

Comparing W|th— +P=> i ~+Qy =R

3 9 1

WehaveP=;,Q=; andR=E

—_ 1 1
LetZ=f€dex=f;dx=—§. ........... (2)

Then =1 5 (E)2=i.

dx x3 dx x6

(Itis clear that = IS constant )

With the substltutlon as givenin (2) , eqaati(1)
(using the relation 5, 6 in the discussion ¢dmes
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d2
d_Z:)Z]-I_Qly:Rl ............... (3)
where Q' = dfz=9andR’= d§2=x—14=422
(&) )

Equation (3) becomes
(D2 +9)y =422 ..ocoiirn, @4 (D==)
Whose C.F = ¢, cos3z + ¢, sin 3z

_ 1 421 o\, o _1(q_D% D 2
Pl=——4z?=2(1+%) 422 =3(1-2+2 ... )4z
_ 4zt 8
T 9 81

2
Therefore y = (¢; cos3z + c,sin3z) + 4% — i

o =) remp(-) -3

—ccos(g) csin(3)+1 8
-1 2x2 2 2x2 9x* 81

Example 9: Solve

@ +t dy (2cos? x)y = 2cos*
T2 Ttanx cos“ x)y = 2cos™ x.
: A’y dy 2 _ 4
Sol. Given —5 ttanx— (2cos” x)y = 2€0S8* X ....cvn.nn.. (1)

2
Comparing (1) with;% + PZ—i’ + Qy = R, we have
P=tan x, Q = —2cos? x and R = 2cos* x

Let z = [ e/ Pdx = [ g~ [tanxdx gy — [ plogcosxygy — [cosxdx = sinx

d dx\ 2
ThereforeZZ = cosx = (—x) = cos?x
dx dx

Changingx to z with the substitution above , Equation (1) doees
d?y Q R

2 Y = 2
@ @
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or &2 _» = 2cos?x =2(1—z2)
dz? y

TakingD = % , we have

(D2 —2)y =2(1 = 22)  oveoeeeeeeee! )

Auxiliary equation of (2) is m2 —2 =0 givingm = +V?2.
~ C.F.of(2) = ¢,eV?% + cze“/z

1
(D?-2)

a-m=(-2)"a-a

2

and P.] = 2(1—272) = —

DZ
= (1+7+---)(1—z2) =14+2z%2—-1=2?
Hence the required solution is
y= CF.+Pl

or y=ceV? +ce V% + 22
or y=ceV2sing 4 ¢ e V2sinx | ginZy

In the example below , we shall start by makingfasstution in such a way
that Q; becomes constant and hope tRatalso becomes constant .

Example 10:Solve &2 —¥ 4 4x2y = x*
P ) dx? X Y=
ven ‘&Y _Y 20 — 4
Sol. Given == — >t 4xy = x% (1)
. . . d%y dy
Comparing with the equation— + P —+ Qy =R,
We have P = —%, Q = 4x2, R = x*.

2
Choosez such that (Z—i) = 4x? or Z—i =2x sothatz=x% ........... (2)

Then, (1) reduces to

d? d
7y+P1_}ZI+Q1y=R1 ............... (3)

108



Chapter 7: Linear Differential Equations of Secabdler

d%z | _dz 2%
—+P— == 2
_(dx2 dx)_2 x . Q  _ Axc
Wherepl - (EZ - 4x2 - 0 y Q1 —_— dz 2 —m_
dx) (&)
R 4 2
and Ry = o= ="=-

DR

Therefore equation (3) becomes

(D% + 1)y = Z ................. (4)

C.F.of (4)=cjcos z+cysin z  ..ooeenieni, (5)
and P.l=—— (Z) =2(1+D?)'z=-(1-D?+D*— )z =1
2
~ y=CF+Pl= ¢cos z+ c,sin z +§= c;c0s x% + ¢,sin x? +x7

which is the general solution of (1)
Method of Variation of Parameters
d’y

Let S22+ P2+ Qy=Ruocooieieicn 1)

dx?

; . Zy dy
Supposey =u and y =v be independent solutions 0‘3{; + PE + Qy =
0 (i.e u and v are part of the complimentary solution of (1)

Therefore u, + Pu; + Qu =0 ,v, + Pv; +Quv=0....... *)

Then y=au+ bv - (2)

2
is also the general solution %f—z’ + P% +Qy=0

Let y = Au+ Bv -—-----mmmmmmmm e (2)

be the general solution of equation (1) , whére8 are functions ofx.
Differentiating we get

vy = Auy + Bv; + (uA; + vBy) ---mmmeeee (3)
where A; = Z—i :

In order to simplify the process , we take one axtondition called the
Auxilliary
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Condition namely —

uAl + UBl = 0 """"""""" (4)
so that (3) becomey; = Au; + Bvy----------- (5)
= yz = AuZ + sz + Alul + Blvl """""" (6)

Putting the value oly,y, and y, from (2), (5) and (6) in (1)

we get(Au, + Bv, + Aju; + B;v;) + P(Au, + Bv;) + Q(Au+ Bv) =R
or A(u,z + Pu1 + Qu) + B(Uz + Pv1 + QU) +A1u1 + Blvl) - R

= Alul + Blvl = R --------------------- (7)
using  (*)
Now ,4; and B; can be solved from (4) and (7) to get
dA dB
A1 ZEZ h(x), Blzazg(x) say

Sothat A and B can be obtained by integration .
A quick method to find A and B

Solving (4) and (7) we get get

__dA VR _ VR __aB _ UR UR

17 ax uv;—uUqv w

’ 17 ax 7 w—ugv . W

(Where W = (uv; —uy v) = |u

u, v1| called the Wronskian olu and v)

from which we shall get

R R
A=—[—dx+C , B=[—dx +C,
The general solution is then given py= Au + Bv
ory:—uf%dx +vf%dx

2
Example 11: Solve (x — 1)% — xfi—z +y=(x-1)*> by the method of
variation of parameters.
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Sol. The given equation can be written as

d?y x dy y —
dx?  (x—1) dx T (x-1) =D e @

. L d?y dy _
Comparing W|thd? + PE +Qy =R

-X 1
we haveP = D’ Q = il R=(x-1)
Now 1+P+Q=1-2 4+ =212 _
x—1 x—1 x—1

=>u=e* Iisapartofthé€.F of (1)

AlsOP + Qx = —+—=10

x-1  x+1

= v = x is a part of th&€. F of (1)

The wroskian ot and v is given by

W = (uv, —u,v) =

e* «x
eX 1| =ex(1_x)
Let y = Au+ Bv = Ae* + Bx

be the complete solution of (1)

ThenA=—f% dx=—f:x(gcl__1;) dx=[xe™dx= —e*(1+x)+¢ ,

R *(x-1)
B:fuwdx:fzx(f_x) dx = [—1dx = —x + ¢,

Therefore the complete solution is given by
y=Ae*+Bx=(—e*(1+x)+c)e*+ (—x+c,)x

2
Example 12: Solve% + m?y = sec mx by the method of variation of
parameters.

2
Sol. Given equation is% +a?y =sec ax .......... (1)

The auxiliary equationisn®+a?=0= m= +ia
ThereforeC.F of (1) isy = C; cosax + C, sinax
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We haveu = cosax , v =sinax are parts of the complimentary function .
The wroskian ofu and v is given by

W = (uvy — uyv) = cos ax sinax | _
—asinax acosax

Let y = Acos ax + Bsin ax be the complete solution of (1)

Then

VR sinax secax 1 —asinax 1
A=—|—dx=—|———dx == dx = —logcosax + c
fW f a aZf cos ax a? g T

_ [UR __ r (cosaxsecax) _Xx
B=[_dx=[————dx=-+c
Therefore the complete solution is given by

y = (%logcos ax + cl) cosax + G + cz) sin ax

2
Example 13: SoIveZTJZ’ — 23—3: = e*sin x by the method of variation of
parameters.

Sol. Writing D = — , the given equation ig¥D? — 2D)y = e*sinx ..... (1)
The auxiliary equation dfl) is :

m>—2m=0=> m=20,2

ThereforeC.F = C,e% + C,e?* = C; + C,e?*

It can be seen that=1, v = e?* are part of th€.F .

The wroskian ofl and ez" is given by

— 262x

vl = |0 2e2x
Lety = Au + Bv = A + Be?* be the complete solution of (1)

(e?*e* sin x)
—— dx
2¢e 2Xx

ThenA——f—dx——f =—%fexsinxdx

X
= —e:(sinx—cosx) +c
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_ [uR __ (e*sinx) _1 —x e . _
B=[_dx= [——F—dx=:>[esinxdx =—(—sinx —cosx) + ¢
Therefore , the complete solution of (1) is gilsgn
y=A+ Be?* = —%(sinx —cosx)+c; + (eT( —sinx — cosx) +
Cz)ezx

ex X
= —Z(sinx —cosx) + ¢ +T( —sinx — cosx) + c,e?*

X

e .
= ——sinx + ce® + ¢

2
Example 14:Solve the equationZTZ + 4y = 4tan 2x

2
Sol. Given equation i%x—z +4y =4tan 2x ... (1)
which can be written a®? + 4 = 4tan 2x .............. (2)

The auxiliary equationisn? + 4 =0 = m = +2i
ThereforeC.F = C; cos 2x + C,sin2x

We haveu = cosx , v =sinx areparts of theC.F.

Let y =AU + Bv = Acosx + Bsinx be the complete solution of (1) .
Now , the wroskian ofu and v is given by

W = u v|_ COS 2x sin2x|_
u v —2sinx 2cos2x
—vRd in2x-4tan 2 in? 2
Therefore ,A — f v X — —f SIn 2Zx an xdx - _ f Sin X
w 2 CoS2x

— CoS Zx] dx
CoS 2x

Cos2x

x+tan2x| sin2x
2 2

= —Z[f sec 2xdx —f cos 2xdx = —2 [loglsecz
= —[log|sec 2x + tan 2x|] + sin 2x + ¢;

]+c1

sin 2x
d

B =f URdx =f cos2x-4 tan 2x

dx =2 cos2x
w

COoSs 2x
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=2 [ sin2xdx = —cos2x + ¢,

the complete solution of the given equation &egiby

y =Au + Bv
or y = (( —[log|sec2x + tan 2x|] + sin 2x + ¢;) cos x + (—cos 2x
+ c, )sinx
Example 15: Solve the differential equatlom2 4x ~+6y = x%log x

using method of variation af@meters.

Sol:Let x =et ~logx =t sothat=%2%_14
dx dt dx x dt
YL, x—_Dy where D = —
dx dt dt
_ d?y .
Similarly e D(D—-1)y
-~ Given differential becomes
(D(D—1)—4D + 6)y = te?t
= (D? =5D + 6)y =te?" ............ (1)

Auxiliary equation of (1) is: (m?*—-5m+6)=0
or(m—2)(m—-3)=0 =>m=23
CF - CleZt + Czegt

Therefore u = e?' and v = e3¢ are part of th€. F
The wroskian ofu and v is given by

2t 3t
w =% v|_|e e 5t

l; 1| —
u v ZeZt 3€3t

=

Let y = Au + Bv be the complete solution of (1)

3tt62t

Then A=—] 2

dt =—{ tdt———+c1

ZtteZt

dt = [ te tdt = —te ' + [ e~tdt

B=*
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= —te_t - e_t + (8)

Therefore the required solution is

2
y=Au+Bv = (—% + cl) et + (—te t—e Tt + cy)edt

- (- (log )?

=+ cl) x? — (logx + 1)x? + c,x?

Example 16:By the method of variation of parameters, solve

2
xZ% —2x(1+ x)Z—i’ +2(x+ 1)y =x3 , given thatu = xe?* is a solution
of
LHS=0

Sol: Given equation is

@y _zamdy 20

dx? x dx x2

Comparing with the standard equation , we have

pP—_ 2(1+x), Q _ 2(x+1)

x x2

,R=x

Since P+Qx=0

v =xis apart of C.F
Also ,u = xe?* is partofC.F ( given)
The wroskian ofu and v is given by

_ u v _ xezx X _ 2 2x
W = ul U,| - er(l_l_zx) 1 = —2x°e
Let y = Au + Bv = Ax + Bxe?*
h _ VR _ _1 —2x _ 1 —2x
TenA——dex—fozezxdx—Efe dx=—-2e " +¢

uR x*e?* 1 X
B = de=jmdx=f——dx=(——+cz)

The complete solution of the given equation iegivby
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y=Au+Bv = (—ie‘zx + cl)xezx + (—g + cz)x
Solution by factorizing the Operator

d? d
Let =2+ P2+ QY =Recooiiiiiiiis (1)

be the given equation .

