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Preface 
 

The book is designed to cover a certain portion of Advanced Algebra in the 
Under Graduate courses of different Indian Universities.  This book contains a  
number of solved examples  and  exercises to give students a chance to work on 
their own.  An attempt has been made to present the subject in a clear, lucid and 
intelligible manner. 
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Chapter- 1 
 

Revision of Operations on Numbers System 
 
 
Introduction 
  
In this chapter  we shall take a quick look of some operations on real numbers 
without detailing the classification that is supposed to have been covered in 
lower standards .  
 
Operations on real numbers include addition, subtraction, multiplication, and 
division. These operations follow certain rules that are fundamental to 
arithmetic: 
 

--------------------------------------------------------------------------------------- 
 
#1.1: Let’s now take a look at the usual properties followed by addition and 
multiplication in the set of real numbers 
 

● Commutative property: The order of numbers can be changed without 
affecting the result. 

� + � = � + �	  
� × � = � × �      
                      

● Associative property: The grouping of numbers can be changed without 
affecting the result. 

(� + �) + 	 = � + (� + 	)� + (� + 	)    
(� × �) × 	 = � × (� × 	)    
 

● Distributive property:  Multiplication distributes over addition. 

� × (� + 	) = � × � + � × 	        ( left) 

(� + �) × 	 = � × 	 + � × 	         ( right) 
 

● Identity elements: There exist additive identity element “′0′ and 
multiplicative identity element  ′1′ with the property :  

Additive identity:	� + 0 = 0 + �	 = � 

Multiplicative identity: � × 1 = 	1 × � = � 
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● Inverse elements: Additive and multiplicative inverses exist for each 
number. 

Additive inverse: � + (−�) = (−�) + � = 0 

Multiplicative inverse (for non-zero numbers  ′�′): � × �
� = �

� × � = 1  

 
● Closure Property: 

That (� + �) ∈ �		∀		�	, �	 ∈ �	  and  

�� ∈ �		∀	�, � ∈ � 
 
--------------------------------------------------------------------------------- 

 
#1.2: Cartisian Product 
 
For any two sets  �  abd  � ,  we defined the cartisian product  or  cross product 
as  � × � = {	(�, �):		�	 ∈ �		, �	 ∈ �	} the cross product of   �  with itself is 
understood and  � × �  will also be denoted by  �� .  
 
#1.3: Relation 
 
Definition:   A relation  �  from a set �  to another set �  is a rule that associates  
elements of   �  ( not necessarily each elements of  A)  with elements of  �. 
 
If   an  element �	 ∈ �   is  associated to an element   � ∈ � , we say that  ′�	  is 
related to  �′  and  write  ′���′.     
 
If 	′���′   we call an element ′�′  an image of  ′�′  and  ′�′  is the pre-image of  ′�′.  
 
The set �  is called the domain and the set �  is called the co-domain of  R.  
 
Eg. Let  � = {	�	, �	, 	, �	}			,			� = {	1, 2, 3, 4, 5	}. Let R be a relation that relates  

�			� 		1	, �			� 		2		, 				� 		5     i.e  ��1	, ��2	, 	�5 .  
 
This relation R can also be view as a set of  ordered pairs   i.e   
 � = {(�, 1)	, (�, 2)	, (	, 5)	}  which is essentially a subset of  �	 × �  .  

In view of the above example , we can also define  a relation from a set �  to 

another set �  as a subset  of  � × �.   
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Range of a relation 
    
Let � be a relation from a set  �  to a set  � . The range of  �   is defined as  the 
set of  elements of  �  which has some pre-images in  �.  
 
Range(�) = {	! ∈ �	 ∶ #�!		$ %	& '(		# ∈ 		�	}	.  
 
Equivalently , The range of  �   is defined as  the set of all the first co-ordinates 
of � ,when �  is viewed as a subset of � × � .  
 
Binary Relation: A relation �  from a set �  to  itself is called a binary relation 
on � .  
 
Type of Binary relations:  Reflexive , Symmetric , Transitive and Equivalence   
 

• Reflexive: A  binary relation � on �  is said tobe reflexive if   ∀	� ∈ 		� ⇒ 	 (�, �) ∈ �			     
 

• Symmetric: A  binary relation � on �  is said tobe Symmetric if   (�, �) ∈ 		� ⇒ (�, �) ∈ �	 
 

• Transitive: A  binary relation � on �  is said tobe transitive if   (�, �), (�, 	) ∈ �	 ⇒ 		 (�. 	) ∈ � 
 

• A  binary relation � on �  is called an Equivalence relation if it is 
reflexive, symmetric, and transitive  .  

 
--------------------------------------------------------------------------------- 

 
#1.4: Divisibility in the set of Integers 
 
Another Peculiar operation is the divisibility  in the set of integers ( denoted by +	) and the set of natural numbers ( denoted by , ) which is of more interest  
later in this book .  
 
We recall that if  for three integers   �, �	, 	   satisfying  �� = 	    then   ′�′		�-�		′�′  are called the factors of   ′		′    and   	  is called a 
multiple  of  �	  and  � . 
 
The above statement is also synonymous to saying that: "	�	 divides 		"  tobe denoted as  "	�|		"	       ,    "	�		�010�(&			"		tobe denoted as  "	�|		"	  keeping in mind that the divisor should not be  "0"  .  



Chapter 1: Revision of Operations on Numbers System 

4 

It is also tobe noted  that given two integers   �  and  	  , we shall not always 
have �� = 	   with  & '( integer  � . We will briefly state below another 
concept  namely –  “The division algorithm” which  is a fundamental concept 
in arithmetic that defines how to perform division of integers and obtain both a  
quotient and a remainder, skipping aside the details definition of divisor , 
dividend ,quotient  and remainder.  
 
The division algorithm: for any integer, -, and any positive integer,   ',  there 
exists  unique  integers 2 and %	such that   -	 = 	'2	 + 	%  where 0 ≤ % < ' . 
 
Eg.      10 = 8 × 1 + 2  
Euclid’s Lemma: If  6	  is a prime  and  6	|	��   then   6	|	�	 %	6	|	� . 
 
#1.5: Arithmetic modulo		7 
  
We define what it means to take one integer  ', modulo another integer, -. 
 
Definition:  Letting - ≥ 1	, - ∈ ,	,  
"'	(mod -)" is the smallest integer %		where 0 ≤ % < -		 
 such that '	 = 	-2	 + 	%  for some integer 2. 
 
i.e     9	(mod 7) = : ⇔ 9 = 7< + :		, = ≤ : < - 

Notice that >	9	(9?@	7)A(9?@	7) = :	(9?@	7) = :        as   0 ≤ % < -  

                                                          = 9	(9?@	7) 
 
#1.6: Congruence Modulo  7 
 
For  - ≥ 1 ,  �, �	 ∈ 		+ , we say that �  is congruent to  �  modulo -  ( written 
as  � ≡ �	(mod -)  )   if -|(� − �)   or   -|(� − �)			 
 
Some properties of Congruence Modulo  7	 
 
(i) It can be seen that  -|(� − �) ⇒ n|D� − D�	  

i.e    E ≡ F	(mod 7) ⇒ GE ≡ GF	(9?@	7)    
 
 
 

(ii)   Also  we can see that -|(� − �)    ⇒ -|(� − �)H   

and as (� − �)H = �H − �H + (	�	'IJ�06J(	 $	-) 
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we have -|�� − �� ⇒ -|�H − �H  

       i.e 	E ≡ F	�mod 7� ⇒ E7 ≡ F7	�9?@	7�    
 
(iii)  If  # ≡ !	�' �	-�  and  � ≡ �	�' �	-�   
         then  -|�# − !�  and  -|	�� − ��  
        ⇒ -|�# + �� − �! + ��  
        ⇒ �# + �� ≡ �! + ���' �	-�  
 
(iv) Transitive property  :  If  � ≡ �	�' �	-	�  and  � ≡ 		�' �	-	�   
       Then  -|�� − ��  and  -|�� − 	�  
       ⇒ -		�	� − � + � − 	�   i.e  -|�� − 	� 
       ⇒ 		� ≡ 		�	' �	-� 
       
#1.7:  Fermat's Little Theorem 
 
 If K is a prime number and E is an integer not divisible by K  then  EKLM ≡M	9?@		K  this theorem can also be stated as  
 
If K is a prime number and E is an integer not divisible by K  then the remainder 
when �NL� is divided by  6  is  1.  
 
#1.8: Congruence classes Modulo  7  
 
Let  +  be the set of integers  and  -  a positive integer .  
 
We define a relation on + as   "�	 is related to �	"   if and only if � ≡ �  (mod -).   
 
We leave to the reader to verify that  this relation is an euivalence relation on  +.  
 
Further , Let O�P		  be the set of all integers that are congruent to �  modulo - .  
            i.e  O�P = {	# ∈ + ∶ 		# ≡ �	�' �	-	�	}   
 
Then the set of integers will give rise to  the set of residue classes  of the form  Q = 	 O P	, O1P	, O2P,…… . O- − 1P. O-P	, O- + 1P,….    
 
We shall show the equality of these sets in the theorem below.  
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Theorem:    OEP = OFP ⇔ E ≡ F	�9?@	7�  
Suppose  O�P = O�P  
we have  � ≡ �	�' �	-� ⇒ 		� ∈ O�P ⇒ � ∈ O�P   as  O�P = O�P   
But  � ∈ O�P ⇒ � ≡ �	�	' �	-	�     
Conversely  , Suppose   � ≡ �	�	' �	-	�     
Let # ∈ O�P  ⇒ # ≡ ��' �	-�    
and since  � ≡ �	�' �	-� 
We have  # ≡ �	�' �	-�  ⇒ # ∈ O�P   
Showing that  O�P ⊆ O�P  
We can similarly show that  O�P ⊆ O�P   so that  O�P = O�P 
 
Using this theorem we can deduce that for a fixed positive integer  	- , the 
residue classes modulo -  are  O0P, O1P, O2P, O3P, …… . O- − 2P, O- − 1P  , any from 
the rest are equal to  one of these . 
 
#1.9: Addition modulo 7  
 
For a positive integer - , Addition modulo - , denoted as ��+H��, or "�� +��' �	-	"	 is a mathematical operation  that calculates the remainder when the 
sum of two integers � and � is divided by -.  
 
Given two integers � and �, the sum �� + �� is calculated first in the usual way. 
Then, the result is reduced modulo - by taking the remainder of �� + �� when 
divided by -. 
 
i.e  ��+H�� = �� + ��	�' �	-� = (least non-negetive integer when �� + ��  is 
divided by - . 
 
Properties of modular addition 
 
(1) Closure: For any integers � and �,  

   �� + ��mod	-  is also an integer  and  
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(2)  (i)  Distributive property   

               �E + F��WXY	7� = >E	�WXY	7� + F	�WXY	7�A	�WXY	7� 
         Proof:  Let  � = 2�- + %�		, � = 2�- + %�   where 0 ≤ %�, %� < -  

         Then    ��' �	-� = %�  ,  ��' �	-� = %� 

          R.H.S = >�	�mod	-� + �	�mod	-�A	�mod	-� = �%� + %��	�' �	-� 
                     =	(Least non-negetive integer when �%� + %�� is divided by - ) . 

            L.H.S = �� + ���mod	-� = >�2� + 2��- + �%� + %��A�' �	-	�	  
                     =	(Least non-negetive integer when �2� + 2��- + �%� + %�� is 

divided by - ) =	�Least	non − negetive	integer	when	�%� + %��	is	divided	by	-	�	. 
                     Thus g. h. Q = �. h. Q 
 
        (ii) �	E�9?@	7� + F�	�	9?@	7� = �E + F��9?@	7�  
              
Proof:      Let  � = 2�- + %�		, � = 2�- + %�   where 0 ≤ %�, %� < -  

Then ��' �	-� = %�  ,  ��' �	-� = %� 

Now      �	��' �	-� + ��	�	' �	-� = �%��' �	-� + ���' �	-� 
                = �%� + ��	�' �	-�            as  0 ≤ %� < - ⇒ %��' �	-� = %� 

                = >%��' �	-� + �	�' �	-�A	�' �	-�       using  (i) 

                = �%� + %���' �	-� 
    And  �� + ���' �	-� = >�	�' �	-� + ��' �	-�A	�	' �	-�   using  (i) 

                                  �%� + %��	�	' �	-�  
Thus  �	E�9?@	7� + F�	�	9?@	7� = �E + F��9?@	7� 
(3) Associativity: For any integers �	, � and 	 ,  �E+7F�+7i = E+7�F+7i� 

or >�E + F��9?@	7� + iA	�9?@	7� = >	E + �	F + i��9?@	7�A�9?@	7� 
  Proof:  Using the previous property , 

             j.k. l = m.k. l = �E + F + i��9?@	7� 
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 (4) Commutativity:  ��+H�� = ��+H��. 
             Proof  is trivial .  
 
 (5)  Identity Element: The identity element for addition modulo - is 0.  

That is,  �� + 0�	�' �	-� = �	�' �  -�	 
 

 (6) Inverse Element: Every integer � modulo - has an inverse modulo -, 
denoted −�, such that >� + �−��A�' �	-� = 0	 

 
In a similar way we can define   
 
#1.10: Multiplication modulo 7 
 ��(- �(�	�!		� ×H �				 %			���' �	-�	�    �� ×H �� = %  where  %  ( least non-negetive integer when ��  is divided by -  
and the following properties follows : 
 
Properties of Multiplication Modulo  7 
 
   (1)  Closure: For any integers � and �,  

   �����mod	-�  is also an integer. 
 

   (2) Commutativity: �� ×H �� = �� ×H ��   or   ��	�' �	-� = ��	�' �	-� 
 
   (3)  Distributive property 
        ����	�	' �	-	� = o	>�	�' �	-�A>�	�' �	-�Ap	�	' �	-�          
     Proof: Let � = '�- + %�	,			� = '�- + %�   where  0 ≤ %�, %� < - 

      Therefore ��' �	-� = %�			, �	�' �	-� = %�  

      �.h. Q = %�%�	�' �	-� 
    		g. h. Q = >�	'�'�- +'�%� +'�%��- + %�%�A�' �	-�	 
               = >�	'�'�- +'�%� +'�%��-�' �	-� + %�%�	�	' �	-�A�' �	-�		  

(using didstributive property for addition modulo )  

               = �0 + %�%��	�' �	-� = %�%�	�' �	-� = �.h. Q 

               
  (4)   Associativity: For any integers �	, � and 	 ,  

 �E ×7 F� ×7 i = E ×7 �F ×7 i�    
or   
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>		>EF	�9?@	7�A × iA	�	9?@	7� = q	E × >Fi�	9?@	7�Ar	�9?@	7� 
Proof: Letting   E	�9?@	7� = :M	, F	�9?@	7� = :s		, i	�9?@	7� = :t 

and  using the previous property we shall have  

 j.k. l = m.k. l = �	:M:s:t��9?@	7�  
 

   (5)  Identity Element: The identity element for addition modulo - is 1.  
That is,  � ×7 1 = 1 ×H �     
 

#1.11: Euler’s Phi function 
 
 �u�-�:		6 &0�01(	0-�(v(%	-	� 
Euler's phi function, denoted as u�-�, is a function that counts the number of 
integers up to 7 that are relatively prime to 7. In other words, u�-� gives the 
count of integers G such that 1 ≤ D ≤ - and v	��D, -�	= 1, where gcd denotes 
the greatest common divisor. 
 
Some key properties of Euler's phi function include: 

• If 6 is a prime number, then  u�6� = 6 − 1. 
• u�6w� 	= 	6w 	− 	6{wL�} for any prime 6 and integer  D ≥ 1. 
• u is multiplicative, meaning if  gcd�', -� = 1, then u�'-� = u�'� ⋅u�-�  

 
#1.12: Euler's generalization of Fermat's Little Theorem 
  
Euler's generalization of Fermat's Little Theorem extends the concept to any 
integer E coprime to   7, where 7 is not necessarily a prime number.  
 
Euler's theorem states that 

• If E and 7 are coprime integers, then 	�y�H� ≡ 1�' �	-� 
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Chapter- 2 
 

Matrices and Determinant 
 
 
Introduction 
 
The theory of matrices is a fundamental area of mathematics that deals with the 
study of matrices, which are rectangular arrays of numbers (or elements) 
arranged in rows and columns. Matrices are extensively used in various 
branches of mathematics, as well as in physics, engineering, computer science, 
and economics, among other fields.  
 
#2.1: Definition 
 
A matrix is an arrangement of ′' × -z	numbers in ' horizontal  lines  called 
Rows  and   - vertical lines  called columns and enclosed by brackets or 
parenthesis. 
 
A matrix having ' rows and   -  columns is said tobe of order '× - .  
Matrices are denoted by capital letters.  
 
An entry of a matrix lying in the 0{| row and }{| column is denoted by ′	�~�′ .  
 
#2.2: Representation of a matrix  
 
A matrix of order ' × -  of the form 
  

 � = ���� ⋯ ��H⋮ ⋱ ⋮��� ⋯ ��H�  will be   denoted as   � = >�~�A�×H  

 
#2.3: Types of Matrices 
 
1. Row Matrix:  A row matrix has a single row and multiple columns. It is of 

order 1 × -, where - is the number of columns.  eg. � = O1			3			7			9P    
Row Matrix are also called Row Vector.  
 

2. Column Matrix:  A column matrix has a single column and multiple rows.  
It is or order ' × 1, where ' is the number of rows. 
Column Matrix are also  called  Column Vectors.  
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3. Square Matrix: A square matrix has an equal number of rows and columns.  
     It is of order - × - . 
 
4. Diagonal Matrix : A diagonal matrix is a square matrix where all elements 

except those on the main diagonal (top-left to bottom-right) are zero. 
Equivalently, diagonal matrix is a matrix of the form 
 

  � = >�~�AH×H  where  �~� = 0			if		0 ≠ }                Eg. � = �1 0 00 5 00 0 9�  ,  

 
5. Scalar Matrix:  A scalar matrix is a diagonal matrix where all elements 

except those on the main diagonal (top-left to bottom-right) are zero and all 
entries on the main diagonal are equal.  Equivalently , a scalar matrix is a 
matrix of the form 
 
  � = >�~�AH×H  where  �~� = 0			if		0 ≠ }	�-�	�~~ = ���        
 

Eg. � = �3 0 00 3 00 0 3� 

 
6. Identity Matrix:  An identity matrix is a diagonal matrix where all elements 

except those  on the main diagonal (top-left to bottom-right) are zero and all 
entries on the main diagonal are equal to 1. 
 

Eg. � = �1 0 00 1 00 0 1� 

 
An identity matrix of order 7 × 7  will be denoted by �H.  