2
letb =% pz=2L
dx

dx?

Suppose that.H.S of (1) can be factorized into linear factors bf of the
form

fi(D,x)f5(D,x)y (order sensitive ) , wherg and f, are functions of
D andx .

Then (1) can be written as

LD, x)f5(D,x)y=R ......... (2)

Taking f,(D,x)y = v, (2) will reduce to

fi(D,x)v =R , which is a linear equation of first orderdaran be solved for
v.
The general solution will be found by solving from the equation

fz(D;x)y =V .

Example 17: Solve x— + (x — )— — 2y = x3

Sol: Let D =— .The glven equation can be written as
[xD? + (x — 2)D — 2]y

or (xD—-2)(D+1Dy=x3 ............... (1)

Put D+1)y=v

Then Equation (1) b

ecomes(xD — 2)v = x3
dv

or x——2v=x3
dx
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or Z_Zp=x2 (2)

dx X

which is linear and first order .

LE. of (2) = e (-)ax = glogx2 _ L

x2'

Therefore , solution of (2) is given by
%:fi—z dx = [1dx = (x+¢;)
=> v =x>+ ¢ x?
= (D + 1)y =x3+c;x?
or 4y =(x*+¢x%) i, 3)
LF. of (3) =el19%¥ = ¢*

The solution of (3) ( which is also solution tiwe given differential
equation ) is given by

ye* = [e*(x3 + ¢x¥)dx = [ e*x3dx + ¢, [ x%e*dx

= x3e* — [ 3x%e*dx + c;(x%*e* — [ 2xe*dx)
= x3e* + c;x%e* — (3x%e* — [ 6xe*dx) — ¢, (2xe* — [ 2e*dx)
= x3e* + (c; — 3)x2%e* + 6xe* — 6e* — 2c,xe* + 2c,e* + ¢,
=e*x3+ (¢; —3)(x? —2x + 2)e* + ¢,
>.y=x34+(c; —3)(x? = 2x+2) + c,e”*

: a*y O A A
Example 18:Solvex —+ (x—2) — —2y=x.

Sol. Let D = %, then the given equation can be written as
[xD? + (x —2)D = 2]y =x% ............. (1)
We have ,xD?+ (x —2)D — 2 =xD?+xD — 2D — 2

117



Chapter 7: Linear Differential Equations of Secabdler

=xD(D+1)-2(D+1)=(xD—-2)(D+1)
Hence (1) becomes
(xD—-2)(D+1Dy=x3 ...

Let D+1D)y=v i

From (2) (xD —2)v = x3.

dv
or x——2v=x3
dx
dv 2 2
or e e
dx X

2
which is linear and first order . Its. I.E.e/ =% = ¢2l08 ¥ = x~2 = 1 /52

Therefore solution of (4) is
2
%zf%dx+c1 or %:x+cl or v =x3+c;x?

Putting the value o in (3) , we get

dy 3 2
—4+y=x>+cx
ax y 1

which is again a linear and first order equatidts.l.F.= el dx = ¥,

Thereforeye* = [ e*(x3 + ¢;x?)dx

or ye* = (x3 + c;x?)e* — [(3x? + 2¢yx)e*dx

= (x3 + ¢y;x?)e* — (3x% + 2¢yx)e* + [ (6x + 2c;)e* dx

= (x3 + ¢;x?)e* — (3x% + 2¢yx)e* + (6x + 2¢y)e* — [ 6e*dx

= (x3 4+ c;x%)e* — (3x% + 2¢,x)e* + (6x + 2¢,)e* — 6e* + ¢,

Exercises
i i i ; dy " d’y
Solve the following differential Equationsy(=— ,y" =—
d’y dy o
1. = —cotx— (1 — cot x)y = e*sin x.

_ : 1
Ans:y = ce* + c,e ™ (cos x + 2sin x) —Eexcos X
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2. x%y" =2x(1+x)y' +2(1 + x)y = x2.
Ans: 2y = x(¢,e®* + ¢, — x)
3. x3y" + 2xy' — 2y = 1.
ANs. vy = ¢ x + cpxe?/* —%
4. (x+2)y"—(4x+9)y' + Bx+7)y =0.
Ans. y = c,e* + c,e3*(2x + 3)
5. %—4x3—z+4x2y =x
6. %— 4x3—z+ (4x2 = 3)y = e**
7. xy" —y —4x3y = x>,
Ans:y = clex2 + cze‘x2 —%
8. xy" —y' + 4x3y = 8x3sin x2.
Ans. y = ¢;cos x% + ¢,sin x2 — x%cos x?
9. y' —4y' + 4y = e*sin x.
Ans:y = (¢; + c,x)e?* +%excos X
10xy" —2x—1)y' '+ (x—1Dy=¢€*
11.Solve% —x?- Z—i +xy=x

Giveny = x is a solution of?y” + xy' —y = 0.
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Chapter-8

Symmetric Simultaneous and Total Differential

Equations
Pre-requisites
a_°c_P _
Let;—d—q = r (say)
=>a=br c=dr , p=qr

If [,m,n are three numbers not all zero then

latmc+np _ lbr+mdr+nqr _ r= a

Cc
lb+md+nqg  lb+md+ng b d

P
q
Simultaneous Differential equations ( symmetricaldrm )

Equations of the form % = = — i (1)

Then the general solution of equation (1) fstlee form f(c;,c,) =0
or ¢, =¢(c;) for some functionf , ¢ . We can also simply take the
relations (2) and (3) together as the complstdution of (1) .
dy E
R

Rule | for solving% =7 =

By equating two of the three fractions of (1), waynibe able to get an equation
in only two variables. On integrating the diffen@htequation in only two
variables we shall obtain one of the relationthengeneral solution of (1).

This method may be repeated to give another oslatith help of two other
fractions of (1).

Example 1: Solve the equationj—’zc =

vz z
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Sol: Given =22 ... (1)

xz vz z

From the first two fractions of (1) we have
Ef EX r dx dy

X y x y

Integrating we getlogx —logy = logc;
X

or SO s 3)

from the last two fractions of (1) , we have
‘;—y =dz . Integrating we getlogy =z+C
=y =e?tC = eZeC = e7c,
SYe L =Cy iiiiiiiiiinnnns (3)

Hence , the general solution of (1) is givend = f(c,)
X _ .
or ;=f(ye Z) for some functionf .

d d d
Example 2. Solve Z==Z2=%Z
yz zx Xy

Sol: Taking the first two fractions

we get %zd—y or xdx—ydy =0 or 2xdx—2ydy =0

zZX

=>dx*—y?) =0
Integrating, we gek? —y? = ¢,

Taking the last two fractions ,

we getdZ—y = % or ydz—zdy =0 or 2ydy —2zdz=0
= dy?-2z%)=0
Integrating we get, y? —z2 =¢,

The general solution is of the forfi(c;,c,) =0
or f(x?—vy?%,y? —z%) =0 for some functionf .

Example 3: Solve dx = %’ =dz

Sol: Givendx=2=dz ........... (1)
y
Taking the first two fractions
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d d
we get dx:y—f =>dx—y—32':0

Integrating, we gel + % =

Taking the first and last fractions
we getdx =dz or dx—dz=0
Integrating we get ,x —z =c,

The general solution is of the forfi(c;,c;) =0
or f (x +% ,X = z) = 0 for some functionf .

. d
Rule Il for solving —~ = v =%

Suppose only one relatiar(x, y,z) = c; can be found by using rule I. Then,
sometimes we try to use this relation in expressing variable in terms of the
others.

This may help us to obtain an equation in two \@es The solution of this
equation will give a second relation of the farfx, y, z) = c,.

dx d d
Example4: Solve ==2=_"~“_
xy  y2 zZxy—2x2

. dx _ d_y _ dz
Sol. Given oy 3 T myzar e (1)
. . . dx dy
Taking the first two fractions we havex— =, = 0
= % — ‘i}—y = 0. Integrating we getlogx —logy = logc,
X
or 5 T 1 (2)
DX =C1Y  cveeieiiniannnn. (3)

Taking the second and third fractions and sui8p, we have

dy dz
y2  ci1zy?-2ciy?
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dz
z—2c%

or c,dy =

Integrating we get , c;y —log (z — 2¢? ;) = ¢,
using (3) we get

x —log (z — 2x2/y%) = Cpe evrrrrinnnnn, (4)

The complete solution is given b¥c,,c,) for some functions .
where c; andc, are given by (2) and (4) .
dx dy dz

Example 5: Solve ; = _—Z = m

Sol: Given Z=2=_"~_ .. (1)

-z Z%+(x+y)?

Taking the first two fractions , we have
dx =—dy = dx+dy=0
Intgerating wegetx +y =c; .ooviinninnnnn. (2)

Taking the last two fractions and using (& get

zdz zdz
Y +dy=0 or 212 +dy=0

2zdz

or
z2+c?

+2dy =0

Integrating we getog(z? + ¢) + 2y = ¢,
or log(z?+ (x+y))+2y=¢, .evvrernnn... (3)

The complete solution is of the form
¢, = ¢(c,) wherec;,c, aregiven by (2) and (3) .

. d
Rule Il for solving — =~ =

......... 1)

The use of Lagrange’s Multipliers

Let m, ,m, ,m5; be three numbers or funtions ofy, z

dx dy dz midx+mydy+msdz
Then = == == -T2
P Q R m,P+m,Q+m3R

If m;P+m,Q+m3R =0 thenm;dx +m,dy+mzdz=20
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Choosing m; ,m, ,m5; in such a way thatm,;dx + m,dy + mydz is
integrable, one solutiom(x,y,z) = ¢; can be found .

The method can be repeated with a different &fetm,, m,, m; to get
another relation of the formv(x,y,z) = c,

(Here my;,m, ,m; are known as Lagrange’s multipliers )

. . d
Example 6:Solve the simultaneous equatiogs——— = —=~ = —,
Z4=2yz-y y+z y—z

. . d d d
Sol: The given equations are——— = == -2 ... (1)
z2-2yz-y%2  y+z y-z

Choosingx, y, z as multipliers, each fraction of (1) are edoal

xdx + ydy + zdz _ xdx +ydy + zdz
ZZ—Zyz—y2+y(y+z)+z(y—Z)_ 0

= xdx +ydy +zdz =0

2 2

2
Integrating, we get = +>-+==C

or x?+y*+z2=¢

From last two fractions of Equation (1), we ha‘gf% =2

y—z
= (y—2)dy =y +2)dz
= ydy — (zdy + ydz) —zdz =0

= ydy —d(yz) —zdz =10

2

2
Integrating, we gety? — yz — Z; =

or y>—2yz—z%=c,

Therefore , the general solution of the given equas of the form

c1 = f(cz)

or x2 +y?+z? = f(y? — 2yz — z?) for some functiorf .
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d d d
Example 7:Solve— = =~ =&
y+z

zZ+x Xty
. dx d dz
Sol: Given =L = 2, (1)
y+z  z+x  x+y

Choose multipliers1,-1,0 ; 0,1,—-1 ; 1,11

. -d dy—d dx+dy+d
each fractions of (1) are equal f6—= , =% i et
y—x z=y 2(x+y+z)
dx—d dy-d dx+dy+d
Therefore =—= =22 2972 L. 2)

y—X z=y 2(x+y+2z)

i ; dx—d dy—d
From first two fractions , we havci_xy = Z_yz

d(x-y) _ d(y-z) or d(x-y) _ d(y—2z)
y—Xx z=y X—=y y—z

=

On integrating, we getlog (x —y) = log (y — z) + log ¢;

(x-y) _
DTS00 3)

Again choosing the first and the last fraction§(2) |,

dx—dy _ dx+dy+dz dix-y) _ dx+y+z)

we have, y—x  2(x+y+2) (x=y)  2(x+y+z)

Integrating we get ,log(x —y) = —%log(x +y+2z)+log C
1
= —log(x +y +2z)z + log C

1
= log(x —y) +log(x + y + z)z =logC

=>(x—y)(x+y+z)%=C
or (x—Y)2?xX+Yy+2)=Cp ceveeiieainnnnnn, (4)

Thus , the general solution of (1) is of thario

f(cy,c,) =0 for some functionf . where c;, c, are given by
(3) and (4)

Example 8: Solvczdx = &

-y x-z o y—x
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Sol: Taking multipliers1,1,1 each fraction are equal to

dx+dy+dz _ dx+dy+dz

Z—y+x—z+y—x 0
=>dx+dy+dz=0
or dix+y+z)=0
Integratingwe get x+y+2z =

Taking multipliersx,y,z each fractions are equal to

xdx+ydy+zdz __ xdx+ydy+zdz

XZ—XY+yx—yz+zy—zx 0
= xdx +ydy +zdz =0

ord(x>+y?+2z2)=0
Integrating we get ,

x2+y%+z2=c

The general solution is of the form

flcr, ) =0
or f(x+y+z,x>+y?>+2z%)=0 for some functiory .

d d d
Example 9: Solve =2 ==
y(x+y)+3z x(x+y)—-3z z(x+y)

e dx . dy _ dz
Sol: Given Sy)es Ty 2ty (1)

Taking multipliers1,1,0 each fractions of (1) are equal%c’ér% :

dx+d d d(x+ d
Therefore®*% — 4z _, d&ty) _ dz
(x+y)? z(x+y) x+y

d(x+ d
_, d&t+y)  dz
x+y z

=0

Integrating we get lpg(x +y) —logz = logc;
or log% =logc; = x+7y =
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Again , taking multipliersx ,—y,0 , each fractions of (1) are equal to
xdx—ydy

3z(x+y)

xdx-ydy dz
3z(x+y) o z(x+y)

Therefore or xdx—ydy—3dz=0

2 2

Integrating we get % - y? —3z=C
or x?—y%?2 -6z =c,
Therefore , the general solution is given by

f (% ,x2 —y? — 6z) = 0 for some functionf .

dx _ dy _ dz
x(y?-z2)  y(z2-x?)  z(x?-y?)