 
7. Zero Matrix: A zero matrix has all its elements as zero.  

 
8. Upper Triangular Matrix:  An upper triangular matrix has all its elements 

below the main diagonal equal to zero. Equivalently , upper triangular matrix 
is a matrix of the form 

  � = >�~�AH×H  where  �~� = 0			if		0 > }      Eg. � = �1 3 10 4 20 0 6� 

 

9. Lower Triangular Matrix:  A lower triangular matrix has all its elements 
above the main diagonal equal to zero. Equivalently, a lower triangular 
matrix is a matrix of the form 
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  � = >�~�AH×H  where  �~� = 0			if		0 < }                   Eg. � = �1 0 02 4 06 3 6�  

 
Equality of two matrices 
Two matrices are said tobe equal if they are of same order and the 
corresponding entries are equal.  
 
i.e if � = >�~�A�×H		, � = >�~�A�×H  then � = � ⇔ �~� = �~� 		∀		0, } = 1	� 	-   

 
#2.4: Operations on Matrices 
 
1. Scalar Multiplication:   If � = >�~�A�×H			 is a matrix and  ' a scalar , then '�  is a matrix or order ' × -  given by '� = >'�~�A�×H  

 In	other	words	 , if a matrix is multiplied by a scalar , all entries of the 
matrix is tobe multiplied by that scalar.  

 
2. Addition:  Given two matrices � and � of dimensions  '× -, the sum � + � is also an ' × - matrix where each element �� + �� is obtained by 

adding the corresponding elements of � and � . 
 
 i.e  if � = >�~�A�×H		, � = >�~�A�×H    then  �� + �� = �   where   � = >	~�A�×H  and  	~� = �~� + �~�  
 
It is easy to see that   �� + �� = �� + ��   for any two matrices  �		, �  that 
are conformable for  addition.  

 
Subtraction of two matrices are similarly defined.  

 
3. Matrix Transposition:   Let   � = >�~�A�×H			 be a matrix . The transpose of �  is the matrix of order - × '		,	obtained by changing the rows of �  into 

columns or vice versa  and is denoted by  �z		 %		�{  .  
 
Thus �z = >	~�AH×�  where  	~� = ��~ .  

 
We leave to the readers to verify the property that  

• �� ± ��z = �z ±�z 
• �G��z = G�′  

 
--------------------------------------------------------------------------------- 
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Definition:  A square  matrix �	is said tobe symmetric  if  �z = �  and  
skew-symmetric if  �z = −� .  
 
Note that a square matrix � = >�~�A   is symmetric if   �~� = ��~    
and skew symmetric  if  �~� = −��~ 	, �~~ = 0   
 

Example:  The matrix  � = �0 1 21 3 42 4 7�   is   symmetric.  

 

                    and  � = �			0 			1 −2−1 		0 −4				2 		4 			0�   is   skew-symmetric. 

 
Definition:  The matrix obtained by replacing each element by its conjugate 
complex number of a given matrix �, is called the conjugate of � and is denoted 
by �̅. 
 

Example:   If  � = � 1 + 0 13 − 20 50�   then  �̅ = � 1 − 0 						13 + 20 			−50�    
 
Definition:   The  transpose of a conjugate matrix � is called a tranjugate matrix 
of � and is denoted by �∗. 
 

Example:   If  � = � 1 + 0 13 − 20 50�   then  �∗ = �1 − 0 						3 + 201 			−50 �   
   
Definition:   A square matrix � = ��~�� is called a  Hermitian matrix   if   �∗ = �. 
 
Thus � = >�~�A	 is hermitian matrix if �~� = �‾�~ 		∀		0 and 	}.  and  �~~  are real 
numbers .  

Example:     � =	 � 3 3 − 0 03 + 0 1 50−0 −50 0 �  is Hermitian.  

 
Definition :  A square matrix � = ��~�� is said to be a skew hermitian matrix 
         if �∗ = −�   Thus � is skew hermitian if 	�~~ = −�������		∀		0, }   
 
       and �~~ = 0		 %		�~~  is purely imaginary .    
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Example:  A= � 0 2 + 0 −5 + 20−2 + 0 0 305 + 20 30 0 �   is skew-hermitian. 

  
Definition:  A square matrix � is called an orthogonal matrix, if �z� = ��z = � 
Definition: A square matrix � is called a unitary matrix if ��∗ = �∗� = I. 
 
4. Matrix Multiplication:  Two matrices  �  and  �  are conformable to form 

the product  ��  if the number of columns of   �  ( the first matrix )  is equal  
to the number of  rows of �	. 
 

If � = >�~�A�×H		, � = >�~�AH×N    then  ��  is  a matrix of order  ' × 6  given 

by �� = �   where   � = >	~�A�×N  and  	~� = ∑ �~w�w�Hw��   

 

Example:  If  � = q� �	 �r		 , � = q6 2% &r		 
 

Then  �� =  �6 + �% �2 + �&	6 + �% 	2 + �&¡  

 ¢£¤X¥¤W:  If � and  �  are two matrices where ��  exists   then     ����z =�′�′  . 
 
Proof: Let  � = >�~�A�×H			, � = >�~�AH×N  so that     �′ = >%~�AH×�			, �′ = >&~�AN×H  

 
where  %~� = ��~ 			,			&~� = ��~  
 
Now  �� = >	~�A�×N  and  	~� = ∑ �~w�w�Hw��  

 ⇒ ����z =	>#~�AN×�	  where #~� = 	�~ = ∑ ��w�w~Hw��        ------------(1) 

Also ��z�z� = >!~�AN×�	   where !~� = ∑ &~w%w�Hw��  

But &~w = �w~  and  %w� = ��w  
 
Therefore ,   !~� = ∑ &~w%w�Hw�� = ∑ �w~��wHw�� = ∑ ��w�w~Hw��                  ------------------(2) 

From (1)  and (2)   we conclude   ����z = �′�′ . 
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Theorem 2.01:  Matrix multiplication is associative, i.e  if  �, �, �  are three 
matrices where the    products  �����  and  �����   exist,  then  ����� =����� . 
 
Proof  
    
We take  � = >�~�A�×H		, � = >�~�AH×N	, � = >	~�AN×¦ ,  �� = >§~�A�×N		,			 
                 �� = > ~̈�AH×¦ 		  ,  ����� = >#~�A�×¦ 	, ����� = >!~�A�×¦  

 
Then by definition  we have §~� = ∑ �~w�w�Hw�� 	    ,  ̈ ~� = ∑ �~w	w�N�w���   
 
Now  #~� = ∑ §~w	w� =Nw�� ∑ �∑ �~©�©wH©�� �		w� =Nw�� 	∑ ∑ �~©�©wH©�� 	w�Nw��  
 
          !~� = ∑ �~w¨w� =Hw�� ∑ �~w>∑ �w©	©�N©�� A =Hw�� 	∑ ∑ �~w�w©	©�N©��Hw��   
 
                            = ∑ ∑ �~w�w©	©�Hw��N©�� = #~�   
 
Showing that ����� = ����� .  
 
5. Matrix Inversion:  Let  � be a  square matrix  of order - .  Then �  is said 

tobe  invertible if there exists  another  square matrix   �  of same order such 
that    �� = �� = �H 

 
The matrix  �  is called  inverse of �  then �  is the inverse  of  �   and we 
write �L� = �		,			�L� = �  .  

Example: If � = q1 22 1r   then �L� = ª− �« 			�«				�« − �«¬.  

Verify that  ��L� = �L�� = ��  
 
Theorem 2.02: (Uniqueness of Inverse ): If �  is invertible then the inverse is 
unique .  
 
Proof: Suppose � and �  are two inverses of � .  
 
Then  �� = �� = �  and   �� = �� = �  
 
Now � = �� = ����� = ����� = �� = �  . 
 
Theorem 2.03: If �  and  �  are two invertible matrices of same order   then  ����  is also invertible   and   ����L� = �L��L�  .  
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Proof:  We have   ������L��L�� = ����L���L� = ���L� = ��L� = � 
  ⇒		 ����L� = �L��L� 
 
Definition: Two matrices �	and � are said to commute if  �� = ��. 
 
If  �� = −��, the matrices �	and � are said to anti-commute. 
 
Positive Integral powers of a square matrix 
 
Let � be a square matrix. Then we can write �­ = �, �� = �, �� = ��, �« =���. 
 
Similarly, �H = ��……�	�- −times �, and ���w = ��®w; 	����H = ��H, 
where ',-	and D are any positive integers.  
 
Definition:   A square matrix � is said to be nilpotent of index -	 if -	 is the 
least positive integer such that �H = 0 ( the zero matrix ) .  
   

Example: � = �0 04 0�    

 

                 ⇒ �� = �0 04 0� �0 04 0� = �0 00 0� = 0  

 
Therefore  �  is nilpotent of index  2.  
 

Example : � = � 1 1 35 2 6−2 −1 −3� is nilpotent of index 3    ( verify ) 

 
Definition:   A square matrix � is said idempotent  if   �� = � . 
 

Example: Show that  the matrix � 2 −2 −4−1 3 41 −2 −3� is idempotent .  

 

Ans :  � = � 2 −2 −4−1 3 41 −2 −3�. 
 

  A� = � 2 −2 −4−1 3 41 −2 −3� �
2 −2 −4−1 3 41 −2 −3�  



Chapter 2: Matrices and Determinant 

17 

= � 4 + 2 − 4 −4 − 6 + 8 −8 − 8 + 12−2 − 3 + 4 2 + 9 − 8 4 + 12 + 4 − 122 + 2 − 3 −2 + 6 − 6 −4 − 8 + 9 �  
 

= � 2 −2 −4−1 3 41 −2 −3� = A  

 
Therefore the given matrix is an idempotent matrix. 
 
Definition: A square matrix � such that �� = � is called an Involutory matrix.  
  

Eg: � = �−5 −8 03 5 01 2 −1� is involutory. 

 
Example: Show that A is involutory if and only if �� + ���� − �� = 0. 
 
Solution:  Let A be an involutory matrix. Then �� = I. ⇒ � − �� = 0   ⇒ �� − �� = 0       ⇒ �� + ���� − �� = 0 

Conversely, if �� + ���� − �� = 0    ⇒ �� − �� + �� − �� = 0  ⇒ � − � + � − �� = 0  ⇒ � − �� = 0 

Thus, �� = I. 
 
Example: If �� = � and �� = �, show that A and B are idempotent. 
Solution: Given, �� = � 
  ⇒ ����� = � O∵ �� = �P  
  ⇒ ����� = � 

  ⇒ �� = � O∵ �� = �P 
  ⇒ �� = � 

  ⇒ � is idempotent. 

Also, 		�� = � 
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  ⇒ ����� = � O∵ �� = �P  
  ⇒ ����� = � 

  ⇒ �� = � O∵ �� = �P 
  ⇒ �� = � 

  ⇒ � is idempotent. 

Example: If B is an idempotent matrix, show that � = � − � is also idempotent 
and that �� = �� = 0. 

Solution: Since B is an idempotent matrix, �� = �. 
 
 Now, �� = �� − ��� = �� − ���� − �� = � − �� − �� + ��  = � − � − � + �� O∵ �� = �� = �P = � − � − � + � O∵ �� = �. P = � − � 				O∵ −� + � = 0. P = � 
 
  ⇒ �� = �, hence � is idempotent. 
 
  Now, �� = �� − ��� = �� − �� = � − �� = � − � = 0. 

  Similarly, �� = ��� − �� = �� − �� = � − �� = � − � = 0. 
 
6. Elementary Operations/Transformation: Elementary operations on 

matrices are a set of three fundamental operations that can be performed 
without changing the fundamental properties of the matrix.  

 
The three elementary Rows operations on matrices are 

 
• Row Interchange: Swap two rows of the matrix. 
    The operation when an 0{|  row is  interchanged  with the 0{|  row will be 

denoted by  �~ ↔ �� 
 

• Row Scaling: Multiply all elements of a row say 0{| row  by a nonzero 
scalar D  will be denoted by 

    �~ → D�~  
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• Row Replacement: Replacing  one row ( say 0{| row )  of the matrix 
with the sum or difference of itself and   a multiple  of another row  say }{| row   is denoted by  �~ → �~ ± D��  . 
 

The Elementary column operations are similarly defined.  
 

• Note: If an elementary operation is applied to the product �� of two 
matrices. It is applied to the first matrix �  only.  

 
Method to find Inverse using elementary operations:  
 
Given a square matrix �  , 
 
We write        � = ��  ………….(1) 
 
Apply a series of elementary operations  both side of (1)  ( keeping in mind that  
in the right hand side , operations are applicable to the first matrix ) until the left 
hand side becomes identity matrix.  
 
i.e  until equation  (1) is of the form  � = �� .  
 
The matrix �  is then the inverse of � .  
 
The above steps is also same as these steps below: 
 
Augment the matrix: Form an augmented matrix with the given matrix � on 
the left and the identity matrix � of the same size on the right. For example, if � 
is a 3 × 3 matrix, you   form O� ∣ �«P. 
 
Perform row operations: Apply a series of elementary row operations to 
transform the left part of the augmented matrix � into the identity matrix �. 
These operations are: 
 

• Swapping two rows. 
• Multiplying a row by a non-zero scalar. 
• Adding or subtracting a multiple of one row to another row. 

 
Achieve the form Oµ ∣ �P: Once the left part of the augmented matrix is the 
identity matrix, the right part of the augmented matrix will be the inverse of �, 
denoted as �L�. 
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Example: Find the inverse of the matrix 
 

� = ¶−1 −3 3 −11 1 −1 02 −5 2 −3−1 1 0 1·  
 
Sol. Let    � = I�  
 

⇒ ¶−1 −3 3 −11 1 −1 02 −5 2 −3−1 1 0 1· = ¶1 0 0 00 1 0 00 0 1 00 0 0 1·�  

 
Applying �� → �� + ��, �« → �« + 2��, �¸ → �¸ − ��, we get 
 

¶−1 −3 3 −10 −2 2 −10 −11 8 −50 4 −3 2 · = ¶ 1 0 0 01 1 0 02 0 1 0−1 0 0 1·�  

 

Applying  �� → − ���� we get  

 

¶−1 −3 3 −10 1 −1 1/20 −11 8 −50 4 −3 2 · = º»»
¼ 1 0 0 0− �� − �� 0 02 0 1 0−1 0 0 1½¾

¾¿ �  

 
Applying  �« → �« + 11��, �¸ → �¸ − 4�� we get  
 

¶−1 −3 3 −10 1 −1 1/20 0 −3 1/20 0 1 0 · = ¶ 1 0 0 0−1/2 −1/2 0 0−7/2 −11/2 1 01 2 0 1· �  

 
Applying  �« ↔ �¸  we get  
 

¶−1 −3 3 −10 1 −1 1/20 0 1 00 0 −3 1/2· = º»
»¼ 1 0 0 0−1/2 −1/2 0 01 2 0 1− À� − ��� 1 0½¾

¾¿ �  
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Applying   �¸ → 2�¸   we get   
 

¶−1 −3 3 −10 1 −1 1/20 0 1 00 0 −6 1 · = ¶ 1 0 0 0−1/2 −1/2 0 01 2 0 1−7 −11 2 0·  
 
Applying �¸ → �¸ + 6�«, we get 
 

¶−1 −3 3 −10 1 −1 1/20 0 1 00 0 0 1 · = ¶ 1 0 0 0−1/2 −1/2 0 01 2 0 1−1 1 2 6·�  

 
Applying  �� → �� + �«  we get  
 

¶−1 −3 3 −10 1 0 1/20 0 1 00 0 0 1 · = ¶ 1 0 0 01/2 3/2 0 11 2 0 1−1 1 2 6· �  

 

Applying  �� → �� − ���¸  we get  

 

¶−1 −3 3 −10 1 0 00 0 1 00 0 0 1 · = ¶ 1 0 0 01 1 −1 −21 2 0 1−1 1 2 6 ·�  

 
Applying �� → �� + 3��, we get 
 

¶−1 0 3 −10 1 0 00 0 1 00 0 0 1 · = ¶ 4 3 −3 −61 1 −1 −21 2 0 1−1 1 2 6 · �  

 
Applying �� → �� − 3�«, we obtain 
 

¶−1 0 0 −10 1 0 00 0 1 00 0 0 1 · = ¶ 1 −3 −3 −91 1 −1 −21 2 0 1−1 1 2 6 ·�  
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Applying �� → �� + �¸ 
 

¶−1 0 0 00 1 0 00 0 1 00 0 0 1· = ¶ 0 −2 −1 −31 1 −1 −21 2 0 1−1 1 2 6 · �  

 
Applying  �� → �−1��� we get  
 

¶1 0 0 00 1 0 00 0 1 00 0 0 1· = ¶ 0 2 1 31 1 −1 −21 2 0 1−1 1 2 6 ·�  

 

Therefore   �L� = ¶ 0 2 1 31 1 −1 −21 2 0 1−1 1 2 6 · 
 
We show below a similar  example  using the second method mentioned. 
 

Example : Let  � = �1 1 00 2 10 1 2� . Calculate �L� 

 
Ans: The  augment the matrix with the identity matrix: 
 

�1 1 0 1 0 00 2 1 0 1 00 1 2 0 0 1� 
 

Divide row 2 by 2 : �� = ÁÂ� . 

 

¶1 1 0 1 0 00 1 12 0 12 00 1 2 0 0 1· 
 
Subtract row 2 from row 1 : �� = �� − ��. 



Chapter 2: Matrices and Determinant 

23 

º»»
»¼1 0 −12 1 −12 0
0 1 1 0 12 00 1 2 0 0 1½¾¾

¾¿
 

 
Subtract row 2 from row 3 : �« = �« − ��. 
 

º»»
»»
¼1 0 −12 1 −12 0
0 1 1 0 12 0
0 0 32 0 −12 1½¾¾

¾¾
¿
 

 

Multiply row 3 by 
�« : �« = �ÁÃ« . 

 

º»
»»»
¼1 0 −12 1 −12 0
0 1 1� 0 12 0
0 0 1 0 −13 23½¾

¾¾¾
¿
 

 

Add row 3 multiplied by 
�� to row 1 : �� = �� + 	�ÁÃ. 

 

º»
»»»
¼1 0 0 1 −23 130 1 12 0 12 0
0 0 1 0 −13 23½¾

¾¾¾
¿
 

 

Subtract row 3 multiplied by 
�� from row 2 : 

 �� = �� − ÁÃ� . 
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º»
»»»
¼1 0 0 1 −23 130 1 0 0 23 −130 0 1 0 −13 23 ½¾

¾¾¾
¿
 

 
Since we got identity matrix on the left  .  therefore  on the right is the inverse 
matrix. 
 

i.e        �L� =
º»»
»¼1 − �« 			�«0 		�« − �«0 − �« 		�« ½¾¾

¾¿  
 
Determinant of Order 2  
 

Let � = q� �	 �r  be a square matrix of order  2.  

 
The determinant of  �   ( denoted by det��� 		 %		|�|  is defined as  
 

 |�| = Ä� �	 �Ä = �� − �	  

 
Minor:  Let �  be a square matrix . The minor of an entry  �~�  (denoted by  '~�) 
is the determinant of a sub matrix  obtained by deleting the row and column of � containing  �~� .  
 
Co-factors: Let �  be a square matrix . The co-factor of an entry  �~�  (denoted 
by  �~� ) is defined as  �~� = (−�)~®�'~�  
 
Determinant of a square matrix: The determinant of a square matrix  �  is the 
sum of the products of each entries in any row (or column )  with their 
corresponding  co-factors.  
 
Adjoint of a matrix �: The  adjoint of � is obtained by first replacing each 
element of � by its cofactor  and  taking transpose . In other words , the adjhoint 
of �  is the transpose of the matrix  �  of co-factors of the entries of  � .  
 
The adjoint of �  is denoted by ��}(�)  
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We show an example below  with a  3 × 3  matrix  
  

Let     � = ���� ��� ��«��� ��� ��«�«� �«� �««� 
 
The cofactors of the entries of  � are as follows:  
 A�� = Ä��� ��«�«� �««Ä , ��� = − Ä��� ��«�«� �««Ä , ��« = Ä��� ����«� �«�Ä  
 A�� 	= − Ä��� ��«�«� �««Ä , ��� = Ä��� ��«�«� �««Ä , ��« = −Ä��� ����«� �«�Ä  
 A«� = Ä��� ��«��� ��«Ä , �«� = − Ä��� ��«��� ��«Ä , �«« = Ä��� ������ ���Ä  
 

� = ���� ��� ��«��� ��� ��«�«� �«� �««�    then Adj (�� = �z = ���� ��� �«���� ��� �«���« ��« �««�  
 
Proposition: If �  is a square matrix  and  |�| ≠ 0  then  �L� exists  and  
 

                         �L� = �Å��Æ�|Æ|  

 

Example: Calculate �1 1 00 2 10 1 2�
L�

 using the adjoint method .  

 
Ans: We have  
 

Ç1 1 00 2 10 1 2Ç = �1��−1��®� Ä2 11 2Ä + �0��−1��®� Ä1 01 2Ä +   

 �0��−1�«®� Ä1 02 1Ä = Ä2 11 2Ä  
 

The determinant of a 2 × 2 matrix is Ä� �	 �Ä = �� − �	. 

 

Ä2 11 2Ä = �2� ⋅ �2� − �1� ⋅ �1� = 3    i.e    Ç1 1 00 2 10 1 2Ç = 3  
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The co-factors are given below  
 
 ��� = �−1��®� Ä2 11 2Ä = 3 ,   ��� = �−1��®� Ä0 10 2Ä = 0 , ��« = �−1��®« Ä0 20 1Ä = 0  

 ��� = �−1��®� Ä1 01 2Ä = −2  , ��� = �−1��®� Ä1 00 2Ä = 2  , ��« = �−1��®« Ä1 10 1Ä = −1  

 �«� = �−1�«®� Ä1 02 1Ä = 1 ,     �«� = �−1�«®� Ä1 00 1Ä = −1  , �«« = �−1�«®« Ä1 10 2Ä = 2  

 

Thus, the cofactor matrix is � = � 3 0 0−2 2 −11 −1 2 �. 
 

Therefore ��}��� = �3 −2 10 2 −10 −1 2 �  
 
The inverse matrix is the adjoint matrix divided by the determinant. 
 

Thus, the inverse matrix is   

º»»
»¼1 − �« 		�«0 			�« − �«0 − �« 			�« ½¾¾

¾¿. 
 
Trace of a square matrix 
 
Definition:  Let A be a square matrix of order n. The sum of the elements of A 
lying along the principal diagonal is called the trace of A, written as tr  A. 
 
Thus, if = ��~��H×H , then 

 
 tr A = ∑ �~~H~��  = ��� + ��� + �«« +⋯+ �HH. 
 

Some properties of trace of a matrix 
 
Let A and B be the two square matrices of order n and λ be a scalar. Then, 
 

i) tr (λA)  = λ tr A 
ii)  tr (A+B) = tr A + tr B 
iii)  tr (AB) = tr (BA) 

 
Proof: Let � = ��~��H×Hand B = ���~�H×H 
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i) We have λ� = �	λ	�~��H×H 

 
tr λA =  ∑ 	É�~~H~��  = λ ∑ �~~H~��  = λ tr A. 

 
ii)  A+B = ��~� + �~��H×H. Then, tr (A+B) = ∑ ��~~ + �~~� = 	∑ �~~H~�� +H~��∑ �~~H~�� = tr	A + tr	Ê	 

 
iii)  AB = �	~��H×H and BA = ��~��H×H,where 	~� = ∑ �~w�w�Hw��  and  �~� =∑ bËÌHw��  �w� 

 
Now, tr (AB) = ∑ cËË	H~��  
 

= ∑ 	H~�� (∑ �~w�w~ 	Hw�� ) 
 

= ∑ 	Hw�� (∑ �~w�w~ 	H~�� ) 
 

= ∑ 	Hw��  �∑ �w~�~w	H~�� ) 
 

= ∑ 	Hw�� �ww 
 

= ��� + ��� + �«« +⋯+ �HH 
 

= tr (BA) 
 

Determinant  Rank of a matrix:  The rank of a matrix  �  is the order of the 
highest order submatrix of � whose determinant is non-zero.  
 
The rank of �  is denoted  by  %���  or  rank��� . 
 
Result: (i) If �  is a rectangular matrix of  order  '× -  then  %��� ≤ '		, - . 
              (ii)  %�-D��� = %�-D��z�  
    

Normal Form:   A matrix of the form ��¦ 00 0� 			 %		O�¦ 0P	 %		 ��¦0�  is said tobe 

in normal form, where  �¦  is the identity  matrix  of  order  %	.  
 
Echelon Form: A matrix is in row echelon form if it satisfies the following 
conditions: 

• The leading entry in any nonzero row is 1 called the leading 1.  
• The leading 1 of any row lies to the right of the leading 1 of the row 

above it. 
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• Entries below the leading 1 are all 0’s.  
• All nonzero rows are above any rows of all zeros. 

 

Example : � = �1 2 40 1 10 0 0�  is in echelon form . 

 
Row Rank of a matrix:   The row rank of a matrix is the number of non zero 
rows after reducing to echelon form.  
 
Result: Rank of a matrix  �  is the order of the identity sub-matrix after 
reducing to normal form.  
 
Result: Row rank = determinant rank.  
 

Example: Reduce the matrix    � = ¶1 5 1 02 2 5 01 0 4 02 0 8 0·  to normal form and find its 

rank. 
 
Solution 
 
Subtract row 1 multiplied by 2 from row 2: 
 �� = �� − 2��. 
 

¶1 5 1 00 −8 3 01 0 4 02 0 8 0· 
 
Subtract row 1 from row 3 : �« = �« − ��. 
 

¶1 5 1 00 −8 3 00 −5 3 02 0 8 0· 
 
Subtract row 1 multiplied by 2 from row 4: 
 �¸ = �¸ − 2��. 
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¶1 5 1 00 −8 3 00 −5 3 00 −10 6 0· 
 

Divide row 2 by -8: �� = − ÁÂÎ . 

 

º»»
»¼1 5 1 00 1 −38 00 −5 3 00 −10 6 0½¾¾

¾¿ 
 
Subtract row 2 multiplied by 5 from row 1: 
 �� = �� − 5��. 
 

º»»
»»¼1 0 238 0
0 1 −38 00 −5 3 00 −10 6 0½¾

¾¾¾
¿
 

 
Add row 2 multiplied by 5 to row 3: �« = �« + 5��. 
 

º»»
»»»
¼1 0 238 0
0 1 −38 0
0 0 98 00 −10 6 0½¾

¾¾¾
¾¿
 

 
Add row 2 multiplied by 10 to row 4: 
 �¸ = �¸ + 10��. 
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º»
»»
»»
»¼1 0 238 0
0 1 −38 0
0 0 98 0
0 0 94 0½¾

¾¾
¾¾
¾¿
 

 

Multiply row 3 by 
ÎÏ : �« = ÎÁÃÏ . 

 

º»»
»»»
¼1 0 238 0
0 1 −38 00 0 1 00 0 94 0½¾¾

¾¾¾
¿
 

 

Subtract row 3 multiplied by 
�«Î  from row 1: 

 �� = �� − �«ÁÃÎ . 

 

º»»
»»¼
1 0 0 00 1 −38 00 0 1 00 0 94 0½¾¾

¾¾¿ 
 

Add row 3 multiplied by 
«Î to row 2: �� = �� + «ÁÃÎ  

 

º»»
»¼1 0 0 00 1 0 00 0 1 00 0 94 0½¾¾

¾¿
 

 

Subtract row 3 multiplied by 
Ï̧
 from row 4: 
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�¸ = �¸ − ÏÁÃ¸ . 

 

¶1 0 0 00 1 0 00 0 1 00 0 0 0· 
 
Which is in normal form and its rank is  3. 
 
Characateristic polynomial:  The characteristic  polynomial of a square matrix 
of order  - × -   the polynomial defined as  Ð�É� = det�	� − É��	  
 
Characteristic equation:  The characteristic equation of a square matrix �  
whose characteristic  polynomial is  6�É�   is the equation  
  6�É� = 0  or   |� = É�| = 0  
 
Characteristic Roots or Eigen Values: The roots of characteristic equation are 
called characteristic roots or eigen values. 
 
Example: Find the characteristic polynomial  and characteristic roots of the 
matrix 

� = � 1 2 20 2 1−1 2 2� 

 
Solution: The characteristic polynomial is given by 
 6�É� = det	�� − É�� 
 
In this example we have: 
 

6�É� = det	�� − É�� = det	 �� 1 2 20 2 1−1 2 2� − �É 0 00 É 00 0 É��  

 Ñ= Ç	1 − É 2 20 2 − É 1−1 2 2 − ÉÑ�  
 = �−É + 1��−É + 2��−É + 2� + 2 ⋅ 1 ⋅ �−1� + 2 ⋅ 0 ⋅2 − �−É + 1� ⋅ 1 ⋅ 2 − 0 ⋅ 2 ⋅ �−É + 2� − �−1� ⋅ �−É +2� ⋅ 2  
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= −É« + 5É� − 8É + 4 + �−2� + 0 − �−2É + 2� − 0 −�2É − 4�  
 = −É« + 5É� − 8É + 4  
 = �É − 1��É� − 4É + 4�  
 
The characteristics roots are:  1, 2, −2	  
 
Eigen Vector:  Let É  be an eigen value of a matrix � . A vector Ò ( row or 
column )  that satisfies the equation    �Ò = ÉÒ  or  �� − É��Ò = 0  is called an  
eigen vector  corresponding to the eigen  value  É . 
 
Example: Find the eigen values and eigen-vectors of matrix 
 

                     � = �3 1 40 2 60 0 5�  
 
Sol. The characteristic equation is |� − É�| = 0 
 

⇒ 	 Ç3 − É 1 40 2 − É 60 0 5 − ÉÇ	= (3 − É){(2 − É)(5 − É)} − 0 + 0 = 0  

 
Now, we consider the relation (� − É�)Ò = 0 
 
For É = 2, 
 

�3 − 2 1 40 2 − 2 60 0 5 − 2� �
#�#�#«� = 0	Ò = �#�#�#«� 

 

⇒ 	 �1 1 40 0 60 0 3� �
#�#�#«� = 0 

 

�« → �« − 12�� on coefficient matrix  

 

�1 1 40 0 60 0 0� �
#�#�#«� = 0 
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⇒ 	#� + #� + 4#« = 0	 and #« = 0 
 
Let 	#� = D	 then #� + D + 0 = 0 ⇒ #� = −D 
 

∴ 	Ò� = �−DD0 � = −D � 1−10�  or � 1−10� 
 
For É = 3, from (i), we get 
 

�0 1 40 −1 60 0 2� �
#�#�#«� = 0  

 �� → �� + �� on coefficient matrix 
 

�0 1 40 0 100 0 2 � �#�#�#«� = 0  

 �« → �« − �Ô��  

 

�0 1 40 0 100 0 0 � �#�#�#«� = 0  

 ⇒ #� + 4#« = 0 and 10#« = 0 ⇒ #« = 0⇒ #� + 0 = 0 ⇒ #� = 0, let #� = Õ   

 

∴ 	Ò� = �D00� = D �100�  or �100�  
 
Again, for É = 5, we get 
 

�−2 1 40 −3 60 0 0	�	�
#�#�#«� = �000� 

 ⇒ 	2#� − #� − 4#« = 03#� − 6#« = 0 
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#« = D, then 3#� − 6D = 0⇒ 	#� = 2D	 and 2#� − 2D − 4D = 0 ⇒ #� = 3D 

 

∴ 	Ò« = �3D2DD � = D �321�  or �321�  
 
Hence the eigen values are É = 2,3,5 
 
And eigen vectors are 
 

Ò� = � 1−10 � , Ò� = �100� , Ò« = �321� 
 
Cayley-Hamilton Theorem 
 
Let � be an - × -	 square matrix, and let  6�É�  be its characteristic polynomial.  
The Cayley-Hamilton theorem asserts that if you substitute the matrix � into its 
own characteristic polynomial, the result is the zero matrix: 6��� = 0  
 
Inverse of a square matrix using   by Cayley-Hamilton Theorem.  
 

Example: Find the characteristic equation of the matrix � 2 −1 1−1 2 −11 −2 2 � and  

also find �L� by Cayley-Hamilton theorem. 
 
Solution: The characteristic equation of � is 

	|� − É�| = Ç2 − É −1 1−1 2 − É −11 −2 2 − ÉÇ = 0
⇒ �2 − É�OÉ� − 4É + 4 − 2P + O−2 + É + 1P + O2 − 2 + ÉP = 0⇒ 	É« − 6É� + 8É − 3 = 0

 

 
By Cayley-Hamilton theorem �« − 6�� + 8� − 3� = 0. 
Multiplying by �L� on both sides, we get 
 �� − 6� + 8� − 3�L� = 0  
 ⇒ 	�L� = �« ��� − 6� + 8�� …………(1) 
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Now �� = � ⋅ � = � 2 −1 1−1 2 −11 −2 2� �
2 −1 1−1 2 −11 −2 2� = � 6 −6 6−5 7 −56 −9 7�  

 

∴ 	�� − 6� + 8� = � 6 −6 6−5 7 −56 −9 7 � − 6 � 2 −1 1−1 2 −11 −2 2 � + �8 0 00 8 00 0 8� = �2 0 −11 3 10 3 3 �  
 �1� 	⇒ 	�L� = �« �2 0 −11 3 10 3 3 �   
 
Exercises:  
 
1. Find the product  ��   of the matrices   
 

         � = �2 43 46 0�			 , � = �1 0 22 3 00 1 2�  
 
2. Verify that  ����z = �′�′  for the matrices  
 

     � = �2 1 −11 3 00 2 5 �		 , � = � 1 1 1−1 2 03 2 −4�  
 
3. Example 3. Find the inverse of the following matrix employing elementary     

transformations. Also verify that ����L� = �L��L� 
 

     � = �3 −3 42 −3 40 −1 1�		 , � = �3 2 42 0 41 1 1� 
4. Using Adjoint , find the inverse of the matrix   � 1 2 −2−1 3 00 −2 1 �. 
6. Find the rank of 
 

� = ¶ 6 1 3 816 4 12 155 3 3 84 2 6 −1·   using determint and  echelon form  and verify tha row 

rank is same as determinant rank .  
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7. Find the rank of the following matrix by reducing to normal form: 
 

�0�		¶1 2 −1 34 1 2 13 −1 1 21 2 0 1·.      �00�			¶
0 0 0 0 00 1 2 3 40 2 3 4 10 3 4 1 2·. 

 
8. Find the characteristic roots , eigen values and eigen vectors of the following 

matrices . 
 

				�0�	�3 1 40 2 00 0 5�.   �00� �
1 1 31 5 13 1 1�.  �000� �

−1 0 20 1 22 2 0�.   �01� �
−9 4 4−8 3 4−16 8 7�. 
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Chapter- 3 
 

Groups  
 
 
Group introduction theory is a branch of abstract algebra that studies 
mathematical structures known as groups. Groups are fundamental objects in 
mathematics because they capture the essence of symmetry and can be used to 
model a wide range of physical, chemical, and mathematical phenomena.  
 
Binary Operation:  
Let G be a non empty set.  
A function   ∗: Ö × Ö → Ö   is called a binary operation on Ö. 
If �, �	 ∈ Ö	, we shall denote   ∗ ��, ��  by  �� ∗ �� .  
 
Commutative Property: A  binary operation  ′ ∗ ′  on  a set  Ö  is said tobe 
commutative if  ∗ ��, �� =∗ ��, ��   or   � ∗ � = � ∗ �     for all  �	, �	 ∈ Ö .  
 
Associative Property: A  binary operation  ′ ∗ ′  on  a set  Ö  is said tobe 
associative if  ∗ �� ∗ �, 	� =	∗ ��, � ∗ 	�   or   	�� ∗ �� ∗ 	 = � ∗ �� ∗ 	�     for all  �	, �	, 		 ∈ Ö .  
 
Identity element:  Let Ö  be a non empty  set and  ∗ a binary operation on  Ö .  
An element  ( ∈ Ö  is called an  identity element with respect to  ∗  if  � ∗ ( =( ∗ � = �		∀		� ∈ Ö.  
 
Inverse of an element: Let Ö  be a non empty  set and  ∗ a binary operation on  Ö . An element  � ∈ Ö  is called  an  inverse of another element � ∈ Ö  with 
respect to  ∗  if  � ∗ � = � ∗ � = (	 (where (  is  an idenetity element )  .  Such 
an element  �  shall be denoted by �L� .  
 
Eg 1. On the set of integers +,  the usual addition  ′ + ′ is a function from + × +  
to  +  and hence  binary operation on  +   with  ′	0	′  as identity  elemenet  and  ′ − �′  as inverse of an element  � ∈ + . 
 
Eg 2. On the set of integers �,  the usual multiplication  ′ ⋅ ′ is a function from + × +  to  +  and hence  binary operation on  �   with  ′	1	′  as identity  elemenet  

and ′	 �� 	′  as inverse of  an element  � ∈ �	, � ≠ 0 . 

 
Definition of Groups 
 
Let  G be a non empty set  and  	′ ∗ ′  a binary operation on Ö . 
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The set Ö  together with  ′ ∗ ′  is called a group  denoted by  〈Ö	,∗〉 
if  the following  four conditions  known as group axioms  are satisfied:  
 

• Ö  is closed under  ∗ ,  i.e �, � ∈ Ö ⇒ � ∗ � ∈ Ö . 
• ( This is actually implicit with the definition of a binary operation )  
• (ii)   ∗  is  associative    i.e  �� ∗ �� ∗ 	 = � ∗ �� ∗ 	�	∀		�	, �	, 			 ∈ Ö .  
• (iii)  There exists an identity element ( ∈ Ö  with respect to   ∗  . 
• (iv)  Each element  � ∈ Ö		 has inverse in Ö   with respect to   ∗  . 