Example 10:Solve

dx dy dz

Sol: Given X070 @) myEy e (1)

Choosingx, y, z as multipliers, each fraction of (1) are equal to

xdx + ydy + zdz _ xdx +ydy + zdz
x2(y2 — z2) + y2(2z2 — x2) + z2(x2 — y?) - 0

= xdx+ydy+zdz=0 or 2xdx+ 2ydy+ 2zdz = 0.

Integrating we get x2 + y* +z%2=c¢; ............ (2)

Again choosinglg,i i as multipliers, each fraction of (1) are eqoal t

dx/x +dy/y+dz/z _dx/x+dy/y+dz/z
2=z + (22 —x) + (x2 —y?) 0
dx dy dz
>—+ D rE 0

Integrating we get log x +log y + log z = log c,
or log xyz =log ¢,
= XYZ =Cp eeeerrennannnn (3)
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Chapter 8: Symmetric Simultaneous and Total Difféa¢ Equations

The complete solution is givefi(cy,c;) = 0 wherec, ,c, are given
by the relations (2) and (3).

d d d
Example 11 Solve— = —=— = =~
y—zx

. 4 d d
Sol. Given equation=— = ——=—"— ... (1)
y—zx  x+yz  x2+y?2

Choosinge, —y, z as multipliers, each fraction of (1) are equal to

_ xdx — ydy + zdz _ xdx —ydy +zdz
Cx(y—zx) —y(x +yz) + z(x% + y2) 0

= xdx —ydy +zdz=0 or 2xdx—2ydy+ 2zdz = 0.

Integrating we get x> —y? +z%2 =¢; .oouuunn..... (2)
Again, choosing, x, —1 as multipliers, each fraction of (1)

_ ydx + xdy — dz _ydx +xdy —dz
Cy(y —zx) + x(x + yz) — (x2 + y2) 0

= ydx +xdy—dz=0 or d(xy)—dz=0

Integratingwe get, xy—z=c¢, ..cocovvvvnvnnn.n. (3)
The general solution is given by the relationsaf@) (3).

da d da
Example 12 Solve— = = ==
xX-=y x+y 2xz

Sol. Given equation£- =2 =22 . (1)

X-y x+y @ 2xz

Taking the first two fractions of (1) , we have
@y _ Xty (2)

dx x=y

d d
Let Z=v or y = vx sothat= = v + x —
x dx dx

Then (2) becomes

dv  1+v dv  1+v 1+v-v(1-v)  1+v?
vV+xX—=— 0 X—=——V = =
dx 1-v dx 1-v 1-v 1-v
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1-v dx 2 2v 2dx
or dv =— or — dv = —
1+v2 X 1+v2 1+v2 X
2 2V 2
or —dx + dv = dv
x 1+v2 1+v2

Integrating we getlpg x? + log(1 + v?) = 2tan"lv + C
or x2(1+v?) = eCe2@n™v) or x2(1 492) = czeZt?’m_1 v
or (x2+y2)e 20 O/ = ¢, (3)

Choosingl,1, —§ as multipliers, each fraction of (1)

i dx+dy—(1/z)dz __ dx+dy—(1/z)dz
T (=) +(x+y)—-(1/2)x(2xZ) 0

> dx+dy—-dz=0

Integrating weget x+y—logz=c, .......... 4)
The realtions (2) and (3) together contgguhe general solution
of the given equation .

. dx _ dy _ dz
Example 13 SO|Vu(x2+y2) T 2xy z(x+y)

Sol. Given =2 =% - _% .. (1)

x2+y2 2xy (x+y)z

Choosingl,1,0 as multipliers, each fraction ¢6f) are equal to
dx+dy __dx+dy

tyiizxy | (o) e (2)

Choosingl, —1,0 as multipliers, each fraction of (1) are equal t
dx—dy __ dx—dy

e 3)
. dx+dy _ dx-—dy
Equating (2) and (3) we have =5 =~ —=
Integrating, -~ =-Ly4¢ ori=i+C1
x+y x-y x+y xX=y
= ﬂ = C1 ................... (4)

Equating the last fraction of (1) and (2), we dav
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dx+dy _  dz or d(x+y) dz
(x+y)2 o (x+y)z x+y z

=0

Integrating,log (x + y) — log z = log ¢,

or (x+y)/z=cp .iiiin... (5)
Relations (4) and (5) together constitute theegal solution .

Total Differential equations

A total differential equation involves the totalroative of a function with
respect to all its variables . In three dimendiosace, total differential
equations take the form

Pdx+Qdy+Rdz=0 ................ (1)

where P,Q ,R are functions ofx ,y,z .

If there exists a functiom of x,y,z such that its total derivativedu is
equal to theL.H.S of (1) orits multiple i.edu = Pdx + Qdy + Rdz or
du=A(Pdx+ Qdy+ Rdz) then wu(x,y,z)=c obtained directly by
integration is a solution of (1) . In mostessiowever , equation (1) cannot
be so easily solved or may not be integrableallat We discuss below one
theorem that guarantee the integrability of eguafl) called the Necessary
and sufficient conditions for integrability of tbtadifferential equation.

Necessary and sufficient conditions for integrabity

The Necessary and sufficient condition for thegnability of the
equation: Pdx + Qdy + Rdz = 0. is

aQ R OR 0P 0P 9Q\ _
P(G-3) + oG —5) R —50) =0
Proof: The condition is necessary

Let Pdx+Qdy+Rdz=0 ............ (1)

be the given equation whePeQ, R are functions of, y, z.
Let (1) be integrable and its integral hgx,y,z) = ¢

Then the total differentialu must be equal to a multiple of
Pdx + Qdy + Rdz .

l.e du=A(Pdx+ Qdy+ Rdz) @ need not be a constant )
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and since du = (Z—Z) dx + (g—;) dy + (Z—Z) dz.

ou ou ou

/1P=§, /1Q=a—y, and AR:E .................. (2)

From the first two equations of (2), we get

0%u d [ou d oP oA
e _3(—) =P =T +P2

dox
and 7= 22 (5) =5 Q@ =153+ 05, andas o=
We have AZ—§+P%= Z—§+Q%
= A(Z—z—g—g)zQ%—P% ............. (3)
Similarly , 1 (32 - g—i) = R% —QZ . (4)
and A(2-2)=PZ-RZ ... (5)

Multiplying (3) , (4) and (5) b, P andQ respectively and adding, we get

P(-%)o(2-2)4r(2-%) -

This proves the condition is necessary .
Conversely , The Condition is Sufficient

Let the coefficients P, Q and R satisfy the cbodi

dQ OR dR 0P P 0Q\ _
P(R-2) 4 Q(B-2) 4 R(L-2) . ......... ©)
Consider the equatiorPdx + Qdy =0 .............. (7)

We can assume that (7) is exact for otherwise aveatways multiply by its
integrating factor to make it exact .
Since (7) is exact , we hav@dx + Qdy = d V for some functiory .

av av
= Pdx + Qdy = adx +@dy
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ov ov
. P-_5; andQ-—E; ......... (8)
oP 0%V 0Q 0%V
= — = —_— =
0z 0z 0x and 0z 0z dy
oP _ 0%V 0Q _ 9*V _ 9%V
Also, dy  dyox and dx  dxdy  9yodx
P  9Q
"0y Ox

Substituting the above values in Equation (6¢ gt

av 9%V  9R av (OR 0%V d d
(- )+ - (-5 o
0x \0z dy dy dy \0x 0z 0x 0x 0x

2 2
$6V(6V 6R)+6V(6R 6V)=0

ax

azay oay) oy \ox o0zox
v a [oV oV 9 [V
> 2.2 (Z-R)-2Z(Z-R) =0
0x 0y \0z dy 0x \0z
v 9 [V
5 35 FR)
= =0

av. 0 [av
2 2(e-n)
dy 0y \oz

The last equation shows that the Jacobiaw cﬁnd(g—z — R) IS zero . Hence
V and (Z—IZ/ — R) are functionally relatedqee theory of jacobian .

which implies that there exists a relation betwﬁemd(g—‘zl — R) independent
of x andy.

Finally we express(g—: — R) as a function of andV .

ov

-~ R=¢(V). ....c...... (8)
Now, Pdx +Qdy + Rdz =2 dx + g—;dy +(5-¢)dz  ( using (8) and

9) )
av av av
= (Zdx +@dy+£dz) — pdz = dV — $dz
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Thus (1) may be written as

dV —¢dz =0
which is an equation in two variables which wilveasolution of the form
g(V,z) = 0. for some functiong .

This proves the condition is sufficient .

The conditions for exactness of Pdx + Qdy + Rdz = 0

The necessary and sufficient condition for the équa Pdx + Qdy + Rdz =
0 tobe exact is

ap 0 d OR dR  OP
=29 Q——and———

dy  ox’ 9z oy ox oz

(Note that when the above conditions are satistlezlcondition
R dR 0P oP

P(Z‘f‘@)”(&‘z)w(a‘g—i) = 0 is also satisfied )

We shall leave the proof as it is easily available
Method I- Solution by Inspection

When the condition of integrability is satisfied; tearranging the terms in the
given equation, we may be able easily integraggetdhe general solution .

Example 14: Solve z(1—2z3)dx +zdy — (x +y + xz?)dz = 0.
Sol: Equation can be written as
z(dx + dy) — z*(zdx + xdz) — (x + y)dz =0

or zd(x +y)—z%*d(xz) — (x +y)dz=0

r zd(x+y)z—2(x+y)dz _ d(XZ) -0

or d (ﬂ) —d(xz) =0

Z

Integrating we get
XY _xz=c which is the required solution .

zZ
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Example 15 Find f (y) such that the total differential equation

and solve it.

(yz+2) dx —zdy + f(y)dz=0 is integrable

X

Sol. The given equation can be written as

(yz+2z)dx —xzdy + xf(y)dz=0. ......oenninnn, (1)

Comparing (1) witlPdx + Qdy + Rdz = 0, we have
P=yz+z Q=-xz andR =xf(y).

o _ e _ 0 00_ __ om_ .o oR_
ﬁE—Z,aZ—(y‘l'l):ax_ Z;az— x’ax_f(y)’ay_ xf(y)

Suppose that (1) is integrable , then

P(8-2)vo(E-5) n(E-) -

Using (2) and denotindf /dy by f', (3) gives

z+2)(—x—xf'O) —xz(f) — ¢+ D) + xf)(z— (—2)) = 0.
or  xz(1+y)f'(y) = xzf(y)

af(y) _ dy_
f) y+1

Integrating we get,log f(y) =log(y+1) +log k
or f(y)=k(y+1) , (kis constant)
Putting this valug(y) in (1), we get

z(y + 1)dx — xzdy + xk(y + 1)dz = 0.

dx dy n kdz

& = 0.

x y+1 z
Integrating, log x —log (y + 1) + klog z = log c.

which is the required solution .
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Example 16: Find f(z) such that(*“~2=2) dx - ydy + f(2)dz = 0 is
integrable and solve it.
Sol. The given equation can be written as
(y? + z2 — x¥)dx — 2xydy + 2xf(2)dz = 0. ........... (1)
Comparing (1) withPdx + Qdy + Rdz = 0, we have

P=vy%+2z%2—x?% Q=-2xy, R =2xf(2).

oP

opP
TR

0 _ ., 90 _ o 2R _ ok _
g ZZ;__ Zy; _O'Ox_zf(z),ay_o

dx 0z

If (1) is integrable then

P(9-5) o (3-2)n

= (y*+2z2—x%)(0—-0) — 2xy(2f(z) — 22) + 2xf (2)[2y — (—2y)] =0

G —3)=0

or > —4xy(f(z) —z) +8xyf(z) =0
or f(z) =-z.