 
If further, the binary operation ′ ∗ ′  satisfy  the commutative property   i.e  � ∗ � = � ∗ � for all �, �	 ∈ Ö  ,  then  Ö  is called an  abelian  group  or 
commutative group.  
 
Note: For the sake of simplicity, we shall denote ′� ∗ �′   by  ′��′  whenever  ′ ∗ ′  is multiplication or the like and denote  ′� ∗ �′  by  ′� + �′   when  ′ ∗ ′  is 
addition.   
 

--------------------------------------------------------------------------------------- 
 
Theorem 3.01: Let Ö be a group  and �	, � ∈ Ö . Then  
 
   (i)  (L� = (  i.e   the identity element is its own  inverse .  
   (ii) ��L��L� = �   i.e  ‘�’ is the inverse of ′		�L�		′  
  (iii)  ����L� = ��L��L��  i.e  the inverse of   ′��′ is     ′�L��L�		′  
   
We shall skip the proof of  (i)  and   (ii) as they are too obvious .  
 
 Proof (iii):   We have  ������L��L�� = ����L���L�  by associative law 
                                                              = �(�L� = ��L� = (	and    ��L��L������ = �L���L���� = �L�(� = �L�� = ( 
 
Thus  ������L��L�� = ��L��L������ = ( 
By definition of inverse , we have   ����L� = ��L��L��  . 
 
Theorem 3.02: If  Ö  is   an  abelian   group  then   any  subgroup  of   G  is   
also  abelian. 
 
Proof:   Let   h  be   any  subgroup  of  G 
Let  �, � ∈ h   then   �, � ∈ Ö  as    h ⊂ Ö 
Therefore  �� = ��	   since   G  is   abelian 
Hence  h is   also  abelian.  
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Theorem 3.03: A group Ü is Abelian if and   only if 																			�EF�s 	= 	Es	Fs		 for all E, F	Ý	Ü.        
                
Ans: Let   Ö  be   abelian  

Then   ����� = �������� = ������ = ������ = �������� = ����  

Conversely ,  suppose  ����� 	= 	 ��	��		 for all �, �	Þ	Ö   ------(1) 

we  have    ����� = �������� 
and  ����� = ����    by   (1) 

therefore   �������� = ���� 

Multiplying  by   �L�  from  the  left  and   by  �L�	  from the  right   we  have �L����������L� = �L������L�     ⇒ ��L����������L�� = ��L����������L��  ⇒ (����( = (����(  

or  �� = ��     Hence  Ö  is   abelian .  

 
Eg 3. It is obvious  to see that  the sets +	, ß		, �	, �		  are abelian groups  under 
usual addition  and  ß∗	, �∗	, �∗  are abelian groups under usual multiplication.  
(Here  ß∗	  is the set of non zero rational numbers , similarly �∗	, �∗  ) 
 
Eg 4. (General Linear group �Üjs�m�� Let Ö  be the set of  all 2 × 2  
invertible real matrices . Then 	Ö  is a  group under  matrix multiplication.   
 
Proof  
       (i)  Ö  is closed   since for any two invertible real matrices  �	, � ,  the 

product  
            ��  is also  an invertible real matrix  which hence is in Ö .  
       (ii) The associative property holds  multiplication of matrices is associative 
. 

      (iii)  An element  � = q1 00 1r   is  an identity  element .   

      (iv)  For any  �	 ∈ Ö	  ,  �  is invertible   real matrix with its inverse �L�  
              is also a 2 × 2  real invertible matrix .  
 
Thus   G is a group. This group is denoted by Üjs�m� . 
 
This group Ö is non-abelian     as  can be seen with the help of these elements 
below :  
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� = q1 10 1r   , � = q1 01 1r  , �� = q2 11 1r		 , �� = q1 11 2r  ,   �� ≠ ��  . 

 
Eg 5. ( Special  Linear group �ljs�m�� . Let Ö  be the set of  all 2 × 2  real 
matrices  whose determinant is  1.  Then 	Ö  is a  group under  matrix 
multiplication .   
 
Brief Justification  
  
(i)  For any two elements  �	, �	 ∈ Ö  , ��  is a 2 × 2  real matrix. 
           Also    |�| = |�| = 1  
          ⇒ |��| = |�||�| = 1  
          ⇒ �� ∈ 		Ö           

i.e  Ö  is  closed  under matrix multiplication.  
 
(ii) The associative property holds  multiplication of matrices is associative . 
 

(iii)  An element  � = q1 00 1r   is  an identity  element . 

 
(iv)  For any  �	 ∈ Ö	  , since |�| = 1 ≠ 0  . Therefore  �  is an invertible   2 × 2  real matrix .  
 

If �L�  is the inverse of �  then  �L�  is also  a  2 × 2  real  matrix . 
 

Also |�L�| = �|Æ| = 		1   Therefore �L� 	 ∈ Ö  . 

 
Therefore, every  element of Ö  has inverse in Ö . 
Thus   G is a group. This group is denoted by ljs�m�   
This group Ö is non-abelian     as  can be seen with the help of these elements 
below :  
 � = q1 10 1r   , � = q1 01 1r  , �� = q2 11 1r		 , �� = q1 11 2r  ,   �� ≠ ��  . 

 
Eg 6. Let -  be  a fixed positive integer and  Let  +H = {0, 1, 2	, … . �- − 1�}  .  +H  is an  abelian group under addition modulo  -   denoted by ′		+H	′.   
 
Proof 
 
Recall that   ��+H�� = % ⇔ �� + �� ≡ %	' �	-			0. (	-2 + %			 ∶ 		0 ≤ % <-			, % ∈ +		.  
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Thus  (i) the closure property holds by definition of addition modulo  - . 
 

(ii)  ′+H′  is associative    ( property modular addition ) 
 
(iii)  For any � ∈ +H	,	Since 0 ≤ � < - , it is clear that when �� + 0�  is 

divided by - , the remainder is  �  .  i.e 	�+H0 = 0+H	� = � 
showing the existence of identity element  ′0′  . 

 
(iv)  For � ∈ +H ⇒ 		0 ≤ � < -	 ⇒ 		0 ≤ �- − �� < - 

                       and  �� + - − �� = - = �- − � + ��  
                      ⇒ �+H�- − �� = �- − ��+H� = 0  
                      i.e  �- − ��	  is the inverse of  ′�′  . 
 

(v)  We also have  ��+H�� = % 
                      ⇔ � + � = -2 + %  where  0 ≤ % < - 
                      ⇔ � + � = -2 + %	  where 0 ≤ % < - 
                      ⇔ ��+H�� = % 
                 i.e  �+H� = �+H�  
 
                Hence +H  is an abelian group.  
 
 Eg 7. For a fixed positive integer -	 , Consider the set  Ö  of  equivalence class 
modulo  - .  
 
i.e   Ö = {	0�	, 1�	, 2�	, ……		- − 1�������	}   where %̅  is a class of integers that leave 
remainder  %  when divided by  - . 
 
We define addition of these classes ( tobe denoted here by   +H	�  as ��+H�� = � + �������� = %̅   where  %  is the remainder  when �� + ��  is divided by  -  
 
Then Ö  is an abelian group  under this operation.  
 
Justification     
  
We first show that this addition is well- defined.  
 �$	  �� = #̅	  and  �� = !� 
 
Then � ≡ #	�	' �	-�  and � ≡ !	�' �	-�   (see chapter 1, congruence 
modulo n) 
 
         ⇒ �� + �� ≡ �	# + !��' �	-� 
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        ⇒ � + �������� = 	# + !��������			  i.e   ��+H�� = #̅+H!�  
 
(i)  Ö  is  closed under  +H	 Since For any   ��, �� 	∈ Ö   ,  if  ��+H�� = %̅ then  %  

is the remainder when �� + ��  is   divided by  -  and as such %  is an 
integer such that 0 ≤ % < -  . ⇒ %̅ ∈ Ö  . 

 
(ii) ′+Hz    is  associative   since  >��+H��A+H	̅ = 	 � + ��������+H	̅ = � + � + 	������������ = 
                  � + �� + 	���������������� = ��+H� + 	������� = ��+H���+H	̅�	 . 
 
( iii) 0� ∈ Ö  is the identity element . 
 
(iv)  For �� ∈ Ö    we have  0 ≤ � < - ⇒ 		0 ≤ �- − �� < - 

               ⇒ - − �������� ∈ Ö and  ��+H- − �������� = � + - − �������������� = 0� = - − � + �������������� =- − ��������+H��  showing that   - − ��������  is the inverse of  ��  .  
 
(v)   Also   ��+H�� = � + �������� = � + �������� = ��+H�� 
 
Hence  Ö  is an abelian group   
 
Eg 8. Let +H = {	0,1,2, …… �- − 1�}  and  let àH = {	# ∈ +H ∶ gcd�#, -� = 1	} . 
 
Then àH  is a group under multiplication modulo - called The group of units 
modolo -  .  
 
Proof :  Let �	, �	 ∈ àH	, � ≠ 1	, � ≠ 1  , Then gcd��, -� = gcd��, -� = 1 
 ⇒ gcd���	, -	� = 1  
If �� < -  then remainder when   ab is divided by -  is ��  itself . 
 ⇒ � ∗ � = �� ∈ 		àH   
 
If �� > -	 
 
Then   �� = -2 + %    where 0 < % < -  
 
so that  � ∗ � = %  
 
Also gcd�%, -� = 1    otherwise  if gcd�%, -� = � ≠ 1  then �|%		�-�	�|- 
 
                                    ⇒ �|-2 ⇒ �|(-2 + %) ⇒ �|��    but gcd(��, -) = 1  
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Therefore � ∗ � = % ∈ àH 
 
Showing that àH  is closed under multiplication mod - . 
Associative property holds as multiplication modulo -  is associative . 
Clearly , the identity element is 1	 ∈ àH . 
To check  the existence of inverse to each element ,  
 
Let ' ∈ àH  
 
Then gcd�', -� = 1 
 
Therefore there exists  integers  #	, !	  such that  
 
 '# + -! = 1      ……………………(1) ⇒ '# = 1 − -!     ( either # > -	  or  # < -  ) 

In any case we can write  # = -& + %	 ∶ 		1 ≤ % < -   

Now '% = '�# − -&� = '# −'-& = 1 − -! −'-&  ⇒ ' ∗ % = 1  

Also (1)   shows that  gcd�-, %� = 1 

This proves the existence of  the inverse of '  in àH  
 
Hence àH  is a group  which is abelian  as  ∗  is commutative .  
 
Eg 9 . The set  +N 	= 	 {1, 2, 3,·	·	·, 6 − 1} is a group under multiplication modulo 6,  6 being a prime integer.   
 
Ans: Let  " ∗ "   be   multiplication  modulo  6 
 
i.e   �� ∗ �� = %('�0-�(%		âℎ(-		��		0&		�010�(�		�!		6 
 
Let  �, �			Þ	Ö 
 
As �, �	 are not divisible  by  6    so  ��  is not  divisible  by  6 
 
Therefore,  if  %  is  a  remainder  when  �� is  divided  by  6  then  %		Þ	Ö ä. å		E ∗ F		Ý	Ü    so  that   Ü  is   closed  under   ∗ .  
 
The associative property follows as ∗  is associative .  
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Clearly  "	M"  is  the  identity  element.   
  g(�		�		Þ	Ö  

Then  gcd��, 6� = 1 

Therefore  there exists  integers  '		, -  such that  

 �' + 6- = 1  ( consult number theory book)  ⇒ �' = 1 − 6-   so that   remainder  when   �' is  divided  by  	6	 is   1 

i.e  � ∗ ' = 1 

If   '		Þ	Ö  then  '  is  the   inverse  of   � 

If   '	 ∉ 		Ö   . 

Let  ' = 6D + %′   where  0 < %z < 6   i.e   %z	Þ	Ö 

Now  �%z = ��' − 6D� = �' − �6D = �1 − 6-� − �6D 

Therefore  � ∗ %z = 1  

In this   case   %′  is   the  inverse  of   � 

Hence   Ö  is  a   group  under   ∗    . 
 
Eg. 10. Let  -  be a positive integer  and  Let  Ö = {	# ∈ � ∶ #H = 1	}.  
 
Then   Ö  is an abelian group under usual multiplication . 
 
Proof:  (i)  �, � ∈ Ö ⇒ �H = �H = 1 ⇒ ����H = �H�H = 1   

                  showing the closure property .  

             (ii) Associative property  follows as  Ö ⊂ � . 

             (iii)  It is clear that 1  is the identity element . 

             (iv)  If � ∈ Ö  then  �H = 1 ⇒		 q��rH = 1 ⇒ �� ∈ Ö 

                  and � ⋅ �� = 1 

                Therefore  
��  is the inverse of   � .  

             (v) Commutative property follows  as multiplication of complex 
numbers is commutative . Hence Ö  is an abelian group . 

 
--------------------------------------------------------------------------------------- 
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Definition:  A group Ö  is called a finite group if it has a finite number of 
elements otherwise  it is called an infinite group. The number of elements in Ö  
is denoted by  #Ö  . 
 
Group Tables for Finite Group  
 
Let Ö = {	��	, ��	, �«	, ……�H	}  be a finite group under ′ ∗z having   ′-	′ 
elements  with �� = (.  
 
For 0	, } = 1,2,… -	.		We denote an element  >�~ ∗ ��A  by    '~�        
There will be -�  such  elements  '~�   ( not all are distinct  ) .  
 
If we let an element ′'~�′   tobe an entry  lying in the 0{|		% â	  and  }{|		 JI'-	of  an - × -  matrix . Then  the group Ö, ∗  can be represented in a 
table form .  
 
We show  an example  of a group table  with a group having 4 elements     after  
the next example .  
 
Eg 11. The Klein four-group  
   
     Let Ö = {(, �	, �	, 		}  .  We define  ′ ∗ ′  on  Ö  as follows: 
 
        (i) ( ∗ # = # ∗ ( = #		∀	# ∈ Ö     

(ii) # ∗ # = (		∀	# ∈ Ö  
       (iii) � ∗ � = � ∗ � = 			, � ∗ 	 = 	 ∗ � = �	, � ∗ 	 = 	 ∗ � = �  
 
As there are only four elements , it is easy to verify that  Ö  is an abelian group  
under ∗  with each element being its own inverse. 
We can represent this group by a table as follows  
  
 
  
 
 
 
 
The particular case of  the Klein four group is the group  h = {(, �, �, �	}  
where  

 ( = q1 00 1r		 , � = q1 			00 −1r	 , � = 	 q−1 0				0 1r		 , � = q−1 			0			0 −1r     

 

∗	 (	 �	 �	 		(	 (	 �	 �	 		�	 �	 (	 		 �	�	 �	 		 (	 �			 		 �	 �	 (	
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We leave to the readers to show that this is a group  which follows the pattern of  
the Klein four group above .  
 
Eg. 12. Let  Ö = {	�cosè + 0 sin è	�:		è			0&		�		%��0 -�J		-I'�(%		} .  Show 
that   Ö  is   an abelian   group  under  multiplication . 
 
Proof:   g(�		�, �		Þ		Ö 
Then  � = cos è + 0 sin è 			 , � = cosu + 0 sinu	  for   some  rational numbers  è		, u		 
  
Now  �� = �cos è + 0 sin è��cosu + 0 sinu� 							= �cos è cosu − sin è sinu� + 0�&0-è cosu + sinu	 &è�    
       = cos�è + u� + 0 sin�è + u� 		Þ			Ö  
 
Therefore   Ü  is  closed 
Associative property holds since Ö  is  a   subset of  complex  numbers  and  'IJ�0OJ0	��0 -  of complex  numbers is associative.  
 
The number   1 = cos 0 + 0 sin 0 			Þ		Ö,  therefore  identity  element  exists in   
G . 
 
Also   for   any  � = cos è + 0 sin è 		Þ			Ö   ,  we  have  è   is  rational. 
Therefore  −è  is  also  rational  
 
Hence   �z = cos�−è� + 0 sin�−è� = cos è − 0 sin è 		Þ		Ö 

and  �	�z = �z� = �cosè − 0 sin è��	cos è + 0 sin è� = cos� è + sin� è = 1 

Hence  �′  is  the  inverse of   � . 

Hence   Ö  is   a group. 

Clearly  Ö  is   infinite and  abelian.  
 

--------------------------------------------------------------------------------------- 
 
Indices of Elements of a group  
 
Let  Ö  be a group under  ′ ∗ ′   and let  � ∈ Ö . For any integer  - ≥ 0 , 
 
we define   �� ∗ � ∗ �…… . .		-	�0'(&	� = �H  .  
 
 If  ′ ∗ ′  is addition  then  
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 �� ∗ � ∗ �… . -	�0'(&� = �� + � + �… . . -	�0'(&	� = -� 
 
Laws of indices 
 

• Product of Powers: For any element v in a group Ö and any integers ' 
and - v� ∗ vH = v�®H 

 Proof :  v� ∗ vH = �v ∗ v ∗ v… .'	�0'(&	� ∗ �v ∗ v ∗ v… . -	�0'(&	� 
                             = �v ∗ v ∗ v……… . �' + -��0'(&	�      using associativity 
                             = v�®H 
 

• Identity Law:  For any element v in a group Ö,   
             v­ = (, where ( is the identity element of   the group. 
 

    Proof : v­ = vL�®� = vL� ∗ v� = vL� ∗ v = ( 
 

• Power of a Power: For any element vin a group Ö and any integers ' 
and -	, �v��H = v�H 

The proof of this is purely counting the number  times  v  has to occur 
and left to the readers.  
 

• Inverse of a Power: For any element v in a group Ö and any integer -, �vH�L� = vLH 
        i.e vLH is the inverse of  vH . 
   The proof follows from the previous property.  
 

• Distributive Law:  For any elements v and ℎ in an abelian group Ö and 
any integer -  ,  

             �vℎ�H 	= 	vH	ℎH .  
 

Proof : Left to the reader.  
 

These laws  of indices can be translated in terms of addition in a usual way.  
 

--------------------------------------------------------------------------------------- 
 
Cancellation Laws    
 
  Let Ö   be a group  under  ∗  and  �	, �	, 		 ∈ Ö . Then  
 
 (i) Right  Cancellation Laws  : � ∗ 	 = � ∗ 	 ⇒ � = � 
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(ii)  Left  Cancellation Laws  : � ∗ � = � ∗ 	 ⇒ � = 	  
      
Proof (i) : As  Ö  is  a group  ,   	 ∈ Ö ⇒ 	L� ∈ Ö	 
     Now � ∗ 	 = � ∗ 		 ⇒ �� ∗ 	� ∗ 	L� = �� ∗ 	� ∗ 	L� 

       ⇒ � ∗ �	 ∗ 	L�� = � ∗ �	 ∗ 	L��     using associative property .  

       ⇒ � ∗ ( = � ∗ (	 ⇒ � = �  

 
Proof of (ii) is similar  and left out .  
 
Uniqueness of Identity:  Let Ö	  be a group . The identity element in Ö  is 
unique . 
 
Proof:  Suppose (		�-�		(′  are two identity elements .  
Since (  is an identity  element,  
 
we have (z = ( ∗ (′   -----(1) 
Since (′  is an identity  element  
we have  ( = ( ∗ (′  ---------(1) 
(1) and  (2) ⇒ ( = (′   
 
Uniqueness of Inverse: Let Ö  be a group. The the inverse of  any element � ∈ Ö  is unique.  
 
Proof:  Suppose    ′	�	′  and  ′			�z		′  are two inverses of  ′�′ . 
 
Then we shall have   � ∗ � = ( = � ∗ �′ 
By cancellation law, we get    � = �′     showing  that ′�′  has one and only one 
inverse .  
 
Theorem 3.04:  Let  Ö  be a group and �, �	 ∈ Ö	 .  
The equations   � ∗ # = �	  and  ! ∗ � = �   have   unique solution  in Ö .  
 
Proof:  Since  �, � ∈ 		Ö			 ,  �L� 	 ∈ Ö 
 
Now  � ∗ ��L� ∗ �� = �� ∗ �L�� ∗ � = ( ∗ � = � 
Showing that  # = ��L� ∗ �� ∈ Ö		 is a solution of  � ∗ # = � .  
Suppose there is another solution  #­  where  � ∗ #­ = � 
By cancellation law we shall have  
 � ∗ # = � ∗ #­ ⇒ # = #­   showing that the solution of  � ∗ # = � is unique . 
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The proof for  ! ∗ � = �   is similar and left as exercise.  
  
Order of group:  The order of a finite group[ Ö  is the number of elements in Ö  
and is denoted by   �Ö�  or  |Ö|  or  #Ö  whichever is convenient to use.  
 
Order of Element:  Let Ö  be a  group  and � ∈ Ö . The order of  an element  ′�′  is the least positive integer ′-′  such that  �H = (		(	 %	-� = (		$ %	���0�01(	v% I6	)   . If no such  -   exist  , then ′�′  is 
said to have infinite order.  
 
Example of finite order elements 
 
1. Let Ö = {(, �, �, 		}  be the Klein four  group.  
    We have  � ≠ (		, �� = (	 
    Therefore   (�) = 2 
     Similarly  (�) =  (	) = 2 . 
 
2. Let  Ö = +¸ = {0,1,2,3	}  . Under addition modulo 4 , 	( = ′0′  is an identity 

element .  
     (1) = 4	  since 1 ≠ (	, 1� = 2 × 1 = 2 ≠ (	, 1« = 3 × 1 = 3 ≠ ( similarly 					 (2) = 2		,  (3) = 4  
 

Example:  Let Ö be a group such that  (�) = 2  for each � ∈ Ö		, � ≠(.	Then Ö  is abelian . 
 
Alternatively , if Ö  is a group such that �� = (	∀	� ∈ Ö , then Ö  is abelian .  
 
Proof :  Since �� = ( ⇒ � = �L�  for all � ∈ Ö ……….(1) 
Let #, ! ∈ Ö  
 
Then (#!) = (#!)L�  by   (1)  
                   = !L�#L� = !# .  
 
Theorem 3.05:  Let Ö  be a group and � ∈ Ö . If   (�) = '  and   �H = (  
then  '|- . 
 
Proof :  Since  (�) = '   

we have  �� = ( and  �¦ ≠ (  for 0 < % < '	, % ∈ , . ………………(1) 

Let - = '2 + %  where  0 ≤ % < '  

Then ( = �H = ��é®¦ = ��é�¦ = (��)é�¦ = (�¦ = �¦ 
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 ⇒ �¦ = (   ⇒ % = 0  otherwise it contradicts  (1) 

Hence - = '2   i.e  '|-  
 
Theorem 3.06: Let Ö  be a group � ∈ Ö .  Then  (�) =  (�L�)  finite or 
infinite.  
 
Proof : We first show that if  ′�′  is of infinite order then so is  ′�L�		′ . 
 
Otherwise , if  (�L�) = -  for some -	 ∈ ,  then  �LH = ( . 
 
Now �H = (�LH)L� = (L� = (   which shows that ′�′  must be of finite order .  
 
If   order of �  is infinite then so is the order of  ′�L�	′   so that they may be 
treated as equal.  
 
Supppose ′E′  and  ′ELM	′  are of finite order. 
 
Let  (�) = '	   and   (�L�) = -  so that �� = (�L�)H = (       ..(1) 

Now �H = (�LH)L� = (L� = (   and as    (�) = ' 

⇒ '|-	       …………(2) 

Also  (�L�)� = �L� = (��)L� = (L� = (  and as   (�L�) = - 

we have  -|' ……….(3) 

From  (2)  and  (3)  we deduce that ' = -  . 
 
Cyclic Groups: A cyclic group is a type of group characterized by the property 
that all its elements can be generated by repeatedly applying the group operation 
to a single element, known as the generator of the group. 
 
Definition: A group Ö  is called a  cyclic group  if there exists an element � ∈ Ö  such that every element in Ö can be written as �H for some integer -.  
The element ′�′ is called a generator of the group. 
 
Notation: A cyclic group generated by ′�′ is usually denoted by ⟨�⟩. 
 
Order:  The order of a finite  cyclic group  Ö  generated by ′�′ is the smallest 
positive integer  -   such that �H = ( (the identity element ) 
 
Note: If Ö = ⟨�⟩    ( a cyclic group generated by  ′	�′  ) is infinite then 
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�H = ( ⇔ - = 0   
 
This is obvious for if  �H = (	  and  - ≠ 0	, -  is finite , then Ö  will be a finite 
cyclic groupof  order  - .  
 
Theorem 3.07: Every  infinite cyclic group has exactly two generator .  
  
Proof : Let  Ö  be an infinite cyclic  group generated by ′�′   i.e  Ö = ⟨�⟩. 
 If  ′�	′  is another generator then Ö = ⟨�⟩. 
 
As  both  �  and  �  are generators , there must exist  integers  '	, -		  such that  
 � = ��	,			� = �H  

 Now � = �� = ��H�� = ��H 	⇒ 		 ��HL� = (  ⇒ '- − 1 = 0   and  as  '  and  -  are  integers  

We have '- = 1 ⇒ ' = - = 1  or  ' = - = −1	  
This show that   � = �	 or  � = �L�  .  

 
Theorem 3.08: Let Ö  be a finite cyclic group of  order - . Then every element � ∈ Ö of order -  generates  Ö . ( alternatively , if Ö  is a finite group of order - 
and if there exists an element  � ∈ Ö  such that  ��� = -  then Ö  is cyclic )  
 
Proof : Let � ∈ Ö	,  ��� = - 

We look at the set  Q = {�, ��, �«, … . . �HL�, �H = ( = �­	} 
Then Q ⊆ Ö .  as  � ∈ Ö . 

We shall show that  S has  -  elements . 

We  only have  to  show  that all elements  listed  above  are  distinct . 

Suppose If  �¦ = �©   where   1 ≤ %	, &	 ≤ -	,				% ≠ & 
Then  assuming % > &			â(		ℎ�1(	 E:Lì	 = å   And since  1 < %, & ≤ - 

we have   0 < % − & < -    a  contradiction to the  order  of  �  being   -       

Hence   �¦ ≠ �©       when  % ≠ & 
Therefore  all elements  of  Q listed   in  (1)  are  distinct .   

i.e   Q   has   -  elements  which is  equal  to number of  elements  of  Ö 

As       Q ⊆ Ö   we  conclude  Q = Ö 

Since   Q is  generated  by  "�"  , hence  so  is  	Ö . 
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Examples  
 
1. The set  + of integers under addition, is an infinite cyclic group with 1 (or -1) 

as a  generator. 
2. The multiplicative group of  four non-zero complex numbers   {1,−1, 0, −0} 

is a cyclic group of order 4 generated by ′0′. 
 
Theorem 3.09: Every cyclic group is abelian. 
 
Proof: Let  Ö  be a cyclic group generated by  ′�′ .  
Let #, ! ∈ Ö  . Then  # = ��		, ! = �H for some integers  '	, -	 . 
Now  #! = ���H = ��®H = �H®� = �H�� = !# .  
 
Theorem 3.10: Every group of prime order is cyclic  and hence abelian.  
Ans: Let   Ö  be   a  group  with    �Ö� = 6   where   6   is  a  prime . 

Let  �	Þ	Ö    where    � ≠ ( .  

If     ��� = '			0. (					�� = (			,			�¦ ≠ 			(  for   0 < % < '  

Consider   the   cyclic  subgroup   h = {�, ��, �«, …… . . ��L�, �� = (		} 
If  �~ = �� 					âℎ(%(			1 ≤ 0, } ≤ '  

Then If  0 > }	   we  have    �~L� = (     since  0 − } < '     

therefore  0 − } = 0 

i.e  �~ = �� ⇒ 0 = } 
 
Hence   all elements of   H  listed  above  are  distinct . 
Therefore   �h� = ' 
 
Theorem 3.11: Every  group  of  order  4  is  abelian.  
 
proof:  Case I- If there exists an  element  �	Þ	Ö whose  order  is 4,  then  Ö  is  

cyclic . 

Case II- Suppose  there does not exists any element of order 4. 

Let  �	 be any non identity element of  G,  

Since   ���|4  therefore   (�) = 1		or		2		or		4 

Since  � ≠ (  we  have   (�) ≠ 1  

also   (�) ≠ 4  by  our  assumption . 
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Hence   ��� = 2  

Thus  �	Þ		Ö ⇒ �� = ( 

Also  (� = ( 

Hence  �� = (	 for  every  element  �	Þ	Ö ⇒ � = �L�   i.e  every  element  is  its  own  inverse .  Hence  G  is  abelian  
 
The Quarternion Group  íî:  
 
Let  Ö = o	(, −(	,			ï̂	, −ï̂	, ñ̂, −ñ̂	, Dò	, −Dòp 
 

where  ( = q1 00 1r		,			 ï̂ = q0	 		00 −0r	 , ñ̂ = q				0 1−1 0r	, Dò = q0 00 0r   ,  0� =−1 . 
 
Under simplification by matrix multiplication  we have  (# = #( = #  for each #	 ∈ Ö   So that  ′(′  is an edentity element . 
  
and  ï̂	ñ̂ = 	−ñ̂	ï̂ = Dò	, ñ̂	Dò = −Dò	ñ̂ = ï̂		, Dò	ï̂ = −ï̂	Dò = ñ̂ ……      (1) 
Showing the closure property.  
 
Again by simplification we have  
 ï̂	�−ï̂� = q0	 		00 −0r	q−0	 		00 	0 r 	= q−0�	 		00 −0�r = q1 		00 		1r 	= ( = �−ñ̂�ï̂  
 ñ̂�−ñ̂� = �−ñ̂�ñ̂ = Dò>−DòA = >−DòADò = (  
 
This proves the existence of inverse of each element  in Ö   with  −#   being the 
inverse of any # ∈ Ö .  
 
As multiplication of matrices is associative, The set Ö  becomes a group  called  
The Quarternion Group  íî .  
 
Again  by computation we get 
 

  ï̂� = ñ̂� = >DòA� = −(		   , ï̂« =	−ï̂	,			ñ̂« = −ñ̂	, Dò« =	−Dò		 ,    ï̂¸ = ñ̂¸ =>DòA¸ = (					…..          (2) 
 
The last relation show that each element ( other than (  )  are of order  4 .  
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Taking   	# = 	 ï̂	, ! = ñ̂    , and suing  (1)  we have  
 Ö = {	(	, #�	, #	, #«, !, #�!, #!	, !#	}	which ( upon using (1) and  (2) )  can be 
represented   by Ö = 〈#, !	|	#¸ = !¸ = (	,			#� = !�, #! = !L�#〉  
 
Exercise 

1. Let  Q = q� 00 �r ∶ � ∈ �	, � ≠ 	0	} .  Show that Q is an abelian group under 

matrix multiplication .  
 
2. Let Q = {1	, ó	, ó� ∶ ó« = 1	}   . Show that  Q  is a group  under  usual 

multiplication .  
 
3. Show that the set ôH(�)	 of  - × -  real matrices  form a group under 

addition  of matrices . 
 
4. Let  Ö = �� = � × � . For   two elements  (�, �), (#, !) ∈ 		Ö	define  ⊕   by   (�, �)⊕ (#, !) = (� + #	, � + !) . Show that Ö  is a group under   ⊕ .  

 
5. Let  Ö  be a group and �, �	 ∈ Ö	 . Show that the equation  ! ∗ � = �   have   

unique solution  in Ö .  
 

6. Let  Ö  be the set of all real valued continuous function on [0,1] . For two 
functions $	, v	 ∈ Ö ,  define point wise addition of these functions as   ($ + v) = ℎ  where  ℎ(#) = $(#) + v(#)	∀	# ∈ [0,1]  . Show that Ö  is a 
group under this addition.  
 

7. Let Ö  be the set of all  bijective functions from  [0,1]  to itself .  Show that  Ö  is a group under the composition of functions.   
 

8. Prove that  every  group of order  4  is abelian.  
Hint : either Ö  is  cyclic  or  any non identity element is its own inverse.  

((��) = (��)L� = �L��L� = �� 
 

9. Give an example of a non abelian group which has an abelian subgroup.  
     Hint: Scalar matrices of same order commute with each other. 
 
10. If   G  is  of  order   '  and  �	Þ	Ö  then  �� = ( . 

 
11. If in the group Ö, �Ô = (	, ���L� 	= 	�� for some �,	� ∈ Ö, 0-�		 (�). 
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Chapter- 4 
 

Permutations and Symmetries 
 
 
Permutation: Let Q  be a non empty set . A bijective ( one -one and onto ) 
function ö: Q → Q  is called a permutation on Q . A permutation group of a set Q is a set of permutations of Q that forms a group under function composition. 
Also if  ö is a permutation on Q , we shall write ö�   for  �ö ∘ ö�  and so on.  
 
In this chapter, we shall be concentrating on some features of permutation 
groups of a  a finite set  Q  having a certain number of elements .   
 
The  Symmetric Group  l7    
 
Let  S  be  the set of   -  symbols   . For  simplicity  we take   Q = {1,2,3,	........... -} 
Let  QH  be  the  set  of   all bijective functions permutations  on    S . 
The fact that   
 
(i)  Compostion of bijective functions is a bijective function . 
(ii) Composition of functions is associative . 
(iii) The identity function ��#� = #		∀	# ∈ Q  is bijective . 
(iv) Inverse function of a bijective function exists and is itself bijective. 
 
Make   QH  into   a  group  under composition of   functions  (or multiplication 
of  permutations) called the symmetric group  of degree  7 . Also   QH  has   -!  
elements . 
 
Two lines representation of permutations 
 
Consider the set  Q = {1,2,3,4, … .		-}  having  -  elements.  
Let QH  be the set of all permutations on Q . If ö ∈ QH   then ö can be represented 
in a matrix of order 2 × -     where the first row consists of  elements of  Q  and 
the second consists of images under  ö.	 
 

i.e     ö =   1 				2			 …… . -ö�1� ö�2�…… . ö�-�¡  
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Cyclic Permutation / Cycle 
 
Let Q = {#�, #�, ……… , #H}	be the set of  n  symbols  and  $: Q → Q	  be a  
permutation on S.   
 
Then $ is called an  n- cycle if $�#~� = #~®�		,			$�#H� = #�. ( each #~  are 
distinct )   
 

i.e  $ = q#� #�……… #H#� #«…… . . #�r   

 
Such permutation shall be denoted by $ = �#�		#�		#« 	… . .		#H�  
 
It should be noted that  
 �ùM		ùs		ùt……ù7� = �ùs		ùt		ùú… . . ù7	ùM	� = 	 �ùt		ùú 		… . . ù7	ùM	ùs	�	 
 
Inverse of a cycle   
If   ö = �#�		#�		#«……#H�   then   öL� = �#�, #H, #HL�	……#«		#�	� 
This can be seen by directly checking all the images and inverse images.  
 
Fixed element of a permutation 
 
An  element  which has itself as an image under a permutation  is  called  a  
fixed  element. 

Eg.1. In  Q«,  in the permutation  u� = q1					2 31					3 2r ,  an element  1   is the fixed 

element.  
 
Note : Fixed element can be omitted in permutation representation  

Eg.  q1					2 31					3 2r = q2 33 2r = �2			3		� = q2 1 33 1 2r	 
 ûåü7:  The length of a   cyclic  permutation  is the number of elements 
permutes  by the permutation .  If   ö = �#�			#�		#« 	…….				#H	�   then ö  is a  
cycle  of length  - .     
    ûåü7:  A  cycle of  length   2  is  called  a  transposition.  
A transposition is always of the form  ö = ��	�� which is its own inverse .  
    
 i.e  öL� = ��	��  
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ûåü7:	  Two cycles are said tobe disjoint if the set of elements permute by the 
two cycles permutations are disjoint .  
 
Eg. Let $ = �#�, #�, ……#¦�		, v = �	!�, !�, … . !©�   be two cyclic permutations 

on a non-empty set Q	.  Then  $ and v  are said tobe  disjoint if  {#�, #�, …… . #¦ 	} ∩ {!�	, !�	, … . !©} = u  ( u  is an empty set . ) 
 
Composition of two permutations: Quick Simplification  
 
If $ and  v  are two permutations, to simplify  �$ ∘ v�,   (keep in mind that  �$ ∘ v��#� = $>v�#�A  )  
 
We demonstrate this with the help of a concrete example below. 
 

Let $ = q1 22 3 3 41 4r,  v = q1 23 4 3 41 2r   be two permutations on  Q = {1,2,3,4	}  
 
To calculate �$ ∘ v,  we first list all elements of the set in the first row, keeping 
the second row unoccupied.  
 �1	2	3	4� 
         
Next To find the image of ′1′  under �$ ∘ v� ,  we  first find the image of ′1′  
under v  which is   ′3′  then find the image of  ′3′  under  $  which is ′1′ . 
We can proceed this way to each elements of the set to get  
 $ ∘ v = q1 21 4 3 42 3r = q2 3 44 2 3r = �2 4 3�  
  
The   Symmetric  Group of degree 3 : lt   
 
Let  S={1,2,3 }   
 

Let   	( = 	 q1					2 31					2 3r  ,  u« = q1					2 32					1 3r = �1,2�  ,  u� = q1					2 33					2 1r =�1,3� , 
 

 u� = q1					2 31					3 2r = �2,3� , þ = 	q1					2 32					3 1r = �1,2,3�		, ó = 	 q1					2 33					1 2r =�1,3,2� 
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be the  six  permutations on   S.  
 