Putting f(z) = -z in (1),
We have (y? + z? —x?)dx — 2xydy — 2xzdz = 0.

or (x? +y% + z%)dx — 2x*dx — 2xydy — 2xzdz = 0
or (x®>+y%+z%)dx — x(2xdx + 2ydy + 2zdz) = 0
(x? +y%2 + z?)dx = x(2xdx + 2ydy + 2zdz)

dx _ dec+y?+z®)

x x2+y2+2z2

Integrating we get
logx = log(x? +y% +z2) +logc or x = c(x? + y? + z2).

or

Method Il - Coefficients are homogeneous of same gese

Let Pdx + Qdy + RAZ=0 ...ccoo...... (1)
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be the given equation and we assume it is intégrab

, 9Q OR R 0P 0P 8Q\ _

e P(Gr-5)re(G-5) +R(G-5) =0

If P,Q,R are homogeneous of same degree , then:

Case I: General Method for Homogeneous coefficients

Taking x =uz ,y =vz .Thendx =udz+ zdu anddy = zdv + vdz .
The given equation will reduce to the form

f1(wv)du+f,(uv)dv %
fww) z

=0 e, 3)

If (3) can be integrated directly , then theusoh follows .
Otherwise , the numerator of the first fraction(@) can be express as
df £+ g(u,v,du,dv) and express the fraction as the sum of pdréations

df (u,v) gu,v,du,dv) E
f(u'v) - f(u,v) VA

to get =0 i (4)

Upon solving (4) , The general solution is foynudting u =

v ==X.
z

z )
Casell: If Px + Qy+Rz+ 0

Let ¢(x,y,z) = Px+Qy+ Rz .

Then d¢ = Pdx + Qdy + Rdz + (xdP + ydQ + zdR)

= Pdx + Qdy + Rdz = d¢ — (xdP + ydQ + zdR)

Pdx+Qdy+Rdz

=0
¢

The given equation on dividing lay becomes

d¢p—(xdP+ydQ+zdR) ﬂ __ xdP+ydQ+zdR _
or " =0 or n p
The general solution is found by integrating eiguna (2) .
Example 17:Solve y(y + z)dx + z(x + z)dy + y(y — x)dz = 0.

Sol: Given y(y+2)dx+z(x+z)dy+y(y —x)dz=0 .......... (1)
Comparing withPdx + Qdy + Rdz = 0
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we haveP =y(y+2),0Q=z(x+2), R=y(y—2)

=x+22,2—§=2y—z,a—R=OaP aP=2y+z,a—Q=Z

aQ
= — e y y 4
0z x 0z dy dx

o (2-3) o -5)+1(5-2)

=y +2)(x -2y +32) +z(x + 2)(=y) + y(y — 2)(2y)
=0 (verify)
Therefore , the given equation is integrable .
Letx =uz , y=vzZ..........c..... (2)

Then dx =udz+ zdu , dy = vdz + zdv
Substituting these in (1) we get

vz(vz + z)(udz + zdu) + z(uz + z)(vdz + zdv) + vz(vz — uz)dz = 0
or z2v(v + Ddu+ z3(u + 1)dv +

(2w + D)+ z%2v(u+ 1) +z2v(v —u))dz =0
orzv(v+Ddu+z3(u+Ddv+z?2v(v+1)(u+1)dz=0
du dv dz

or —+ +—=0
u+1  v(w+1) z

Integrating we get ,

log (u+1)vz = logc
or WHVZ _ o XD _ o
v+1 y+z

Example 18: Solve (yz + z?)dx — xzdy + xydz = 0
Sol: Given(yz + z?)dx — xzdy + xydz =0 .............. (1)

Comparing withPdx + Qdy + Rdz = 0 we have
P =vyz+z? Q= —xz ,R=xy
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9Q _ R R op op 2Q

Y —X ,£=x,a=y,£=y+22,$=z,a=—z
2 _98) 4 (% _2) 4 p(2L_%)
Now ’P((’)z dy + Q O0x 0z tR dy dx

= (yz+2z3)(—2x) —xz(—2z) + xy(2z) = 0
Therefore the given equation is integrable .

Let ¢(x,v,z) = Px+Qy + Rz = xyz + xz? — xyz + xyz
e p(x,y,z) =xyz+xz2#0 .......coonn, (2)

( We can use case Il of the above method .)
Then d¢ = (yz + z%)dx + xzdy + (xy + 2xz)dz ............ (3)

The given equation can be written as :

(yz+z?)dx—xzdy+xydz

=0
¢
or (yz+z?)dx+xzdy+(xy+2xz)dz—2xydy—2xzdz —0
p =

(yz+z%)dx+xzdy+(xy+2xz)dz—2xz(dy+dz) _
p =

or 0

ﬂ . 2xz(dy+dz) 0 = ﬂ . 2(dy+dz) 0

r
0 ¢ ¢ ¢ y+z

Integrating we get ,

Log ¢ — log(y + z)? = logc

oz © (y+2)?

¢ x2+z) _ c or xz=c(y+2)

Method Il - Use of auxiliary equations

Let Pdx+Qdy+Rdz=0 .............. (1)
be the given equation whichnst exact. If (1) is integrable then

9Q OR dR 0P P 0Q\ _
P(R-2) 4 QL) 4 R(L-2) =0, ..o @
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If the previous method are not suitable to solveagign (1) , then Comparing
The coeficients oP, Q,R in (1) and (2), we obtain a simultaneous equati
(called the auxiliary equations of (1) ) as

dx dy dz
0Q OR — OR 0P — 0P _0QQr rrrrrrerrrrrreeer 3)

0z 0dy Ox 0z dy 0x

( note that the denominators above are not zetioeasquation is not exact )
Equations (3) can be solved by methods previoapteh.

Let u(x,y,z) =c, andv(x,y,2) =Cp cevvvvvnennnnn. (4)
be two solutions of (3) .
If (4) constitutes the general solution of (1grh(1) is identical to an equation

of the form: Adu+ Bdv =0. ..... (5)

Comparing (1) and (5) will get the valuesAodndB and upon solving (5),
we shall get the general solution .

Example 19:Solve the equation(z — y)dx + z(z + x)dy + x(x + y)dz = 0
Sol: Given :z(z —y)dx + z(z + x)dy + x(x + y)dz =0 ...... (1)

Comparing the given equation witadlx + Qdy + Rdz = 0,
weget P=z(z—vy),Q=z(z+x), R=x(x+Yy).

P _ _, 0P 20, 00 _ o _ or _
Therefore@— Z,aZ—ZZ Vi =% aZ—Zz+x,ax—2x+y,ay—x
20 _98) | o (28 _22) 4 p (2 20)
Now P(az dy +Q O0x 0z +R dy 0x

=z(z—Y)2z+x—x)+zz4+x)2x+y—-2z+y)+x(x+y)(—z —2)
=0

Therefore , the given equation is integrable.
The auxiliary equations of the given equation are :

dx dy dy
00 _OR T OR _9P 9P _0Q

0z dy 0x 0z dy dx

ST L 4 (2)
z x+y—-z -z
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From first and third fractions of (2) , we g&t + dz = 0.
Integrating we getx +z =c¢; oru = c¢; whereu = x + z.

Using Multipliers1,1,0 , each fractions of (2) are equalgf;ei%.

Equating this with the thirs fraction of (2) ewet
dx+dy —-EE or d(x+y)+_gz__ 0

x+y -z x+y
Integrating we getlpg(x + y) + logz = logc,

=>(x+y)z=c, or v=c,where v=(x+y)z
Let (1) be identical with

Adu+Bdv =0 ............ (3)

Now Adu+ Bdv=0= Ad(x+y)+Bd(xz+yz)=0
= (A+zB)dx+zBdy+ (A+x+y)dz=0 ................ (4)
Comparing (1) and (4)

wegetA+zB=z(z—y) ;zZB=z(z+x) andA+x+y=x(x+y),
From the second relation above , we get

B=(x+2z)=u
andA =z(z—y)—zB=z(z—y) —z(z+x) = —v.
Therefore (3) becomes

—vdutudv=0 =& L.
u v
On integrating we getlogu — logv = logc = % =c
>u=cv of x+z=cz(x+y) is the required solution of the given
equation.

Method IV - General Method
Let Pdx+Qdy+Rdz=0 ................ (1)
be the given equation . Assuming that it is indédg , we proceed as below to

find its solution .

Step 1 We treat one of the variables, sags a constant so thé =0 .
Then (1) becomesPdx + Qdy =0 ............ (2)
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Step 2 Let the solution of (2) be(x,y) = f(z), wheref(z) is an arbitrary
function ofz tobe determined .

Step 3 Differentiate u(x,y) = f(z) totally and then compare the result with
the given equatio®dx + Qdy + Rdz = 0. After comparing we shall get an
equation in two variableg andz. If the coefficient off or z involve functions
of x,y, it will always be possible to remove them wikie thelp ofu(x,y) =

f@.

Step 4 Solving the equation obtained in step 3 to obfaiPutting this value of
finu(x,y) = f(2), we shall get the required solution of the reqligguation.

Example 20: Solveyzdx + 2zxdy — 3xydz = 0
Sol: Comparing the given equation withdx + Qdy + Rdz =0

we have P =yz ;Q =2zx ;R = —3xy

oP_ oP_  00_., 0Q_., OR_ o OR_ _

:ay_z’az_y ’ax_zz'az_zx’ax_ 3y'6y_ 3x
2090 4 g(L-2) 4 p(2-29)
NOWP((’)Z dy +Q O0x 0z tR dy 0x

=yz(2x + 3x) + 2zx(—3y —y) — 3xy(z — 2z)
= 5xyz —8xyz+ 3xyz =0

Therefore, the given equation is integrable.
Assuming x = Constant so thatlx = 0

The given equation reduces to

2zxdy — 3xydz =0= 2zdy —3ydz=0

d d
- 22 3%
y Z
Integrating we get 2logy —3logz = f(x) ........... (1)

Differentiating we get
' — 24y -2
f'(x)dx = 5 dy ——dz

or —yz f'(x)dx+2zdy—3ydz =0
or —xyz f'(x)dx +2xzdy —3xydz =10
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Comparing the above equation with the given equoate have
—xyzf'(x) =yz =f'(x) = —% = d(f(x)) = —%dx
integrating we getf(x) = —logx +logc = log%
Putting this value off (x) in (1) we get,
2logy —3logz = log% or logJZ/—z = logi

2 2
5L =2 or Z =¢ istherequired solution .

z3 x 23
Example 21 Solve zydx + (x*y — zx)dy + (x*z — xy)dz = 0.
Sol. Given :zydx + (x%*y — zx)dy + (x?z — xy)dz = 0. ....... (1)
Comparing withPdx + Qdy + Rdz = 0
we have P =zy ,Q =x?y—zx ,R=x%z2—xy

L _ __OR___OR_ oP_ 9P _ 30 _
0z x'ay_ Xoox T X y’az_y'ay_z'ax_ xy—2

Now P (3~ 55) + G —5) *R(5 - 5)

dx 0z
=zy(0) + (x%y —zx)(2xz — 2y) + (x?z — xy)(2z — 2xy) = 0

Therefore , the given equation is integrable .
Treatingx as constant so thdk = 0, (1) reduces to

(x%y — zx)dy + (x*z — xy)dz = 0 or x?(ydy + zdz) — x(zdy + ydz) = 0
or x2(ydy + zdz) — xd(yz) = 0

Integrating , we get

x?(y?+z%)

)y = ()
or x2(y? +2z2) — 2xyzZ = 2f (%) evviriieiinnn., (2)

wheref is function tobe determined .
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Differentiating (2), we have

2x(y? + z%)dx + x? 2ydy + 2zdz) — 2xydz — 2yzdx — 2zxdy =
2f"(x)dx

[x(y? + z%) —yz — f'(0)]dx + (x?y — xz)dy + (x?z — xy)dz = 0
Comparing the above equation with (1), we have

x(y?+z%) —yz—f'(x) =yz

2 2 2
or x(y2+z%)—2yz=f'(x) or XX & +z)

—xyz =3f"(x)

FeO =30 =L2=2 5 dfe) =

Integrating we getlog f(x) = logx? + logc
= f(x) = cx?.

x?(y?+z%)

- —xyz =cx? or x2(y®+z?-2c)=2xyz

Example 22: Solve the equation
2yzdx + zxdy —xy(1+2)dz=0. ............ (1)

Sol: Comparing Equation (1) withdx + Qdy + Rdz = 0, we get

P=2yz,Q=2zxandR = —xy(1 + 2)

=>6P—Zzap—2 0 _ 500 By xzaR— z
ay oz Y o T P T "oy dx y—y

Now P (52~ 55) + (5~ 52) +R(5 - 5)
=2yz(x +x+xz)+zx(—y —yz—2y) —xy(1+2)(2z — z)
= 2yz(2x + xz) + zx(—3y — yz) — (xy + xyz)z
= 4xyz + 2xyz* — 3xyz — xyz? — xyz — xyz* = 0

- the given equation is integrable .
Takingz as constant so thatz = 0 Equation (1) can be written as
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2yzdx + zxdy =0 =2ydx+xdy=0 = 2—+—=0

Integrating, we get
log x? + log y = log f(2)
= logx?y =logf(z) =2x*y=f(2) «ccovcvvvrrnnnn, (2)

Differentiating totally , we get

2xydx + x*dy = f'(z)dz = 2xydx + x*dy — f'(z2)dz =0
= 2yzdx + xzdy — id)’(z)dz =0 i (3)

Comparing Equations (1) and (3), we get
2f'(2) = xy(1 + 2)
>f'@) =22y () = f'@ = f() (=)

PO @) () or 2= () s

Integrating, we get log f(z) =log z+ z +log c
or logf( D=7 > f(z) = cze? or x*y = cze?

which is the solution of the equation.

Example 23: Solve(x? + y? + z%)dx — 2xydy — 2xzdz = 0.

Sol : Given (x% 4+ y? + z%)dx — 2xydy — 2xzdz =0 ............. (1)
Comparing the given equation witbdx + Qdy + Rdz = 0 we have

P=x*+y%2+2z% ,Q= —2xy , R= —2xz

aQ OR OR

=>£=2y ,E=22 e = -2y ’EZO e = —22,5=0
Now P (3 -5) + (G -5) +R(5-5)

= (x%2+y%2+22)(0) —2xy(—2z—22) — 2xz(2y + 2y) =0
Therefore , the given equation is integrable .
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Let x be treated as constant, so that= 0. Then (1) becomes
—2xydy — 2xzdz =0 or 2ydy+2zdz=0

Integrating we get, y2 +z2=f(x) (say) ............... (2)
Differentiating (2) we get,

2ydy + 2zdz = f'(x)dx
or xf'(x)dx — 2xydy — 2xzdz =0 ... ..... (3)

Comparing (3) with (1) we get
xf'(x)=x2+y2+2z% or xf'(x)=x%+ f(x)

af(x)
dx

or —i f(x) = x , which is a differential linear equation

1 -
|.E. = ef—;dx — g-logx — plog x™t — 1

X
lf(x) =[Zdx+c=x+c
X X
or f(x)=x*+cx
or y*+z2=x%+cx
which is the general solution of (1)
Exercises

Solve the following equations

dx dy dz

Lo T e 2

Ans.x+y+z=c ,xyz=rc,

dx d dz
2. Y =

x(7?-22)  y(zi—x?)  2(x?—y?)

Ans :x2 +y% +z% =c,xyz = ¢y

dx d dz
3. =& _

x2—yz  y2-zx  z%-xy
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x—
Ans :y—_32'= c, Xy +yz+zx =c,
4 dx _ dy _  dz
" x2-yz  y2-zx  z%2-xy
dx _ dy _ dz
" ytzx  —x-yz  x2-y?’
dx _ dy _ dz
14y 1+x  z
Ans:z(x —y)=c,2+x+y=cyz
dx dy dz
7 — —
" y3x—2x*  2y%-x3y 92(336/3—}13))6.
. 3.3, — —
Ans: x°y°z = ¢ ,F+F—c2
8 dx _dy _ dz
“xy  y2  zxy-2x2
X . X
Ans:—=c¢ ,e™|z—2—)=¢
y y
o dx_dy _ _adz
2 T ox2 T x2y272
3
Ans: x3—y3 =¢;,x3 t-=0,
10 xdx _ d_y _ E
y2z  zx 2

Ans.x3 —y3 =c¢,x?2—z% =,

11.Solve 3x2%dx + 3y?dy — (x3 + y3 + e??)dz = 0,
Ans. x%z% — 2y = cz?

12.Solve (y? + z%? — x?)dx — 2xydy — 2xzdz = 0,
Ans. x3 + y3 = e?Z + ce?

13.Solve(y? + z? + x?)dx — 2xydy — 2xzdz = 0,

Ans. y? +z% = x% + cx
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14 Solve zydx + (x?y — xz)dy + (x*>y — xy)dy + (x?>z — xy)dz = 0
Ans. xlog z=cy , x*(y®+z?-2c)=2xyz

15. Solve2xzdx + zdy — dz = 0.
Ans.x%+y —log z = c.

16. Solvez?dx + (z? — 2yz)dy + (2y? — yz — zx)dz = 0.
Ans.xz + yz — y* = cz*

17 Solve(y? + yz)dx + (z% + zx)dy + (y? — xy)dz = 0.
Ans.y(x +z) =c(y + z)

18.Solvez(x? — yz — z?)dx + (x + z)xzdy + x(z*> — x* — xy)dz = 0.
Ans.x(y2+z) =z(x+y)(1 —cy)

19.Solve3ydx — 3xdy — y*dz = 0.
Ans.y = x(c — z?)

20.Solvey?dx — 2x?dy + (xy — zy3)dz = 0.

Ans. xlog z = cy
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Chapter-9

Introduction to Partial Differential Equation

Introduction

Partial differential equations arise from a sitoati when the number of

independent variables in the problem is two or maheder such a situation,

any dependent variable will be a function of mdratone variable and hence it
possesses not ordinary derivatives with respeet $ingle variable but partial

derivatives with respect to several independenaibes.

Origin of Partial Differential Equation
Elimination of arbitrary constants/functions

Consider a relation
F(x,y,z,a,b) =0 ............. (1)

betweenx,y,z wherea andb are arbitrary constants arnd is a function of
two variablesc andy and whereF is a known relation . Differentiating this
equation with respect to and y partially and using the chain rule . we
shall obtain two relations

OF . OF 0z OF . OF 0z
g Ea— 0 and @‘l‘ga— 0
OF OF OF OF
0r5+pg—0 and @4‘6]5—0 ............. (2)
wherep = 2 %
€ = ox ’ q oy

The two arbitrary constantsandb, can be eliminated from the three relations
given by (1) and (2) to obtain another relatbdithe form :

f,v,z,p,9) =0 coveiiiiien. (3)

which is the partial differential equation ari$emsn the system of surface (1).

Example 1: Eliminate the arbitrary constants from the relatio
ax?+by?+z2=1 ........ (1)
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Sol: Differentiating partially w.r.tc and y in turn
2ax +2zp = 0> ax? = —xzp ;
2by +2zq =0 = by? = —y zq
Adding the last two equations and using (1
(ax? +by?*) = —z(xp + yq)
or(1—z%) = —z(xp+yq) or px+qy =1z —i
Example 2:Eliminate the constanta ,b from
2z=(ax+y)*+b
Sol: 2p = 2a(ax+y) , 2q=2(ax+Yy)

>p=alax+y) , q=(ax+Yy)

)
= pq = aax +y)? =42 i')q

Example 3: Eliminate the constants ,b from
z=x+a)(y+b)

So:p=(W+b) ,q=(x+a)
=>pg=x+a)(y+b)=z

Example 4: Find the differential equation of all planes hayvaqual intercepts
onthe Xand Y axis.

Solution: Equation of the plane having equal intercepth the X and Y-

zZ

axisis: Z4+Z+Z=1. ... 1)
a a Cc

Differentiating partially wr.t x ' we get

1 10z 1 1 1 1
;+0+;a—0 0r;+zp—0 Orz——zp ..... (2)
Differentiang (1) partially w.r.t 'y' we ge0d + % + %Z—JZ/ =0
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1 1 1 1
Z+;q—0 or Z———q ........ (3)

From (2) and (3¥ —%p = —%q = p = q which is the requiredquation.

Supposeon the other hand , we have two known functiongandv of three
variablesx,y,z connected by an arbitrary functiénof the form :
Fu,v) =0 .o, 4)

Then, differentiating equation (4) totally witkspect tax andy, we shall
obtain two more equations

) 20} =0 ©
Z_Z{Z_;+Z—Zq}+g—:{2—;+%q}=0 .......... (6)

Eliminating Z—Zandg—: from equations (5) and (6) , we obtairegnation

a(u,v) ad(u,v) _ a(u,v) (7)
0.0 e By
or 2
: . 0(f.9) . . or or
where the Jacoblanm IS given by of g
ds O0s
Since u and v are known functions ofx,y,z , then so are

Uy, Uy , Uy, Uy, Uy , U, Thus, equation (7) is a partial differentialiation of the
same form as (3) namely :

f(x,y,2,p,q9) =0

Example 5: Eliminate the arbitrary functiofi from the equations:
z=xy+f(x*+y?)

Sol: We have, p=1y+2xf'(x?+y?)
1} 2 2y —P7Y
=" +yS) ==

and g =x+2yf'(x?+vy?)
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p-y
2x

Orq=x+2y( ) or gx —py = x? — y?

Example 6: Eliminate the arbitrary functiofifrom: z = x + y + f(xy)

So: p=1+yf' () = f'(y) =2~

x(p—1)
y

and g =1+xf'(xy) =1+ or px—qy=x—Yy

Exercise
1. Eliminate arbitrary constants froax? + by? + cz? = 1.
2. Eliminate 'a 'and b ' from z = ax3 + by3.

3. Form the partial differential equation by elimimafi arbitrary function
f and g from the following relations

@) flxyz,x*+y*+2z%)=0
0) z=fan) +4(3)

(c) z=e¥f(x +y).
(d)xyz = f(x* + y* + z°)

@ fG*+y%z—xy)=0
M z=,Q)

Order and Degree

Order and degree of a partial differential equateme defined in the same way
as those of ordinary differential equations .

Linear Partial differential equations of first ord er
An equation of the formf(x,y,z,p,q) =0 where the highest degree of

andq is 1 and there is no term containing the proggct The most common
of these equations are of the form

Pp+Qq=R .............. (1)

known as Lagrange's equationor quasi-linear , whereP, Q, andR are given
functions of x, y, andz (which do not involvey orq ). A relation of the type
F(x,y,z,a,b) =0 ............ (2)
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containing two arbitrary constartsandb and which is a solution of a partial
differential equation f(x,y,z,p,q) =0 of the first order is called a
complete solutionor acomplete integral of that equation. A relation of the

type
F(u,v) =0........... (3)

involving an arbitrary functiorF connecting two known functions andv of
x,y, andz and providing a solution of a first-order partiiferential equation
f(x,v,z,p,q) =0 is called general solutionor ageneral integral

Theorem: The general solution of the linear partial differahequation
Pp+Qq=R .......... (1)

Is of the form f(u,v) = 0 wheref is an arbitrary function and(x, y,z) = ¢,

andv(x,y,z) = ¢, are two independent solutions of the equations
ax _dy _dz
P b b R " s = EEEoEEGS

Q
2)

Proof: Since u(x,y,z) =c,; andv(x,y,z) = c, are independent solutions
of (2) thereforeu and v must satisfy the equations

ou ou ou
PotQo +R =0, (3)

ov ov ov
and Paﬁ'Q@‘l‘R;—O ............... (4)

From (3) and (4) we have

p _ Q _ R
ou dv dudv ~ O0u dv Oudv~ oOudv Oudv

@E_E@ 9z 0x 0x 0z dx 0y 0y odx

P P P

or Awy) — Owy)  O(ww) e (5)
0(y.2) 0(z.x) a(x,y)

a(u,w) a(u,v) (u.w)

or 292 _ 3zn _ ey

P Q R
a(u,v) a(u,v) d(u.v)

= , = kQ , =kR ... 6

0(y,2) 0(z,x) Q a(x,y) (6)
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Now , differentiating F(u,v) = 0 with respect tax andy, respectively, we
have

oF {au ou (’)z} oF {(’)v v (’)z} —0
ou Lox 0z 0x ov W0x dzax)
OF {au ou az} oF {av ov az} —0
oulay  ozay)  oavley  azay)

EIiminatingZ—Z and‘;—i from these equations, we obtain

0zo(wy) | 0z90(uv) _ o(uv) o
dx 0(y,z) 0y ad(zx) od(xy) T

= kPp + kQq = kR using (6)
or Pp+Qq =R

Hence, we have seen thiu, v) is a solution of the (1) if only ii(x,y,2z) =
c; and

v(x,y,z) = c, are the solutions of — ==

Note The equation (2) is called the characteristicuadign or Lagrange’s
auxiliary equation of (1).