It  is   clear  that   (  is  the  identity element  of   Q«  
 

We have  ,   u«� = q1					2 32					1 3r q1					2 32					1 3r = q1					2 31					2 3r 		= (  

 
Similarly 			u�� = u�� = ( = u«�                             ..............................  (1) 
 þ� = q1					2 32					3 1r q1					2 32					3 1r = q1					2 33					1 2r = ó	            .................... (2) 

 
Similarly  ó� = þ                                           ......................................... (3) 
 

and  þ« = þþþ = 	q1					2 32					3 1r q1					2 32					3 1r q1					2 32					3 1r = 	 q1					2 31					2 3r = ( 	  
Similarly    ó« = ( = þ«                                 ......................................... (4) 
 
Also  we can see that  þó = �1,2,3��1,3,2� = ( = �1,3,2��1,2,3� = óþ      .............................. (5) 
 
Equation  (1)   shows  that  �M	,�s		,�t  each  are   their  own  inverse  
(since   �� = ( ⇒ �� = ( ⇒ � = �L� ) 
 
Equation   (4)   shows  that  �		��Y			�  are   inverse   to  each  other .  
 
Also   equation  (1)  shows  that �M	,�s		,�t   are   each  of  order   2  and       
equation  (2)  shows  that  þ		and			ó    are  of   order  3.    
 
Of  course   å  is  of   order  1  being the  identity element.  
 
By  calculation we also  have  
 u�u� = q1					2 31					3 2r q1					2 33					2 1r = q1					2 32					3 1r = þ  

 u�u� = q1					2 33					2 1r q1					2 31					3 2r = q1					2 33					1 2r = ó  

 u�u« = q1					2 33					2 1r q1					2 32					1 3r = q1					2 32					3 1r = þ  
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 u«u� = q1					2 32					1 3r q1					2 33					2 1r = q1					2 33					1 2r = ó 

 u�u« = q1					2 31					3 2r q1					2 32					1 3r = q1					2 33					1 2r = ó  

 u«u� = q1					2 32					1 3r q1					2 31					3 2r = q1					2 32					3 1r = þ  

 
The above   two  equations show that   Q«  is    non-abelian (The  smallest  non- 
abelian group  in the  sense   that   any group of   lower   order )  are    always  
abelian . 
 
We present below the group table of Q« 
 ∘ å	 �M �s  �t � �   å	 (	 u� u�  u« þ ó   

�M u� ( þ ó u� u« 
�s u� ó (	 þ u« u� 
�t u« þ ó ( u� u� 
� þ u« u� u� ó ( 
� ó u� u« u� ( þ 

 
--------------------------------------------------------------------------------------- 

 
Theorem 4.01:  Disjoint Cycles Commute  with  each  other.   
 
Proof : Let  $ and  v  be two disjoint cycles on  a non empty set  Q . 
 
Let  �  be the set of elements of Q  permutes by  $  and  
 
Let  �  be the set of elements of Q  permutes by  Ö  . 
 
As $ and   v  are disjoint , we have  � ∩ � = u		�	an empty set ) 
 
Also  $�#� = #  if  # ∉ �  and   v�#� = #  if  # ∉ � .  
 
To show that $ ∘ v = v ∘ $  , we take any element  # ∈ Q   and show that  
 �$ ∘ v��#� = �v ∘ $��#�   
 
Let   # ∈ Q    
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Case (i): # ∉ �		, # ∉ � 
 
In this case �$ ∘ v��#� = $>v�#�A = $�#� = # and  �v ∘ $��#� = v>$�#�A =v�#� = #  
 
Case (ii): # ∈ �	 
 
If # ∈ �  then $�#� ∈ �		and   # ∉ �  ⇒  v�#� = # 
 
Now  �$ ∘ v��#� = $>v�#�A = $�#� and  �v ∘ $��#� = v>$�#�A = $�#� as  $�#� ∈ 		�  and v  do nothing to elements of � . 
 
Case (iii): # ∈ �	 
 
If # ∈ �  then  v�#� ∈ �		and   # ∉ �  ⇒  $�#� = # 
Now  �$ ∘ v��#� = $>v�#�A = v�#�    as  v�#� ∈ 		�  and $  do nothing to 
elements of � . and  �v ∘ $��#� = v>$�#�A = v�#�  
 
Thus in each case we have , �$ ∘ v��#� = �v ∘ $��#� 
Therefore  $ ∘ v = v ∘ $ 
 
Definition:  Let # ∈ {1,2, … , -} and ö ∈ QH. The orbit of # under ö, written orb	�#�, is orb	�#� = {ö��#�:' ∈ ℤ} 
 
It should be seen that orb �#� is a finite set because it is a subset of {1,… , -}. 
 
Proposition 1:  Let # ∈ {1,… , -} and ö ∈ QH. Then there is a whole number % > 0 such that  ö¦�#� = #. 
 
Proof: The elements ö��#� for ' = 0,1,2,… can't all be different, so there 
must exist       0 < } such that ö~�#� = ö��#�. Then öL~ö~�#� = öL~ö��#�, so # = ö�L~�#� and we can take % = } − 0. 
 
Theorem 4.02: Let ö be a permutation of Ò. If   D   is the smallest strictly 
positive integer such that öw�#� 	= 	#, then the elements of Q = {#, ö�#�, ö��#�, . . . , öwL��#�}	are all distinct. Furthermore ,  ö��#� = #  
for any multiple  '  of  D  and  öH�#� ∈ Q  for any integer  - . 
 
Proof : Suppose ö¦�#� 	= 	ö©�#�, where 0 ≤ % ≤ & < D	.  Apply öL¦ 	 to both 
sides to get 
 
 #	 = 	ö©L¦�#�.   But 0 ≤ & − % < D	,  so by the the assumption on D,  
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 we have  & − % = 0  or   & = %	.  This proves the first part.  
 
 That ö��#� = #  for any multiple  '  of  D  is obvious.  
 
To show that  öH�#� ∈ Q  ,  we take  - = D2 + %  where 0 ≤ % < D 
 

Therefore  öH�#� = ö¦®wé�#� = ö¦ qöwé�#�r = ö¦�#� 	∈ Q 

 
Theorem 4.03: Every permutation on a finite set can be written as a cycle or as 
a product of disjoint cycles and the cycles that appear in any such expression of 
a given permutation are the same, up to order. 
 
Proof :  Let  ö  be  a permutation and let  Q  be the set of elements  permutes by ö . We assume that  Q  has  -  elements.  
 
Choose any element #� of Q.  
 
After it, write ö�#��. After that, write ö�ö�#��� 	= 	ö��#��, and continue until öw�#�� 	= 	 #�.  
 
The last element written is öwL��#��.	Write the result as a D-cycle: 
 
  ö� = �#� ö�#�� ö��#��……… öwL��#���  
 
After this, choose an element  #� ∈ S that is not in       
  Q� = {#�	, ö�#��	, ö��#��	, ……… öwL��#��}  and repeat. 
 
Write the corresponding cycle    ö� = �#� ö�#�� ö��#��……… öNL��#��� 
after the one previously written.  
 
We now show that ö�  and ö�  are disjoint.  
 
i.e        Q� = {#�	, ö�#��	, ö��#��, ……… öwL��#��	and   Q� ={#�		, ö�#��		, ö��#��		, ……… öNL��#��} are disjoint .  
 
We already have    #� ∉ Q�  ……………      (1) 
 
We first show that #� ∉ Q�  . 
 
If #� ∈ Q�  Then  #� = ö{�#��  :  1 ≤ � ≤ 6  
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Now #� = öN�#�� = öNL{>ö{�#��A = öNL{�#�� 	∈ 		 Q�   using the previous 
theorem. 
 
This contradicts that #� ∉ Q� 
 
Hence    #� ∉ 		 Q� …………..        (2) 
 
We now show that Q�  and Q�  have no common elements.  
 
Any element of  Q�  is of the form ö~�#��  and any element of Q�  is of the form ö��#�� . 
 
If  ö~�#�� = ö��#��   ……..(2) 
 
Then (i)   0 = } ⇒ 		 #� = #�  which contradicts both  (1)  and  (2) 
 
         (ii) 0 < } ⇒ 		 #� = ö�L~�#�� 		∈ Q� which contradicts      (2) 
 
         (iii) 0 > } ⇒ #� = ö~L��#�� ∈ Q�  which contradicts   (1)  
 
Hence  ö~�#�� ≠ ö��#��  
    
i.e  Q� and  Q�  are disjoint.  
 
We  Continue choosing previously unused elements and writing out the cycles 
they traverse until every element of Q  has been taken to get a series of cycles ö�, ö�, ö«……ö�.  
 
To show that  
 ö = ö�ö�	ö«……ö�. 
 
We note that each ö~  in the R.H.S are disjoint   and that each #  ∈ Q  have been 
taken in the above process . Also since ö~  are defined interms of ö , this 
established that  
 
   ö = ö�ö�	ö«……ö�.  
 
To prove the uniqueness of such decomposition.  
 
Suppose   ö�ö�	ö«……ö� = ����…… . �N.  …………..    (3) 
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We shall show that ö�  is equal to one and only one �z&		 . 
It is clear that there exist  �		 ∶ 1 ≤ � ≤ 6  and  ö�  and  �{  are not disjoint .  

We let  ö� = �	#�, #�… . . �    where  #� = ö�#�� … 

Since any element of a cycle can be moved up to the initial position if need be  

and  ö� and �{  are not disjoint .  

Then there exists !�  where   �{ = �!�, !�……�   and  #� = !�. 

But !� = ö�!�� = ö�#�� = #� 

Continuing this way we can deduce that  ö� = �{ .  
and since each �© are disjoint , can only have one ′�′  where ö� = �{. 
We can proceed in the same way   to establish the correspondence between  

the remaining öz©  with the remaining  �z&  .  
 
Theorem 4.04: The order of a permutation of a finite set written in as a product 
of disjoint cycles is the least common multiple of the lengths of the cycles.  
 
Proof. Let   ö  be a  permutation and let ö = ����… �� be the decomposition of ö into disjoint cycles of lengths   of length  D�, D�, … , D�. 
 
Let the order of ö  be  D  .  
As ��, ��, … , �� are disjoint, it follows that 
 öw = ��w��w … ��w 
 
But  the RHS is equal to the identity, if and only if  each individual term is 
equal to the  identity. 
 
It follows that      �~w = (   and  as   ��~� = D~ 
 
We  have   D~ divides D. Thus the least common multiple, ' of D�, D�, … , D� 
divides D.  
 
But   ö� = �������«�… ��� = (  and   �ö� = D  , Thus D divides '  and so D = '. 
  
Eg: �a�		If			σ = �1		2		�  then  order  of  σ is   2 
        (b)  If   ψ = �1	2	��	3		4		5	�  then  Order  of  ψ  ,    o�ψ� = LCM�2,3� = 6	 
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Theorem 4.05: Every permutation in S�, - > 	1, is a product of 2-cycles.  
 
Proof: First, note that the identity can be expressed as �1	2��1	2�, and so it is a 
product of  2-cycles. We know that every permutation can be written in the 
form ö = ����… �w …..          (1) 
 
Suppose   �¦ = ���	��	�«					�¦�  
 
It is easy to verify that   �¦ = ���	�¦����		�¦L��…… . ���	��� 
 
Proceeding this to each %  in  (1) completes the proof for the first part .  
 
Theorem 4.06:  A cycle of length D can be written as a product of �D − 1� 
transpositions. 
 
 i.e a cycle of even length is odd and  a cycle of odd length is even .  
 
Proof:  Suppose   �¦ = ���	��	�«					�¦�  
 
It is easy to verify that   �¦ = ���	�¦����		�¦L��…… . ���	��� 
 
Theorem 4.07:  If 	ö = ����… �w   where 	�¦  are transposition, then öL� =
�w�wL�… . ���� . 
 
The proof follows by direct computation   since transposition is inverse to itself.  
 
Definition:  Even and Odd Permutations 
 
A permutation that can be expressed as a product of an even number of 2-cycles 
is called an even permutation. A permutation that can be expressed as a product 
of an odd number of 2-cycles is called an odd permutation. 
 
Lemma:   The identity permutation  is even and not odd. 
The proof of this is beyond the scope of this book. Consult advanced algebra 
books.  
 
Theorem 4.08:  Every permutation in QH		�-	 > 	1� is either even or odd, but 
not both. 
 
Proof : Let ö be a permutation in QH. 
Let ö = ö�ö�… . . ö� = ����… . . �w  
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where ö¦ 		, �¦  are transposition . 

Suppose one of 	'		 %		D  is even and the other is odd . 

By the previous theorem , we have  öL� = ö�ö�L�… . . ö�ö� ⇒ � = öL�ö = ö�ö�L�… . . ö�ö�		����… . . �w   an odd permutation. 

This is not possible using the above Lemma.  

Hence both '  and D  must be even or odd.  
 
Theorem 4.09: Let ö	, � ∈ QH . Then    
 
(i) ö�   is even if   ö  and  �  are both even  or both odd.  
(ii) ö�   is odd  if  one of   ö  and  �  is even and the other is odd .  
 
Proof:   Let ö = ö�ö�… . . ö�    and   � = ����… . . �w  
where ö  is expressded as the product of  '  transpositions  and  �  is 
expressded as the  product of  D  transpositions .  
 
Then ö� = ö�ö�… . . ö�����… . . �w     is the product of  �' + D� transpositions 
which is even  if    ' and  D  are both even or odd. and  �' + D�  is odd if  one 
of   '  and   D  is even and the other is odd 
 
Theorem 4.10: The inverse of an even permutation is an even permutation.   
 
Proof :  If  P be an even permutation and ÐL� be its inverse, then ÐÐL� = 	�,  
the identity permutation. 
 
But  P and I are even        so ÐL�	is also even.     
             
Theorem 4.11: The inverse of an odd permutation is an odd permutation.  
Proof-: If P be an odd permutation and ÐL� be its inverse, then ÐÐL� = 	�, the 
identity permutation. 
 
But P is odd and I is even. 
             
so ÐL� is also odd.           
         
The Alternating  group- �7: The set of even permutations in  S�   is a group , 
called   the Alternating  group of degree  n  and is denoted by  A�. 
 
Proof : If ö	, �	 ∈ �H  then ö	, �  are even permutations. 
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⇒ �L�  is  also an even permutation. ⇒ ö�L�	  is an even permutation  (  product of even permutations is even )  ⇒ ö�L� ∈ �H  

Hence �H  is a group.  
 
Example: The Alternating  group of degree  3	, �« .    
 
We know that  an identity element and  a cycle of  odd length is even  . 
 
Thus  �« = {	(	,			þ = �1	2	3�	,			ó = �1		3		2	�} 
 
Introduction to symmetries  
 
Symmetry in mathematics refers to a situation where a shape or object remains 
invariant under certain transformations, such as rotation, reflection, translation, 
or scaling. 
 
We state below three types of symmetries that are of interest in pages to follow. 
 
Reflective Symmetry (Mirror Symmetry): Reflective symmetry  occurs when 
an object can be  divided into two parts that are mirror  images of each other. 
The dividing line or plane is  called the line or plane of symmetry. 
 
 For example,  in  a circle , any diameter  will divide the circle into two halves, 
one of which is the mirror image of the other.  
 
Another example, a square has four lines of symmetry namely the two 
diagonals and the two lines bisecting the opposite sides.  
 
Rotational Symmetry: An object has rotational symmetry if it can be rotated 
(less than 360 degrees) around a central point and still look the same. 
 
Example: A regular pentagon has rotational symmetry of order 5, as it looks the 
same after rotations of 72°, 144°, 216°, and 288°. 
 
Translational Symmetry: An object has translational symmetry if it can be 
shifted (translated) by a certain distance  in a certain direction and still look the 
same. 
 
Footprints are a great example of translational symmetry because they are 
asymmetrical figures that repeat in different locations. The symmetry occurs 
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because one footstep is  identical to another while positioned at different spots 
from the previous ones. Remember  that symmetry does not have to be on the 
figure or object itself. 

 
Symmetries of the square   
 
The symmetries of  a square Rotation and reflection transformation. Consider 
the square ADCD  and the  8 transformations given below:  

 
Rotations 
 
1. Identity rotation (0°): This leaves the square unchanged. 
2. 90° rotation: Rotates the square 90 degrees  counter - clockwise. 
3. 180° rotation: Rotates the square 180 degrees counter - clockwise. 
4. 270° rotation: Rotates the square 270 degrees counter - clockwise . 
    
Reflections 
 
5. Reflection over a vertical line: This line goes through the midpoints of the 

left and right sides of the square. 
6. Reflection over a horizontal line: This line goes through the midpoints of 

the top and bottom sides of the square. 
7. Reflection over the main diagonal: This diagonal goes from the top-left 

corner to the bottom-right corner. 
 
Reflection over the second diagonal: This diagonal goes from the top-right 
corner to the bottom-left corner. 
 
We shall denoted the above transformations as follows:  
 

 (1)  Identity rotation- I 
 (2)  90° rotation  - �� 
 (3) 180° rotation -  �� 
 (4) 270° rotation – �« 
 (5) Reflection over a vertical line – � 
 (6) Reflection over a horizontal line - h 
 (7) Reflection over the main diagonal-�� 
 (8) Reflection over the  second  diagonal - �� 
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The effect of these transformations on a square is given below.  
 

 
 
We  can view these  8  motions as functions on the orientations of the square 
region to itself .  
 
We now   show  a few examples that the combination of  two of these actions is  
equivalent to  one of the 8 actions .  
 
We shall ( in a natural way of functions composition )  view    an  action 	v  
followed by  an action $  as   �$ ∘ v�	.  
 
(i) If  we  “rotate the square  anti-clockwise by 90° “and follow  by"  reflection 

over the main diagonal” we are actually applying the composition ��� ∘ ���  
on the square . We show below the  final effect  of the combination of these 
two actions:  
 

 
 
We can see that these two actions combine, result the same as  �«  which is the 
rotation of 	270° . We leave to the readers to verify that any such combinations 
results to one of the  8 mentioned actions.  
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We also note that  if we rotate the square 90°  and then rotate again 270°  and 
vice versa  (both anti-clockwise ) , the square will be in the original position. 
 
i.e  ��« ∘ ��� = ��� ∘ �«� = �  This shows that ��and �«   are inverse to each 
other. 
 
We leave to the readers to verify that each of the above functions possesses 
inverses.  
 
Also since   �$ ∘ v�  is  the result  when ′	v		�	�&		$0%&�	"  and  "$		&(	 -�	" , 
the  associative property  for the above functions is clearly satisfy .  
 
With all the above discussion  then  we can now conclude that  the set  
�¸ = {	�	, ��	, ��	, �«,�	, h,��,��	}   forms a  group  under composition of 
functions . This group is called the Dihedral group of  order  8  and is denoted 
by �¸ . 
 
It is tobe noted that the notation ′	�¸′   is abbreviated  to  “ the dihedral group 
originated from the square which has  4 equal sides ” 
  
Dihedral group: With the above discussion about the  the symmetries of a 
square, we can  generalize to the symmetries of any regular - −gon  like 
equilateral triangles, regular pentagon , regular hexagon  and so on .   The 
symmetries on these figures will  form a group under composition of functions . 
For symmetries of a regular n-gon, we shall call the group, “ The Dihedral 
group �H”of order 2- .  
 
Exercise:  

1. Write the permutation ö = q1 2 3 43 4 1 2r  and  � = q1 2 3 42 1 4 3r in 

cycle notation. 
 

2. Write the following cycles as the product of disjoint cycles.  
    (i) �1		2		4		3		5��4		5	6	�     (ii) �1	3	2	5	6��2	3��4	6	5	1	2� 
 
3. Verify that composition of permutations is associative by showing �στ�ρ =ö���� for some permutations ö, �, and �. 

 
4. Find the inverse of the permutation ö = �135��24�. 

Verify that ö ⋅ öL� = id. 
 

5. Let σ = q1 2 33 4 2	 4 5	 5 1r		 , τ = q1 2 34 1 5	 4 5	 2 3r 
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      (i) Compute  ö�	, �ö	, öL�		, �L�	 
     (ii)  Express ö	, �	 as cycles or product of didsjoint cycles.  
 
6. Let 	ö = �	1		3		2		5		7		6	4� .  Find öL� . Express ö and öL�  as the product 

of transpositions. 
 

7. Find the order of the following cycles. 
   (i)  �1	2��1	3	4��1	5	2�     (ii)   �1	2	4��3	5	7	8	6	9�   (iii)  ���	��	�«		�¸	�  
 
8. Determine whether the following permutations are even or odd .  

  (i)  �1	2	4	3��3	5	2	1�   (ii) 		�1		3		2		5		6		4�   (iii)  q1 2 33 4 2	 4 5	 5 1r 

 
9. Construct the group table for  
    (a) The Dihedral  group  �« .  (b) The Dihedral  group  �¸. 
 

Also find all subgroups of both the groups. 
 
10. 1Prove or disprove the statements below. 
    (a)  The Dihedral  group  �«  is abelian. 
    (b) The Dihedral  group  �¸  is abelian 
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Chapter- 5 
 

Subgroups and Cosets 
 
 
Introduction  
 
In mathematics, particularly in group theory, a subgroup is a subset of a group 
that is itself a group under the same operation or simply saying , “ a subgroup is 
a group  within a group. To qualify as a subgroup, a subset must satisfy the 
group axioms (closure, associativity, identity, and invertibility). We shall start 
the chapter with the formal definition of a subgroup . 
 
Definition:  A subset h of a group Ö  which is itself a group under the operation 
of Ö, is  called a subgroup of Ö . If h  is a subgroup of Ö  we shall denote as h ≤ Ö. 
 
Example:  Consider the group +  of integers  under addition  and let 2+  be the 
set of even integers ( which is obviously a subset  of + ).     
 
In  2+		,  the closure property under  ′+zis satisfied as  the sum of even integers 
is even. 
 
The associative property inherits from the whole set + .  
 
An element ′0′  being  even , is in 2+ .   
 
Fininally , that the negative of any even integer is an even integer  , proves the 
existence of inverse.  
 
These lines above shows that 2+  is a group by itself  which is of course abelian.  
 
As 2+ is a subset of  + , it is called a subgroup of + .  
 
Instead of verifying all the group axioms, it would be better if a fewer 
conditions  is verified if those conditions are strong enough tobe equivalent to  
all the four group axioms.  
 
We shall state below the theorem that would allow us to quickly determine if a 
subset is or is not a subgroup.  
 



Chapter 5: Subgroups and Cosets 
 

72 

Theorem 5.01: (Subgroup Test ) -  A subset h  of a group Ö  is a subgroup of  Ö   if and only if  
 �, � ∈ h ⇒ ��L� ∈ h	.(in additive notation we write     �	, � ∈ h ⇒ �� − �� ∈h			�		 
 
Proof : Let   h  be  a  subgroup  of   Ö   .   By  existence  of   inverse . . 
 
If   �	, �		Þ	h  then   �L�		Þ	h			  
 ⇒ 		��L�		Þ	h    by  closure  property 
  
Conversely,   
Suppose  �, �	Þ	h ⇒ ��L�   -----------        (1) 
 
Let   �		Þ		h . 
 
Then  ��L�		Þ	h    by   assumption.  
 ⇒ (		Þ	h     i.e   the  identity  element  exists   in   h      ……   (2) 
 
Let   �	Þ	h , Now   (		, �			Þ	h ⇒ (�L�		Þ	h	 ⇒ 			 �L�		Þ	h    
 
Therefore   each  element  of   h  has  inverse  in   h  .   ……   (3) 
 
Associative  property  holds  in   h  as  h ⊆ 			Ö. 
  
Finally ,   $ %				�		, �		Þ	h   we  have   �L�			Þ			h              by   (3) 
 
and   �, �L�			Þ	h	 ⇒ 			���L��L�		Þ	h    by  assumption   (1) ⇒ ��		Þ	h    so that    h		0&		  closed . 
 
Hence   h  is  a group , a  subgroup   of   Ö	.  This completes the proof.  
 
The next theorem is called the two step subgroup test is equivalent to the above 
theorem.  
 
Theorem 5.03: ( two step subgroup test )  : A subset  h  of a group Ö  is a 
subgroup of  Ö  if   and only if     (i)  �, � ∈ h ⇒ �� ∈ h	 ( closure property ).   
and      (ii)   � ∈ h ⇒ �L� ∈ h   ( existence of inverse in	h	)  
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Proof: To prove this theorem , we shall show that it is equivalent to the previous 
theorem . 
 
i.e  one theorem implies the other .  
 
We take          "	�	, � ∈ h ⇒ ��L� ∈ h	"	 as the first  statement Ð�		 and  	(i)  �, � ∈ h ⇒ �� ∈ h	   .   
(ii)   � ∈ h ⇒ �L� ∈ h	"  as the second statement   Ð�.     
 
Now   Let  �	, � ∈ h ⇒ ��L� ∈ h	 ………..(1).  
 
To prove that the conditions in this theorem are satisfied ,  
 
we take �	, � ∈ h	 ⇒ �	, �	 ∈ h ⇒ 		��L� = ( ∈ h   by assumption (1) 

Now (	, � ∈ h ⇒ (�L� = �L� ∈ h .  this proves condition (ii) of the second 

statement .  

Also � ∈ h ⇒		 �L� ∈ h   

and �	, �L� ∈ h ⇒ ���L��L� = �� ∈ h . This proves condition (i) of the 

second statement . 

Thus Ð� ⇒ Ð� 
 
We now assume that  (i)  �, � ∈ h ⇒ �� ∈ h	   .  (ii)   � ∈ h ⇒ �L� ∈ h .  

Let �	, �	 ∈ h  

Then  �L� ∈ h	  by (ii)  

and �, �L� 	 ∈ h ⇒ ��L� ∈ h  by (i)  

i.e  �, � ∈ h ⇒ ��L� ∈ h.  

This proves that Ð� ⇒ Ð�  

Hence the two theorems are equivalent.  

One can also prove this theorem without showing its equivalence to the 

previous theorem.  
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Finite Subgroup Test  
 
Let h be a nonempty finite subset of a group  G. If h is closed under  the 
operation of G, then h is a subgroup of G. 
 
Proof : We already have  �	, � ∈ h ⇒ 		�� ∈ h	 .  
 
As h  is not empty , we take any element  � ∈ h	 . 
If � = (  then �L� = ( ∈ h . 

If  � ≠ (	 
Consider the set   Q = {	�, ��, �«……�H. . } .  
By the closure of   h	 ,  we have  Q ⊆ h . 

Hence , elements of  Q  cannot all be different . 

Let �~ = ��	   ( assume wlog   0 > 0		�  ⇒ �~L� = (  .  

As � ≠ (  ,  0 − } > 1   �0 − } − 1� ≥ 1  

and ( = �~L~ = ��~L�L�  ⇒ �L� = �~L�L�	 .   Also  �0 − } − 1� ≥ 1 ⇒		�~L�L� ∈ h	 
i.e �L� ∈ h	 . 
Hence h  is a subgroup of  Ö .  
 
Proposition:  If ' ∈ +  then  '+   the set of multiples of ' is always a 
subgroup of  + under ′+z . 
 
Proof:  If #	, ! ∈ '+  then  # = '6		, ! = '2   for some integer  6	, 2	. 
 
Now �# − !� = �'6 −'2� = '�6 − 2� ∈ '+ 
 
Thus '+  is a subgroup of +.  
 
Theorem 5.04: Any subgroup of  〈+,+		⟩	is of the form '+  where  ' ∈ +  .  
 
Proof :  Let h  be a subgroup of  + . 

Let  	'  be the least positive integer  in  h . 

Let  #	  be any element of  h. 
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By division algorithm  we have  # = '2 + %  where  0 ≤ % < '  

Now #	,' ∈ h ⇒ #	,'2	 ∈ 		h ⇒ �'2 − #� ∈ h 

 ⇒ % ∈ h .  

By the condition for  '  and  %  , we must have   % = 0  so that  # = '2 . 

As  ′#′  is an arbitrary element of h  , we conclude that  every element of h  is  

a multiple of  ′'′ . 
i.e  h = '+ . 
 
Theorem 5.05: If  h  and  Õ  are subgroups of a group  Ö  then  h ∩ Õ  is a 
subgroup of Ö . 
 
Proof : Let �	, � ∈ h ∩ Õ    ⇒ �	, � ∈ h  and  �	, � ∈ Õ	 ⇒ �L� ∈ h  and �L� ∈ Õ	 ⇒ ��L� ∈ h  and  ��L� ∈ Õ ⇒ ��L� ∈ h ∩ Õ	  
Therefore  h ∩ Õ is a subgroup of  Ö . 
 
Example: The union of two subgroups may not be a subgroup of  a group Ö . 

Consider the group + under   +   

Then  2+ , 3+  are subgroup   of  + . 

Now 	2 ∈ 		2+	, 3 ∈ 3+ ⇒ 		2		, 3	 ∈ 2+ ∪ 3+	 
But  �2 + 3� = 5 ∉ 2+ ∪ 3+  as  5  is neither a multiple of  2 nor  3 . 

Thus 2+ ∪ 3+  is not closed under  ′ + ′  and hence not a subgroup .  
 
Theorem5.06: Every subgroup of a cyclic  group is cyclic.     
 
Proof :  Ans :   Let   Ö = ���  be  a  cyclic  group generated  by   ′�′ 
Let   h  be   a  subgroup  of  Ö 

Let   	'  be  the  smallest  positive  integer   such that   ��		Þ	h 

i.e   ��		Þ		h  and   �¦ 		 ∉ 		h  for    0 < % < '  …………..(1) 

Let   � = ��   . 
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We  shall  show  that  "�" generates   h  

Let  #		Þ		h  be  any  element . ⇒ #	Þ		Ö    ⇒ # = �H   for   some  positive  integer   - 

As   #	Þ		h  

we  have   - > ' ⇒ - = '2 + %   where   0 ≤ % < ' 

Now   �H = ��é®¦ = ��é�� = ����é	�¦  ⇒ �¦ = �H���é�L�   

As   ��		Þ			h	 ⇒ 		 ��é 		Þ			h	 ⇒ 		 ���é�L�Þ			h 

Also   �H	Þ	h 

Therefore   �¦ =		�H	���é�L� = 			Þ	h 

As  0 ≤ % < '    using  (1) 

we  must  have  % = 0 

So that   - = '2	  Therefore  # = �H = ��é = ����é = �é 

 Showing  that  #   is   a power  of   � 

As  #  is  any  element  of  h 

Therefore   h is  generated  by   � 

i.e  h  is  cyclic . 

 
Theorem 5.07: Let Ö  be a group and  � ∈ Ö . Then the set  〈�⟩ = {	�H ∶ -	 ∈+		} is a subgroup of  Ö . ( This is a cyclic subgroup  generated by  ′E′  ) 
 
Proof : If  #	, !	 ∈ 	 〈�⟩  then # = ��		, ! = �H for  some  '	, -	 ∈ + . 
 #!L� = ����H�L� = ��LH 	 ∈ 〈�⟩  
 
Thus  〈�⟩  is  a subgroup  of   Ö . 
 
Example: Let Ö = +�  . We shall examine the subgroups of +�  generated by 
each  non identity element  under addition mod 6. 
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We have  1 × 1 = 1	, 2 × 1 = 2	, 3 × 1 = 3, 4 × 1 = 4		, 5 × 1 = 5	, 6 × 1 =6 ≡ 0 ⇒ 〈1〉 = {0,1,2,3,4,5} = +�  

 1 × 2 = 2		, 2 × 2 = 4		, 3 × 2 = 6 ≡ 0	 
Thus  〈2〉 = {0	, 2	, 4	} 1 × 3 = 3			, 2 × 3 = 6 ≡ 0  ⇒	 〈3〉 = {0	, 3	}  1 × 4 = 4		, 2 × 4 = 8 ≡ 2	, 3 × 4 = 12 ≡ 0  ⇒ 〈4〉 = {0, 2,4}  1 × 5 = 5		,			2 × 5 = 10 ≡ 4		,			3 × 5 = 15 ≡ 3	, 4 × 5 = 20 ≡ 2	  5 × 5 = 25 ≡ 1  , 6 × 5 = 30 ≡ 0 ⇒ 〈5〉 = {0,1,2,3,4,5	} = +� . 
 
Example: Consider the group   àÎ = {	1,3,5,7	}   under multiplication mod  8 . 
We have 3� = 9	 ≡ 1	' �	8   5� = 25	 ≡ 1	' �	8  7� = 49	 ≡ 1	' �	8  

So that each elements are their own inverse .  

Also  〈3⟩ = {	1	, 3	}		, 〈5⟩ = {1, 5	}		, 〈8⟩ = {	1	,8	}	  
 
Definition: Let Ö  be a  group.  The center, Z(G), of  Ö is the subset of elements 
in G that  commute with every element of G.  
 
 i.e  +�Ö� = 	 {� ∈ Ö		�# = #�		∀		#	0-	Ö}.  
 
Theorem: The center of a group G is a subgroup of G. 
 
Proof: Let +�Ö�  be the center of  Ö . 
 
Let  	�, � ∈ +�Ö� 
We have  �! = !�		∀			!	 ∈ Ö ⇒ !�L� = �L�!		∀	! ∈ Ö  ⇒ �L� 	 ∈ +�Ö�  
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Now , ���L��# = ���L�#� = ��#�L�� = ��#��L� = �#���L� = #���L�� =. ���L�� ∈ +�Ö�  
Hence +�Ö�  is a subgroup of  Ö . 
 
Definition:  Centralizer of an element  in G.  
Let Ö  be a group  and � ∈ G. The centralizer of � in G  is the set ���� of all 
elements in Öthat commute with ′�′ .  
i.e  ���� = {	# ∈ Ö	 ∶ 		�# = #�		} 
 
Theorem 5.08: The centralizer of an element of a  group  Ö is a subgroup of G .  
 
Proof: Let �	 ∈ Ö .  

 We have  ���� 	= 	 {#	Þ	Ö		 ∶ #�	 = �#}  .          
 Let  #, !		Þ	���� 
Therefore   #� = �#		�-�			!� = �! 

Also  �! = !� ⇒ �!!L� = !�!L� ⇒ � = !�!L�  ⇒ !L�� = !L�!�!L�  ⇒ !L�� = �!L�  

Now  �#!L��� = #�!L��� = #��!L�� = �#��!L� = ��#�!L� = ��#!L�� 
This   shows  that   #!L�			Þ	���� 
Hence  ����   is   a  subgroup  of   Ö 
 
Cauchy’s Theorem for Abelian Groups 
Let Ö	be a finite Abelian group and let 6 be a prime that divides the order of Ö.  
Then Ö has an element of order 6. 
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Cosets 
 
Introduction 
   
Cosets are fundamental constructs in group theory that allow us to partition a 
group into distinct subsets based on the subgroup structure. Let's delve into the 
details: 
 
Coset of a Subgroup: Let  Ö be a group and h  a subgroup of Ö.  
 
For any element v ∈ Ö, the left coset of h containing v is defined as: vh = {vℎ:	ℎ ∈ h}     ( in additive notation is written 	v + h = {	v + ℎ ∶ ℎ ∈h		} ) 
 
This set consists of all elements obtained by multiplying/adding  v on the left by 
elements  of h. 
 
Similarly, the right coset of h containing v is: hv = {ℎv ∣ ℎ ∈ h}     ( in additive notation is written 	h + v = {	ℎ + v ∶ ℎ ∈h		} which consists of all elements obtained by multiplying/adding  v	on the 
right by elements of h. 
 
Note: h( = h  for an identity  element  ′(′ .  
 
Note: As å	 ∈ k	 , for any � ∈ Ü,  	� = �å	 ∈ �k				  and � = å� ∈ k� . 
 
Example: Consider the group +¸  under addition mod  4  and its subgroup  h = 〈2⟩ = {0,2} . 
 
For an element  3 ∈ +¸	,	   the left  and right  cosets of h  containing  3	  are  3 + 〈2⟩ = {	3 + 0	, 3 + 2} = {3	, 5	} 
and   〈2⟩ + 3 = {	0 + 3	, 2 + 3	} = {	3	, 5	} 
 
Example: Consider the subgroup  2+  of even integers .  For an element  1 ∈ +, 
the left and right cosets of  2+  containing  ′1′  are  
 1 + 2+ = {1 + 2':' ∈ +		} 
and 	2+ + 1 = {	2' + 1 ∶ ' ∈ +	}   which is the set  of odd integers . 
 
Example: Consider the group àÎ = {1,3,5,7	}  and a subgroup  h = 〈7⟩ ={	1,7} 
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For  � = 3	 ,  h� = {1 ∗ 3		, 7 ∗ 3	} = {	3	, 5	}    (here  ∗  is multiplication 

modulo  8 )  

For  � = 5  , h� = {	1 ∗ 5	, 7 ∗ 5	} = {	5	, 3	}  
For � = 7  , since 7 ∈ h  , h� = h 

This can be verified also as  h� = {	1 ∗ 7	, 7 ∗ 7	} = {	7	, 1	} = h  
 
We shall later show that cosets partition  the  group  Ö  and that any two cosets 
have the same number of elements   finite or infinite.  
 