Summary: To solve the equatiol®p + Qg =R

dy

1. Form the auxiliary equationé';—x =3 dz

2. Solve the auxiliary equations by the method of giog or by the method of
multipliers or both to get two independent solusian= c¢; andv = ¢,

3. Thenf(u,v) = 0 oru = f(v) is the general solution .

Example 7:Find the general integral of the equation
z(x +y)p +z(x —y)qg = x* + y2.

Sol. The characteristic equations are

dx _ dy _  dz
z(x+y) o z(x—7y) o x2+y2

.......... 1)

Using multipliersx,—y,—z each fractions of (1) are equal to
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xdx —ydy — zdz
0

= xdx —ydy —zdz=0 or 2xdx —2ydy —2zdz=0
or d(x? —y? —z%) =0 and integrating we get
(x2—=y2—2z2)=c¢C{ ccrrrnnnn., (2)

Using multipliersy, x,—z each fractions of (1) are equal to
ydx+xdy—zdz

0

ZZ
ydx + xdy — zdz =0 Ord(xy—?)=0

Integrating we hab&xy — z? = ¢,

Thus, the general solutionfiéc,,c,) = 0

or F(x? —y?—22%,2xy—2z%) =0,
whereF is an arbitrary function.

Example 8: Solve z(xp —yq) = y? — x2.

Sol: The Lagrange’s auxiliary equations are

dy _  dz

dx _dy _dz o odx_
P =0 r O mT Ty i e (1)
. . d d d d
From the first two fractions we gét = =~ or =+ =2 =0
Zx  —Zzy x y

Integrating ,log x + logy =logc; = xy =¢;
Taking multipliers1,1,0 each fractions of (1) are equal—jej‘?% :

dx+dy _  dz dx+dy _ dz

Therefore == =
zZx—-zy  y2-x 2z 2(x+y)

or 2(x +y)d(x+y) —2zdz=10

Integrating (x + y)? — z% = ¢,

154



Chapter 9: Introduction to Partial Differential Eqtion

The general solution ig (xy, (x +y)? —2z%) =0 for some functiong .
Example 9 Solvey?p — xyq = x(z — 2y).

Sol. Given y?p —xyq = x(z — 2y)
The auxiliary equations are

dx _dy dz
i (1)

From the first two fractions of (1) we have

%=d—y or 2xdx + 2ydy =0

Intregrating we get? +y2 =c¢; ........... (2)

From last two fractions of (1) we have

dy _ dz

y  z-2y
or —zdy+2ydy=ydz or 2ydy =ydz + zdy = d(yz)

On integration, we get? = yz + ¢,
or y2 —yzZ =10y ..on..... (3)

The general solutionis given by c; = f(cy)

or (x*+y*=f(y*—yz)
Example 10 Solve(x? — y? — z?)p + 2xyq = 2xz.

Sol. Given (x? —y% — z%)p + 2xyq = 2xz
The auxiliary equations are

dx dy dz

=L =, (1)

x2—y2—z2 2xy  2XxZ

From the last two fractions of (1) we have

d dz d dz
y z

Integrating we get logy —logz =logc; or log % = log ¢,
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y _
i ;—Cl ................ (2)

Using multipliersx, y,z , each fractions of (1) are equal to

xdx+ydy+zdz
x(x2+y?+z?)

Equating the above fraction with the last fractioh(1) we have

2xdx+2ydy+2zdz _ dz
(x24+y2+22)

Integrating we get :log (x% + y? + z%) = log z + log ¢,

x%+y2+z2
or 22X — ¢,
z

Hence , the general solution is given by :

f (Z) _ (x2+y2+2z2)

zZ Z

Example 11 Find the general solution of the equatiozp + yzq =
—(x* +y?).

Sol: The Lagrange’s auxiliary equations are :

Xz yz -_ _(x2+y2). ............

T (1)

Taking the first two integrals , we have

dx dy dx _ dy
—== S Z==logx—logy=1Ilogc
Xz yz X y & 5Y 56

X
= u(x,y,2z) =;= cq.

Using multipliersx,y,0 , each fractions of (1) are equal% .

Equating with the third fraction of (1) , weVea

xdx+ydy dz
z(x2+y?)  —(x2+y?)
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= xdx +ydy +zdz =10
Integrating we getc? + y? + z% = ¢,

The general solution of the given equation is
f(f,x2 + y? +22> =0
y
wheref is arbitrary function.
Example 12:Find the general integral of the quasi-linear ¢iqua
px(z — 2y*) = (z - qy)(z — y* — 2x°).

Sol: The given equation can be written as

x(z—=2y)p +y(z—y?—2x3)q = z(z — y? — 2x3).

Lagrange's auxiliary equations are

dx  _ dy _ dz 1)
x(Z_ZyZ) - y(Z_y2—2x3) - Z(Z—y2—2x3) ...................

The last two fractions of (1) gived;y = %

=y =z Thuss u(x,y,z) = g = Cp eeenenennns (2)

Taking multipliers0,2y,—1 , each fraction of (1) are equal to

2ydy—dz . d(y?-z)
2y2(z-y2—2x3)-z(z-y2-2x3)  (z-y%-2x3)(2y2-2)

Equating with the first fraction , we have

dx d(y*-2)
x(z-2y2)  (z-y2-2x3)(2y2-2)

dx _ d(y*-z) _ dr
x  y2-z+2x3  r+2x3’

or wherer = y? — z

or 2x3dx + rdx — xdr = 0
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xdr—-rdx
x2

r

or 2xdx — =0 = 2xdx—d(;)=0

Integrating, we have® — - = c,,

2
Hence v(x,y,z) = x? + i — z—z = Cp ceeeiiininannn, (3)

The general solution is given by
¢, = f(cy) for some functionf , wherec; andc, are from (2) and (3).

Example 13: Solve y?p — xyq = x(z — 2y)

Sol. Given equation is y2p — xyq = x(z — 2y)
Langrange's auxiliary equations are

dx _ dy _ dz
y2 - —xy - Xz—2y) e (l)

Using 15t and2" fraction of (1) we have

E:d—y:xdxz—ydy = xdx +ydy =0

y:  —xy
. 2 yZ 2 2
Integrating we get-+>-=c or x> +y? =c¢; .o, (2)

Again , taking2"d and3™ fraction of (1) we get

d dz dz —zZ+2 dz z
-xy  x(z-2y) dy y ay y

=2 . (3)
Which is a linear differential equation .

1
IF = ef POy = o/ 3% _ glogy — y.
Hence the solution of (3) izy = [ 2ydy + ¢,
Szy=y%2+4+c, Of yz—y?=c, ....... 4)
From (2) and (4), the complete solution is

d(x? +vy?%zy—y?) =0 where¢ is an arbitrary function .
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Example 14: Solve(y + zx)p — (x + yz)q = x? — y?

Sol: Given,(y + zx)p — (x + yz)q = x? — y?

The Lagrange's Auxiliary equations are

e i e SN 1)
Choosingy,x,1 as multipliers, we get
ydx + xdy + dz _ ydx +xdy +dz
y2 +xyz —x%2—xyz+x2—y? 0
Thus,ydx +xdy+dz=0=>xy+z=c; ........... (2)

Choosingx, y, —z an multipliers , we get

xdx+ydy—zdz __ xdx+ydy-zdz

xy+x2z—-xy—y2z—z(x2—y?) 0
= xdx +ydy —zdz=0=x?+y%2—-2z% =,

Therefore the complete solution fx? + y* —z% ,xy +z) =0 wheref is
an arbitrary function .

Example 15:Solve px(x +y) = qy(x +y) — (x —y)(2x + 2y + z)
Sol: The given equation can be written as
px(x +y) —qy(x+y) = —(x —y)(2x + 2y + 2)

The Lagrange’s auxiliary equations are

dx _ dy _ dz (1)
) o) Sz
Now from first two fractions of equation (1), wevea
dx _ dy — E + d_y —0
x(x+y)  —y(x+y) x y
On integration, we gébgx +logy =logc; @ xy =c¢; .......... (2)
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Choosing multipliers2,2,1 each fractions of (1) are equa'%

Equating this with the last fraction of (1) wave

dz __ 2dx+2dy+dz B B
2xt2y+z ~ or 2x+2y+2z)d2x+2y+2z)—zdz=0

On integration, we gef2x + 2y + z)? — z% = ¢,

The complete solution is given by
¢, = f(c) or (2x+ 2y +z)? —z? = f(xy) for some function f .

Exercises

Find the general integrals of the linear partiffiedential equations:
1. x(x? +3y®)p —y(Bx? + y?)q = 2z(y? — x?)

2. x’p+y?q=(x+y)z.

x%+y?

3. +x)p+ (x—y)g=—;
4. p + zq = 6x satisfying the condition(0,y) = 3y.
5 2xy—Dp + (z —2x?)q = 2(x — yz)

Integral Surfaces Passing through a Given Curve

Let the curver be given in parametric equations as
x=x(t),y=y(t), z=2z(t) ........... (1)

wheret is a parameter
Let u(x,y,z) =c;, v(x,y,2) =Cy wevvvvnnn.n. (2)

be the particular solutions of the equatiBp + Qq = R , where
u(x,y,z) =c;, v(x,y,z) = c, are as described in the last section .

In order to find the integral surface which pagbesugh the curve
the particular solutioru = ¢; ,v = ¢, must satisfy the conditions

u{x(t),y(t),z(t)} = c1, v{x(t),y(t),z()} =cy ........ (3)

160



Chapter 9: Introduction to Partial Differential Eqtion

If we eliminating 't’ from (3) , we shall obtain an equation of fiien
F(c1,¢) =0

The required integral surface will then be givernfigyu, v) = 0
Example 16: Find the equation of the integral surface of th#eckntial
equation
2y(z— 3)p + (2x — z)q = y(2x — 3) which passes through the circle
z=0,x%+ y? = 2x.
Sol: The Lagrange's auxiliary equations are

dx _ dy _  dz
Zy(z_g) - (ZX—Z) - y(zx_g) .................... (1)

From the first and last fractions, we get

dx 2dz
et (2x —3)dx—2(z—3)dz=0
= u(x,y,z)=x2—3x—2z>+6Z2=0C; .ceeeeernn.. (2)

Using multipliers1,2y ,—2 , each fractions of (1) are equal to

dx+2ydy—-2dz __ dx+2ydy-2dz
2y(z-3)+2y(2x—2)-2y(2x-3) 0

= dx+2(ydy—dz)=0

Integrating we get ,v(x,y,z) =x +y%2 -2z =c,

Hence the general solution of the given equatiagh(is v) = 0

or ¢p(x?>—3x—z2+6zx+y*>—2z)=0.

The parametric equations of the given curve are
x=1+cost, y=sint, z=0

Therefore (1 + cos t)? —3(1 + cos t) = ¢4

=>cos?t—cost=2+c¢
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and1 + cos t +sin? t = ¢,
= cos t —cos? t = ¢,

sothatc; +¢c, +2 =0

Thus the required equation of the integral surface
(x2—3x—z2+62)+(x+y*—22)+2=0

orx?+y?—z2—2x+4z+2=0

Example 17:Find the integral surface of the equation
x(y? +2)p —y(x* + 2)q = (x* — y?)z,

which contains the straight line+y =0,z = 1.

Sol: Auxiliary equations are

dx _ dy _ dz
x(y2+z)  -y(x2+z)  z(x2-y2)

..................... 1)

By Choosing multipliers, y, —1, we have

xdx + ydy — dz _xdx +ydy —dz

x%y? + x%2z — x%?y? —y2z — x%z + y?z 0
= xdx +ydy —dz=0
Integrating we get ,x?>+y2—2z2=0¢; ..ccec...... (2)

Choosing multiplier%, é we get

[Sr

dx dx dz dx dx E
z

X X Z —

x
y2+z—x2—z+x2-y2 0

Integrating we get lpgxyz =logc, = XyZ=10¢Cy ccvvvvvvninnnnn. (3)
The Parametric equations of straight line are
x=ty=—-t,z=1

Substitute in (3) we havet(—t)(1) = —t? =,
and from (2) we have
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t2+(-t)2-2(1)=¢;, > 2t2-2=¢
Eliminatet we have —2¢, —2 =¢,
OI‘ C1 + 2C2 + 2 - O

Hence, the integral surface, which contains thegitt line
x2+y?—2z+2xyz+2=0

Example 18.Find the integral surface of the linear partidfedential equation
x(y? +2)p—y(x* +2)qg = (x* —y*)z

which contains the straight line+y =0,z = 1.
Sol: The auxiliary equations have integrals

dx B dy B dz
x(y2+2) —y(x?+2z) (x2-y?z
xXyz =cq, x*+y*—-2z=c,

For the curve in question we have the freedom emust
x=ty=-t,z=1

Substituting these values in the pair of equat{dhswe have the pair
_tz = (q, th — 2= (8)

and eliminating from them, we find the relation
2C1 + C2 + 2 == O

showing that the desired integral surface is
x2+y?+2xyz—2z+2=0

Example 19: Find the general integral of the partial diffdrahequation
(2xy — )p + (z — 2x?)q = 2(x — yz) and also the particular integral which
passes through the line =1,y = 0.

Sol. Given Qxy — Dp + (z—2x2%)q = 2(x — yz).

Lagrange's auxiliary equations apee— = -2 = % )
2xy_1 Z_sz 2x—2yz .............

Takingz, 1, x as multipliers, each fraction of (Hre equal 2242 *xdz

= zdx+dy+xdz=0 or d(xz)+dy =20
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Integrating, xz+y =c¢;. ......... (2)

. 1 - . {icdx+ydy+%dz}
Takingx, Y5 as multipliers, each fraction of (1) are equal te >

= xdx+ydy+%dz:0 or 2xdx + 2ydy +dz =0

Integrating, x>+ y%2+z=c,. ....... (3)

The patrticular integral passing through the lime= 1,y = 0 is found by
puttingx = 1 andy = 0 in (2) and (3)

Now z=¢; and 1+z=¢c, = 1+4+c¢ =c,

orl+xz+y=x%+y?+z

or x?+y?+z—xz—y=1.

Example 20: Find the integral surface of the partial diffedrahequation
(x —y)y*p + (y — x)x*q = (x* + y?)z passing through the curve

xz=a3y=0.

Sol. Given (x —y)y?p + (y — x)x%q = (x* + y?)z

. . . e 9X _ dy _ dz

Lagrange's auxiliary equations e = oo Gy 1)
Using multipliers1, —1,0 . Each fraction of3) = _dxdy

’ T (x-y)(y2+x2)

dx—dy i dz d(x-y) . E i
Ty o il

Integrating we getg o (2)
Taking the first two fractions, we ha ‘;x = Z—Z = 3x%dx +3y?dy =0
Integratingwe get x3 +y3=c,. ........ (3)

3
The parameteric equation of the given curve is t, x = aT y=0

Substituting these values in (2) and (3), we get
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9 3
a” _ 2 — 3,9 3 3y2 _ @ (x-y)

or z2Z3(x3+y3)?=a(x-y)3.
Exercises

1. Find the integral surface of the linear first orgartial differential equation
yp + xq = z — 1 which passes through the curve
z=x*>+y*+zy=2x

2. Find the general solution of the equation
2x(y + z*)p + y(2y + z?)q = z3 and deduce that yz(z? + yz — 2y) =
x? is a solution.

3. Find the general integral of the equatiofxk —y)p+ (y—x—2)q =z
and the particular solution through the ciecle 1,x% + y? = 1.

4. Find the general solution of the differential edqumat
x(z+2a)p + (xz+ 2yz+ 2ay)q = z(z+a) and the integral surfaces
which pass through the curves: ay 0, z% = 4ax (b)y =0, z3+
x(z+a)>=0

5. Find the equation of the integral surface of tHeetential equation
(x —y)y*p + (y — x)x%q = (x* + y?)z which passes through the curve
xz=1,y=0.

Surfaces Orthogonal to a Given System of Surfaces

Suppose we are given a one-parameter family obisesf characterized by the
equation

f(x,y,2)=c .o, (1)

The surfaces orthogonal to the system (1) areutfaces generated by the
integral curves of the equations
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dx _dy _dz

Ix fy [z

Example 21: Find the surface which is orthogonal to system =
cxy (x? + y?) and passes through the hyperbola- y? = a?, z = 0.

2 2
Sol: The given one parameter systerﬁl'ig%” =l=¢

(o}

2 2

zZ

_ y(x*+yH)+2xty _ x(x?+y®)+2xy? _ —xy(x?+y?)
- f | f, = D

= fx z - z z2

The auxiliary equations are for the orthogonalasie are :

dx _ dy _ dz
y(x2+y2)+2x2y ~ x(x2+y2)+2xy? T —xy(x2+y2)
z z Z2
dx da zdz
or = 4 =— e, (1)
y(x2+y2)+2x%2y  x(x?+y2)+2xy? —xy(x2+y?)

Using multipliers(x, y, 1), each ratio of (1) are equal to

xdx+ydy+zdz __ xdx+ydy+zdz

3x3y+xy3+x3y+3xy3—x3y—xy3  3xy(x2+y?2)

Equating this witi8" fraction of (1), we get

xdx+ydy+zdz zdz

3xy(x2+y2)  —xy(x2+y?) = xdx +ydy + zdz = —3zdz

= xdx +ydy +4zdz =0

4z2 ¢
2

2 2
Integrating we gef- + - +

or x2+y?2+4z2=0¢; coeiiniiini.l, (2)

Using multipliers(x, y, 0) and(x, —y,0) in (1) and equating the two fractions
we get xdx+ydy _ xdx-ydy

3x3y+xy3+x3y+3xy3  3x3y+xy3—x3y—3xy3

xdx+ydy _ xdx—ydy

4x3y+4xy3  2x3y-2xy3
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xdx+ydy _ 2(xdx-ydy)

x2+y2  x2—y2

Integrating, we getlog (x% + y?) = 2log (x* — y?) + log c,

x2+y?
(x2—y2)2 = Cp crreiienninnnn (3)

Also , given hyperbola x? —y2 =a?, z=0
Its parametric equations are :
x=asec O, x=atan 6, z=0
~ from (2), ¢; = a®sec? 0 + a*tan? 6
c; = a’(sec? 0 + tan?0)

And from (3) we have

o = a’sec? O+a’tan? 6 or ¢ = sec? f+tan? 0
2= (a%sec? B—a?tan? )2 2™ a?(sec? @—tan? 0)2
(5
or c. = sec? f+tan? 6 o = =3
2T a2y 27 ey
c c
c;=— or t=a*
a Cy

The required surface orthogonal to the given sysse

(P-y®)? (P 4y*+az?) _ 4
x2+y2

Example 22: Find the surface which intersects the surfacesefystem
z(x+y)=c@Bz+1)
orthogonally and which passes through the citéle- y2 = 1,z = 1.

Sol: Let f = Z;’;Z) ,

1
T (3z+1)2

zZ

Thenf;c= Zl ;fy_ le

3z+ T 3z+1

The auxiliary equation of the system orthogorathe given system is

167



Chapter 9: Introduction to Partial Differential Eqtion

dx _dy _dz dr _ _dy _ _dz (1)
fx — fy — fZ Z(3z+1) — Z(3z+1) — (x+y) -------------

From the first two fractions of (1) we hawéx —dy =0
S X—Y=C e (2)

Choosingx,y , (—3z%2 —z) as multipliers , each fraction of (1) araiaq

to

xdx+ydy—(3z%2+z)dz
0

Thereforexdx + ydy — (3z2 + z)dz =0

ZZ

2 2
Integrating we get-+>—z*-==¢

or x2+y2—-2z23—-z2=c¢c, .......... (3)

Thus any surface which is orthogonal to the giveriages has equation of the
form

x2+y?2—2z3—z2=f(x—y)
If the above surface passes through the cirtle y2 =1,z =1
flx—y)= x>+ y?—2z3—2z?= -2

Hence , the required surfacexs$ + y? — 2z3 — z2 = -2
or x2+y2—-2z3-22+2=0

Example 23:Find the equation of the system of surfaces wbighthe system
x?+vy%+z%2=cxy and passesthrough=0, y'!+z2=1 .

x%+y2+z2

Sol: The given system of surfacesfiéx, y, z) = 5 -
1y z2 x 1 z? 2z
ﬁ -_—-————_——— — —_—— — R —
fx y x%2  xy?’ fy y + x  xy? ’fz xy
- . d d d
The auxiliary equations aré- = =2 ==
fx fy fz
dx _ dy __dz xdx _ ydy _ E
or - y Z - x1 2 Z or Nyt 2 Txtiyig? 2 ()
y x2 xy? y x xy? xy
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Using multipliers 1,1,z we have xdx + ydy + zdz = 0

Integrating we getc? + y2 +z2 =¢; ...ocoeennnn. (2)

Using multipliers 1,—1,0 and equating with the last fraction of (1)
wehave

xdx-ydy _ dz d(x*-y?) 2dz _ .
2 = 2 or oy — = 0 . Integrating we get

= Cp e (3)

Thus , The general quation of the required systeantbogonal surfaces is

2_ .2
x> +y2+z2=f (x Zzy ) where f is an arbitrary function .

if the surface contains the circle=0,y% +z2 =1

Then f (xz_zyz) =1

V4

Thus , the particular surface is given By + y? + z2 =1
Nonlinear Partial Differential Equations of the First Order

The partial differential equation F(x,y,z,p,q) =0 ..... (1) in which the
functionF is not necessarily linear pmandq. A solution of f(x,y,z,a,b) = 0
of (1) that contains two arbitrary constantsaled a complete solution.

A solution of f(x,y,z,a9,by) =0 obtained by givingr and b some
particular values is calledparticular integral / particular solution .

The relation betweex y, andz obtained by eliminating and b from
f(x,y,z,a,b) =0, Z—Z =0, g—’; = 0 is called aingular solution of (1) .
Compatible System of First order Equations

The two first order partial differential equations
f(x,y,z,p,9) =0 and g(x,y,z,p,q) =0 ............. (1)
are said tobe compatible if any solution of @na solution of the other.
_ 0.9
Let J = D * 0

Then from equation (1) p andg can be solved as functions ofy, z
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say p=0¢(,y,2), q=90V,2) ceiiiririnnn. (2)

Thus , the two equations in (1) will be compatiblequation (2) is integrable
and since dz = Z—idx + Z—;dy = pdx + qdy

Therefore , (2) is integrable itlz = pdx + qdy is integrable .
or pdx+ydy—1dz=0............. (3)

Is integrable .
Also , (3) is of the form( Pdx + Qdy + Rdz = 0) is integrable if

(W, —0) + (0 — ¢,) + (=1)(p, — 1) =0

orpy, —Pé, — ¢y, +1, =0

or Yy + Y, =y, + Y, ... (4)
Now , differentiating the first equation of (1) .vr x and z and using (2)
L= ot fobx+ fox = fo o+ b =0 oo (5)
and £, + fob, + fth, =0 ceenn (6)

6) X+ ()= fi +¢f; + fo(br + d,) + f(Yr + PY,) =0

Similarly g, + ¢g, + .gp(d)x + ¢p,) + 9q (WY + PY,) =0

From the last two equations we can solve to get

(fx+¢fz)gp_(gx+¢gz)fp 1(9(f.9) a(f.g9)
= =-—= —=0 . 7
wx T d)l/}Z fp9q—fq9p J {a(x,p) ¢ a(z,p)} ( )
o _ _1(¢f.9) 9(f.9)
Similarly , ¢, + ¥, = —= 2 LDy (Z,q)} ............... (8)

Thus, Equation (3) is integrable if or ¥, + ¢y, = ¢, + Y,

1 {a(f,g) +¢ a(f,g)} n l{a(f,g) + a(f,g)}

S prom ey Sulrd Fromn Sl d o

e | o) | 0 . 0a)
orlf.91= et Paem Taom T Toga — 0 e (9)
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and is the condition for the compatibility dfetequationsin (1) .
Summary: Given two equationg(x,y,z,p,q) =0 and g(x,y,z,p,q) =0,

verify condition (9) . Solve fop and g . Putp and g in
dz = pdx + qdy and solve .

Example 24: Show that equationsxp =yq, z(xp +yq) = 2xy are
compatible and solve them.

Sol: Let f=xp—yq=0 ,g=z(xp+yq)—2xy=0

00.9) _ 099 0509 _ _ _ _
Then Gep) — axap apax— PZX x(zp — 2y) = 2xy

0f.9) _
a(z,p)

2 0.9 _ _ 09 _ . o
px®—xXyq , S5 =T2Xy oS =XYP = qy

0t 0 aFg) . A9
Now [f, 91 =300 T Poem T oo T Yoca

= 2xy — p*x* — xypq — 2xy + xypq — q*y* =

Equations are compatible.

Solving given equationsp =~q and z(=q +yq) = 2xy

=>q=§ and p =2

Z

Putting these idz = pdx + qdy we have
dz = %dx +§dy or zdz = ydx + xdy

= zdz—d(xy)=0
Integrating, z% —2xy =c¢

1. Show that the equationsxp — yq = x, x?p + q = xz are compatible and
find their solution. Show that the equatien= px + qy is compatible with
any equation

2. f(x,y,z,p,q) = 0 that is homogeneous i)y, andz.

Solve completely the simultaneous equations
z=px +qy, 2xy(p* + q*) = z(yp + xq)
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Charpit's Method

Let the given partial differential equation be

f,v,z,p,9) =0 .ccoen.is (1)
We introduce another compatible differentail attpn
gx,v,z,p,q,a) =0 ............ (2)

and such thap and g can be solved to solved to get
p=pxyza),q=qxYyza)

andthat dz =p(x,y,z,a)dx + q(x,y,z a)dy
Is integrable. Sincg and g are compatible , we must have

_0wn 0@ | 0@ , @f) _
19:11= 6 T Paew Yoo T Toca

Orgxfp - gpfx + p(ngp - gpfz) + gyfq - gqu + Q(ngq - gqu) =0
or fpg_i + fq Z_f/ + (pfp + qu)gz - (fx + pfz)gp - (fy + CIfz)gq =0

and its subsidiary equations are

d_x_d_y_ dz _ dp _ dq
fo fq  phtafy  —(Uktpfs) —(fy+tafs)

.............. 3)

These equations, which are known as Charpit's eonsat

From (5) we can solve fop andq as functions of x,y,z,a and the
complete solution is found by solvingz = p(x,y,z,a)dx + q(x,y,z a)dy

It should be noted that not all of Charpit's equadi(3) need be used, but tipat
or g must occur in the solution obtained.

Example 25:Solvepx +qy =pq ..c.c........ (1)
Sol: Letf(x,y,z,p,q9) =px+qy—pq =0

then  fi=pfy=0L=0f=x—qf;=y—p.
Charpit's auxiliary equations are

dx _dy  dz _ —-dp __ dq
Ip fq pPfpt+afy fxtpf2 fy+Q'fz.
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d d d —-d —-d
> =2 - z =2 ... (2)
x-q y-p pE-Q)+q(y-p) p q
—-d d d d
from (2), we have —2=-2 722_-2
b q p q

on integration, we havéogp = logq + loga

= p=aq
putting value op in (1), we have(ax + y)q = aqg?

ax+y

=2q= o

therefore, p = ax + y.
The complete solution is given by the solution of
dz = pdx + qdy

ax +y
= dz = (ax + y)dx +

= adz = (ax + y)(adx + dy)

(ax+y)?

on integrating, we getaz = + b’

or 2az=(ax+y)*+2b' = (ax+y)*+b

Example 26:Find a complete integral gfcy + pg + qy = yz

Sol. Givenf(x,y,z,p,q) =pxy+pq+qy—yz=0 ...... (1)

> =0y, h=px+q—2z, f,=-y . [h=xy+q . fg=p+Yy
Charpit's Auxiliary equations are

ax _dy __ dz __ _dp _ _ dp
v o PG -G -Grea)
dx dy dz dp _ dq

r —_— = = —_———_—
(xy+q) (pt+ty) py+@+q@+y) 0 px+q)+qy

The fourth fraction givesip = 0 so thatp = a
Puttingp = a in (1), we haveaxy + aq + qy = yz
or qla+y)=y(z-—ax)
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_ y(z—ax)
(a+y)

or

Puting these values pfandq in dz = pdx + qdy, we get

dz=adx+wdy or dz —adx = Mdy
aty aty
d(z-ax) _y i _a
or zZ—ax - a+y dy o dy a+t+y dy

Integrating we get ,log (z—ax) =y —alog(a+y)+c
or log(z—ax)+log(a+y)*=y+c

or log(z—ax)(a+y)*=y+c

(z—ax)(a+y)* =e” = be”

Example 27:Solve z? = pgxy by Charpit's method .

Sol: We have f(x,y,z,p,q9) = pqxy —z*> =0
fe=pay . fy =pax ,f, = =2z ,f, = qxy , fq = Xy

Charpit's Auxiliary equations are :

E _ d_y _ dz _ dp _ dq
fr fq pfptafy -(fz+rf2) _(fy+CIfz)

dx dy dz dp dq

or = = = — = e (1)
qxy  pxy  pqxy+pqxy pqy—2zp pqx—2zq
. T 1 1 .
using multipliers0,0,0 oy each fractions of (1) are equal to
dp_dq
P _q 2
o (2)

using multipliersi ,—% ,0,0,0 each fractions of (1) are equal to
dx_dy

E 2, (3)

qy—px

Equating (2) and (3) we have

174



Chapter 9: Introduction to Partial Differential Eqtion

dp dq dy dx dp dx dy dq
———==—=—-—= o —+—=—+—
p q y X p X y q

Integrating we getlog p +log x =log y + log q +log a
> px=qya = p= %

2 2
Form given equation , we get z2 = 12X~

z z bz
= q=7-=5 where b =+a So thatp = —

Putting the value g andq in dz = pdx + qdy , we have

dz

bz z b 1
dZ—;dX-FEdy or 7—;dx+gdy

1
Integrating we getlogz = blogx + %logy + log ¢ = log xPysc

or z= cxby% which is required complete integral.

Example 28: Find complete integral of the equatiom + 3yq = 2(z — x2q?).
Sol: Given xp +3yq = 2(z—x%q?) ......... (1)
Let f(x,y,2,p,q) = xp + 3yq — 2(z — x*q*)

Then f, =p+4xq®, f, = 3q, f,= =2.,f, =x,f; =3y + 4x°q

Charpit’'s Subsidiary equations are

dx dy dz dp dq

x 3y+4x2q o px+3qy+4x2q?

T Tpaxq?+zp  —q
. . . d
First and last fractions glvexf =249

integrating gives log gx = loga = q ==

X

2(z-a®) 3ya

Substituting in Eq. (1) givep =

x2

Putting the value op and q in dz = pdx + qdy we have
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2
dz = [Z(Zxa ) _ 3ya] dx + %dy

xZ
orx?dz = 2x(z — a*)dx — 3aydx + axdy

or x?dz — 2x(z — a?)dx = —3aydx + axdy

= x*d (Z_az) = —3aydx + axdy

x2

(z—a2
x
Z—

= d 2)= y
= (%) =a(2)

x 3ay

dx

a
x x4

z—a?
2

Integrating, = i—33’ +b = z=a (a + %) + bx?

Example 29. Find a complete integral of the equation
pix+q*y=2z ..............

Sol: Charpit’s auxiliary equations are

dx dy dz dp dq

2px  2qy  2(p2x+q%y) p-p?  q—q2

N p?dx+2pxdp _ q*dy+2qydq
p2x  q%

d(p?x) _ d(q%y)
p2x q%y

wherea is a constant. Solving equations (1) and (2pfar, we have
1

1 1
b= {(1jZ)x}2’ 1= {(1+Za)y}2

Putting these values gbf and g we have

(2 dz = () dx + (2 ay

= (1 +@)z)2 = (@0)F +y2 + b
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Exercises

Find the complete integrals of the equations:

1. (@ +q*)y=qz

2. p=(z+qy)*

3. px® —4¢3x? + 6x%2—-2=0

4. 2(y +zq) = q(xp + yq)

5. 2(z+ xp + yq) = yp?

Special Types of First-order Equations

In this section we shall consider some special gypé first-order partial
gqigter:ggfial equations whose solutions may be iabth easily by Charpit's

(I) Equations Involving Only p and q.

For equations of the typegf(p,q) =0 ......... (1)

. : d d d d d
Charpit's equations reduce o =2=_2 2P d
fp  fq vhtafg O 0

An obvious solution of these equations ip = a

the corresponding value gfbeing obtained from (1) in the form

fla,q) =0

sothat ¢ = Q(a) a constant. The solution of the equation is the
z=ax+Q(a)y+b

whereb is a constant.

We have taken herdp = 0 . Sometimes it is easier to take = 0
and proceed in a similar way .

Example 29 Find a complete integral of the equatian= 1.
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In this caseQ(a) = 1/a, so that we see, from equation (4), that a cormaplet
integral is

Z=ax + % +b
which is equivalent to

a’x+y—az=c

wherea, c are arbitrary constants.

(1) Equations Not Involving the Independent Variables
If the partial differential equation is of the type

fzpg=0 ... (3)

Charpit's equations take the forms

dx _dy _ dz __dp _ dq
Ip fq pPfpt+afy —pfz —qfz

the last of which leads to the relatiop = aq ......... (4)

Solving (3) and (4), we obtain expressions fog from which a complete
integral of dz = pdx + qdy can be found .

Example 3Q Find a complete integral of the equatigriz? + g% = 1.
Puttingp = aq, we find that

1 1
q’(1+a?z®)=1,q=1+a?*2z%)72, p=a(l +a?z?)2
Hence

(1+ a?z®)*dz = adx + dy

which leads to the complete integral
1 t
az(1+ a?z)z — log [az +(1+ azzz)?] =2a(ax+y+b)

(1ll) Separable Equations.
If the partial differential equation can be weittin the form

fp)=9a) _ _
For such an equation Charpit's equations become
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dx _ dy dz __dp _ dq

Ip B —Ydq - Pfp—Aq9q B —fx —9y
so that we have an ordinary differential equation

dp fx _
=0

in x andp which may be solved to giye as a function ok and an arbitrary
constanu .

Hence we can determimg g from the relations
f,p)=a glv.q)=a

and solve the equatiodz = pdx + qdy .
Example 31:Solve the equaitop = xyp?
Sol: Th; given equation can be written as
xp? = "

Let xp?2=a and “=a

A ES]

Thenpz\/% and g = ay
Using the values gf andq in dz == pdx + qdy

We have dz = \/%dx + aydy

Integrating, we getz = Zx/E(x)% + ay?z +b
or 2z= 4Jax +ay?+2b or

16ax — (2z —ay? —2b)? =0

which is the complete integral.

Example 32:.Find a complete integral ofp?y(1 + x2) = gx?2.
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Sol. The given equation can be written as :

p*(1+x?) _q
x2 -

2 2
Let p(1+x):q 2

x2 ; =a
->p=-2 and g = a?
p Vi+x2’ q Y-

Puttingp andgq in dz = pdx + qdy Yyields

ax

V1+x2

dz = dx + a?ydy

2.,2
z=aVl+x2+=~+b
wherea andb are arbitrary constant .
Example 33:Solvep® + g3 =x+y. pP+qg3=x+y

Sol:Letp3—x=y—qg3=a

1
pP—x=a =>p>=x+a =2p=(x+a)3

1
andy—qg*>=a= ¢>*=y—a= q=(Qy—a)s

Now, dz = pdx + qdy
1 1
=>dz = (x+a):dx + (y —a)sdy

Integrating we get
4 4
:>z=%(x+a)§+%(y—a)§+b

(IV) Clairaut Equations.

A first-order partial differential equation is samwl be of Clairaut type if it can
be written in the formz = px + qy + f(p, q)

The corresponding Charpit equations becomes:
dx _ dy _ dz _d_p_d_q

x+fy  y+fy  px+qyipfytafy 0 0
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The last two fractions givep = a, q = b so that
z=ax+by+f(a,b) ........... (5) becomes the complete solution.

The singular solution of the given equation is fdlny eliminatinga , b from
0z

0z
5—0 ,5—0 and (5)
Example 34:Find the general and singular solution of

z=px+qy+p*+q*
Sol: The equation is of Clairaut's form therefore itsnptete solution is given
by
z=ax+by+a*+b% ................ (1)

Differtiating (1) partially with respect te andb we get

0z 0z
a—x+2a and£—y+2b
0z X
Now —=0=>a=—-=
da 2

9
and Z=0=>p=-2
b 2

Using these values afandb in (1) we get

x?  y?  x%  x? C . . .
z=———>+ -+ which is the required singular solution .

Exercises

l.p+tq=pq

2. z=p?—q*

3. p?q(x*+y*) =p* +q

4. quZ +x2y2 — x2q2(x2 +y2)

Z=p2—q2
p(1+q)=qz

o O
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7.p°+q*=x+y

8. zpq = p*(xq +p*) + q*(yp + q*)
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