Definition:  Let h be  a  subgroup  of  Ö.  The  number  of  distinct left ( or 
right)  cosets of  H  in  G   is  called  the  index of  H in  G  written as  |Ö: h|.  
 
Theorem 5.09: Let Ö  be a group and  h  be  a finite  subgroup of  Ö . Then any 
two right (or left )  cosets of  h  in  Ö  have the same number of elements as  h .  
 
 Proof: Let  h = {	ℎ�, ℎ�, ℎ«	, ……ℎH}   where each v~ 		�%(	�0&�0-	�	  for 1 ≤ 0 ≤ -	 and    v ∈ Ö	 . 
 
Then   hv =	 {	ℎ�v		, ℎ�v		, ℎ«v			, ……ℎHv}    
These elements of hv  are distinct, otherwise  ℎ~v = ℎ�v   with 0 ≠}		, �!		�-	(JJ��0 -	J�â	 we shall have   ℎ~ = ℎ�  which is not true as each  ℎ~  
are distinct.  
It is now clear that  hv  and  h  have the same number of elements.  
 
Theorem 5.10: Let Ö  be a group and h a subgroup of Ö .  For �	, � ∈ Ö	 , h� = h� ⇔ ��L� ∈ Ö . 
 
Proof :   If h� = h� 

then   � ∈ h� = h� ⇒ � ∈ h�		 
so 		� = ℎ�	 for someℎ ∈ h	. ⇒ ��L� = ℎ	 ∈ h . 

Conversely: If  	��L� ∈ h	 
Let  x ∈ ha , then  #	 = 	ℎ� for some ℎ ∈ h . 

Now  #	 = 	ℎ�	 = 	ℎ��L��	 = 	ℎ�� ∈ h�  where ℎ� 	= 	ℎ��L�                                                                                               ∴	 h� ⊆ h� 
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Also ��L� ∈ h ⇒		 ���L��L� = ��L� ∈ h   as h  is  a subgroup .  

Let ! ∈ h�	, then  ! = ℎ�	for some  ℎ ∈ h 

Now ! = ℎ� = ℎ��L�� = ℎ�� ∈ h�   where  ℎ� = ���L�  ∴ h� ⊆ h�  

Hence h� = h� . 

 
Theorem 5.11: Let Ö  be a group and h a subgroup of Ö.  Then any two  right  
( or left ) cosets are either identical or disjoint.  
 
Proof :  Let h�	, h�  be two right cosets.  
 
If h� ∩ h� = u  the empty set , then the proof completed.  

Suppose  h� ∩ h� ≠ u 

Let # ∈ h� ∩ h�  

Then 	# ∈ h� ⇒ # = ℎ�	  and   # ∈ h� ⇒ ℎ��  where  ℎ	, ℎ� ∈ h . 

Now # = ℎ� = ℎ�� ⇒ ��L� = ℎL�ℎ� ∈ h 

By previous theorem , h� = h� . 
 
Theorem 5.12: Let Ö  be a group and  h  a subgroup of  Ö .  Then any element # ∈ Ö  is in one and only one right ( or left ) coset of h  in Ö .  Also  Ö =∪hv  
where hv  runs over all distinct  right cosets of h  in Ö. 
 
Proof :  Let # ∈ Ö  . Then # = (# ∈ h#  
 
Suppose # ∈ h�  for some right coset h� , then h� ∩ h# ≠ u ⇒ h� = h#  

Hence # is  and only is  in h# .  

For the second part ,  that   ∪hv ⊆ Ö    is  obvious.  

Also # ∈ Ö ⇒ # = (# ∈ h#	,⇒ # ∈		∪hv 

Therefore Ö =	∪hv .  
 
Corollary:  If  Ö  is a finite group and  h  a subgroup of Ö    then   �Ö� = |Ö:h| ×  �h� 
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Lagrange’s Theorem on Finite groups:  Let Ö  be a finite group  and  h a 
subgroup of  Ö.  Then  the order of Ö  is divisible by the order of  h  .  or   �h�| �Ö� . 
 
Proof: Let the index of   h  in Ö  be  %   ,  �Ö� = -		,  �h� = ' 
Let hv�, hv�, hv«, …… .hv¦   be the collection of all distinct  right cosets of  h . 
 
Since any element # ∈ Ö  is in one and only one  coset    hv~   
We have   Ö =∪~��¦ hv~  
As  each hv~ are distinct , they are disjoint  . 

Also Each cosets have the same number of elements as  h . 

Hence   - =  �Ö� =  �∪~L�¦ hv~� = ∑  �hv~�¦~�� = '%	 ⇒ '|-	  
 
Some of the applications of Lagrange’s Theorem are given below: 
  
Determining Possible Subgroup Orders 
 
Lagrange’s Theorem helps in identifying possible orders of subgroups of a 
given finite group.  
 
For example, if a group Ö is of  order 12, then its subgroups must have orders 
that are divisors of 12, i.e., 1, 2, 3, 4, 6, or 12. 
 
Proving Non-existence of Certain Subgroups 
 
Lagrange’s Theorem can be used to show that certain subgroups do not exist. 
For instance, a group of order 12 cannot have a subgroup of order  5, since 5 is 
not a divisor of 12. 
 
Cosets and Index of Subgroups 
 
The theorem is used to understand cosets and the index of subgroups. The index 

of a subgroup h in Ö   is given by 
|�|
|�|	 This is always an integer due to  

Lagrange's Theorem. 
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Understanding Cyclic Groups 
 
Lagrange's Theorem helps in analyzing the structure of cyclic groups. If Ö is a 
cyclic group of order -, then for any divisor � of -, there exists a unique 
subgroup of Ö of order �. 
 
Example: Consider the symmetric group Q«, which is the group of all 
permutations of three elements. Q«  is of  order 6. The possible orders of 
subgroups of Q«, according to Lagrange’s Theorem, are the divisors of 6 which 
are  1, 2, 3, and 6. 
 

• The trivial subgroup has order 1. 
• The subgroups of order 2 are generated by single transpositions namely  �1		2�	, �1		3	�	, �2		3�    which are  h� = {	(	, �2			3�	}		,			h� = {	(		, �1		3	�	}		, h« = {		(	, �1		2	�}  
• The subgroups of order 3 are cyclic subgroups generated by  a  3-cycle �	1		2			3		�  or   �		1		3		2	� 

i.e  h = {		(	, �	1		2		3	�	, �1		3		2	�} 
The whole group Q« itself is the subgroup of order 6. 

• By Lagrange’s Theorem, Q« cannot have subgroups of any other orders. 
• Using Lagrange’s Theorem , we can determine the index of each of the 

above subgroups  Index of h�	0-	Q« = ����
����� = 3  ,  Index of h�	0-	Q« =3		, Index	of	h«	0-	Q« = 3 Index of h	0-	Q« = 2 

 
Exercise  
 
1. Find all cyclic  subgroups of +«	, +¸, +Ô		 

 
2. Find all cyclic subgroups of  �¸ . 

 
3. Find the cosets  of  each of  the subgroups    {(, �1		2�	}		, {	(	, �1		3�}		, {	(		, �2	3�	}		of  Q« .   

 
4. Prove that if � is the only element of order 2 in a group, then a lies in 
    the center of the group. 
 
5. Let ′�′  be an element of a group and  �«� = ( . Find all possible orders of ′�z . 

 
6. Let ′�′  be a  group element  and  order of ′�′  is infinite . prove that  
       �H = �� ⇔ - = '	 . 
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7. Let à�14�  be  a group of units integers  modulo  14. Show that à�14� is 
cyclic and find  all its generator.  

 
8. Let a be a group element of order n, and suppose that d is a positive 
      divisor of n. Prove that |��| = HÅ	. 
 
9. Examine whether the following subsets are  subgroup of  � ( the complex 

numbers . 
 
  (i) Q = {	� + 0� ∶ 		�	, �	 ∈ �		, �� ≥ 0		}  
 (ii) Q = {	� + 0� ∶ 		�	, �	 ∈ �		, �� ≤ 0		}    

 
10. Prove that the set of Guassian integers{	� + 0� ∶ 		�, �	 ∈ +	} is a group under 

usual addition  of complex number . Is it a group under multiplication ?  
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Chapter- 6 
 

Normal Subgroups and Direct Products 
 
 
In group theory, a normal subgroup (or invariant subgroup) is a subgroup that is 
invariant  under conjugation by members of the group. Before defining normal 
subgroups, we first introduce  the definition of conjugate elements of a group. 
 
Conjugate elements of a group  
 
Two elements � and � in a group Ö are said to be conjugate if there exists an 
element v in Ö such  that   � = 	v�vL�. In other words, � is the result of 
conjugating � by v. 
 
Conjugacy Class 
 
The set of all elements in Ö that are conjugate to a given element � forms the 
conjugacy class of �. The conjugacy class of � in Ö is denoted by �J���		 
 �J��� = {	# ∈ Ö	 ∶ 	# = 	v�vL�	 for some v	in Ö } 
 
Definition:   A subgroup  ,  of a group Ö  is called a normal subgroup if  
 v-vL� ∈ ,				∀	- ∈ ,				,			∀	v ∈ Ö 
 
If ,  is  normal in Ö  we write  , ⊴ Ö	   or  , ⊲ Ö.      
 
Example: Consider the group Ö = {	±1	, ±0		}   and  a subgroup  , = {±1	}  
under usual  multiplication.  
 
 It is easy to  verify that  v-vL� ∈ ,  for each  - ∈ ,	, v ∈ Ö   so that  	, ⊲ Ö.  
 
Example: Let  Ö  be    a  group . The  centre +�Ö�   of     a  group  Ö  is  a 
normal subgroup  of  Ö. 
 
Proof: Let  �	, � ∈ +�Ö� 
Therefore  �! = !�			, �! = !�		∀		! ∈ 		Ö 

And �! = !� ⇒ !�L� = �L�!           

Now  ���L��! = ���L�!� = ��!�L�� = ��!��L� = �!���L� = !���L��  
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Thus   ��L�   commutes   with  any  element   ! ∈ 		Ö 

ie. �		, � ∈ +�Ö� ⇒ 		��L� ∈ +�Ö�     so that   +�Ö�  is   a   subgroup   of   Ö. 
Let  v ∈ Ö		,			� ∈ 		+�Ö�   . Then �v = v�			, �vL� = vL�� 

we  have   �v�vL��! = �vvL���! = �! = !� = !�vvL��� = !�v�vL��  ⇒ 	v�vL� ∈ +�Ö�   for  any   � ∈ 		+�Ö�	, v ∈ Ö 

proving  that   +�Ö�  is   a  normal  subgroup  of   G 
 
Theorem 6.01: Every subgroup of an abelian group is  normal.  
 
Proof : Let Ö  be an abelian  group , h  a subgroup of Ö .  

For any  v ∈ Ö  ,  ℎ ∈ h    we always have  vℎvL� = vvL�ℎ = ℎ	 ∈ h 
 
Theorem 6.02: A subgroup N of  a group  G is normal  if and only if  v,vL� =,	∀	vÞ	Ö(here v,vL� = {v-vL�: -Þ,} ) 
 
Proof:  Suppose  v,vL� = ,	∀	vÞ	Ö  

we have v-vL�Þ	v,vL� = , 

Hence v-vL�Þ	,  therefore    N is normal in G 
 
Conversely  if  N is normal .   

We have v-vL�Þv,vL�              

Also  v-vL�Þ	,   as   ,  is  normal  

 ⇒ v,vL� ⊆ ,…………�1� 
Now , Let -	Þ	,   

then  - = v�vL�-v�vL� = v-�vL�Þ	v,vL�   …..(2)            {  where  -� =vL�-v = v�-v�L�	Þ	,	 as N is normal 

From (1) and   (2)   we have  v,vL� = , 
     
Theorem 6.03:  A  subgroup   N  is normal  in G  if and only  if  (1(%!	J($�		 &(�	 $	,	 in G  is  a  right  coset.  
 
Proof :  Suppose  , is  normal in  G  

Let v, be  any  left coset of  N in  G  
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Since  N  is  normal , we have  v,vL� = ,           (using previous theorem) ⇒ �v,vL��v = ,v  or   v, = ,v  showing that  the  left  coset   v, is  also 

the  right  coset  ,v  

 
Conversely  Suppose ¤�¤¥ 	!¤"#	$X%¤#	X"	&	  in G  is  a  right  coset 
 
Then for  vÞÖ	  ,  v,		being the  left  coset  must  also  be the  right  coset .  

(which right coset ?)  

Now  v = v(	Þ	v,    and   v = (v	Þ	,v                          {(		Þ		,	 
Thus v,  and  ,v have  a  common  element , hence  must  be  identical  

Therefore v, = ,v  ⇒ v,vL� = ,vvL� = ,   

Hence ,  is  normal.   (using previous theorem )  
 
Theorem 6.04: A  subgroup  ,  of  Ö  is normal in Ö if  and  only  if   the 
product of  two  right cosets ( or  left cosets ) is again  a  right  coset  ( or  left  
coset )  
 
Proof: Let   ,  be  normal in  Ö 

Let  ,�,			,�  be  two right cosets of  , 

Now , ,�,� = ,��,�� = ,�,���    {,� = �,  as N is  normal                      

                      = ,,�� = ,�� 
 
Conversely : suppose that the product of any two right cosets of , is again a 
right coset of ,.  
 
Then ,�,� is a right coset of ,.   ( note here   we cannot  claim yet that  ,�,� = ,��  )  
 
Also    �� = �(���(��	Þ	,�,�  and �� = (����Þ,�� 
 
Thus ,�,�  and  ,��  are two right cosets having  common  elements  
 
Therefore  &E&F = &EF 
 
Now  Let vÞÖ  and  -Þ,  
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Then v-vL� = �(v��-vL��	Þ,v,vL� = ,vvL� = ,( = , 
i.e v-vL�Þ, ,  therefore  N  is  normal 
 
Example: Recall the symmetric group  Q« of degree . We present again  below 
its table  
  ∘ å	 �M �s  �t � �   å	 (	 u� u�  u« þ ó   

�M u� ( þ ó u� u« 
�s u� ó (	 þ u« u� 
�t u« þ ó ( u� u� 
� þ u« u� u� ó ( 
� ó u� u« u� ( þ 

 
Consider  the  subgroup  h = {(, þ, ó	}   
 
We   shall calculate  vℎvL�   for   each    v ∈ Q«		,			ℎ ∈ h 

For   v = (	, þ	, ó   it is   clear   that    vℎvL� ∈ 	h  for  any  ℎ ∈ h  as  (	, þ	, ó     

are   elements  of   h   

For v = u�, u�, u« 

We  have   u«þu«L� = �u«þ�u« = u�u« = ó 

u«óu«L� = �u«ó�u« = u�u« = þ  

u�þu�L� = �u�þ�u� = u«u� = ó  

u�óu�L� = �u�ó�u� = u�u� = þ  

u�þu�L� = �u�þ�u� = u�u� = ó  

u�óu�L� = �u�ó�u� = u«u� = þ  
 
Thus  we   have  seen  that  vℎvL� ∈ h		$ %	�-!		v ∈ Q«		, ℎ ∈ h  
Therefore   h = {(		, þ		, ó		}   is   a   Normal  subgroup  of    Q«     
We state and prove below another useful theorem that can sometimes determine  
whether a subgroup is normal .  
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Theorem 6.05: If Ö is a group and h a subgroup of index 2 in Ö, prove that H 
is a normal subgroup of G.  
 
Proof :    Since  h  is  of   index  2 ,  there  are   only   two distinct  left  cosets   
and  only  two  distinct  right  cosets. 
 

Let 	h	  and  h�   be the  right  cosets  ,   h  and  �h   be  the  left  cosets  
       
Then   Ö = h ∪ �h   and   h ∩ �h = ∅ 
 ⇒ �h = Ö − h	 -------------        (1) 
 
Similarly  ,  h� = Ö − h ---------       (2) 
 
Therefore  �h = h�  showing that   h   is  normal. 
 
Example: Prove that if  Õ is a subgroup of a group Ö such that v�	Þ	Õ, ∀	v		Þ	Ö,  
then Õ is normal in Ö. 

 
Solution:  Let  v	Þ	Ö 

   ⇒ vL�	Þ	Ö	 ⇒ �vL��� = vL�	Þ	Õ using  given   condition . 

 
Let  D		Þ	Õ	 ⇒ DL�	Þ	Õ  ⇒ DL�vL�		Þ	Õ  
 
Also   �vD�		Þ		Ö ⇒ 			 �vD��		Þ	Õ			∀			v		Þ	Ö		   
 
Now �vD��	�DL�vL��		Þ		Õ  ⇒ �vDvDDL�vL��	Þ	Õ  ⇒ vDvL�		Þ	Õ   . 
 
Hence   Õ  is   normal  in  Ö 
  
Using  this theorem in the previous example  for h = {(, þ, ó	}   ,  
 
we have  �h� = 3		,  �Q«� = 6  
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Therefore h  is of index  
�« = 2   in Q«		 and as such , h  is normal .  

 
Theorem 6.06: The intersection of any two  normal subgroups of a group G is a 
normal subgroup of G.                   

 
Proof :  Let  Ö  be  a  group    
Let   h			, Õ  be  two  normal  subgroups  of   G  

     Let �	, �		Þ	h ∩ Õ  

    ⇒ �, �	Þ	h	   and  �	, �	Þ	Õ  

    As  H  and  K  are   subgroups   we  have   

  		��L�	Þ	h	   and   ��L�		Þ	Õ  

    ⇒ ��L�	Þ	h ∩ Õ  

    Therefore  h ∩ Õ  is a  subgroup  of   G 

    Let   v		Þ		Ö   ,  -	Þ		h ∩ Õ   

     ⇒ -	Þ		h			�-�			-	Þ	Õ 

     As  h		�-�	Õ  are    normal  in   G   we  have   

      v-vL�	Þ		h    and   v-vL�		Þ		Õ 

      ⇒ v-vL�	Þ		h ∩ Õ. Thus  h ∩ Õ   is  normal  in  G 

 
Normalizer :  Let Ö  be a group and h  a subgroup of  Ö . The normalizer of h 
denoted by ,�h�  is the set    ,�h� = {	v ∈ Ö		|		vhvL� = h		}	.  
 
Proposition:  The normalizer of a subgroup of Ö  is a subgroup  of   Ö . 
 
Proof: Let h  be  a subgroup of Ö . 
 
We have   ,�h� = {	v ∈ Ö		|		vhvL� = h		}	  
Let #	, !	 ∈ ,�h�  
Then #h#L� = h		,			!h!L� = h ⇒ 	!L�h! = h 

Now  �#!L��h�#!L��L� = �#!L��h�!#L�� = #�!L�h!�#L� = #h#L� = h ⇒ #!L� ∈ ,�h�  
Hence ,�h�  is a subgroup   of Ö  .  
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Note: From the definition of the normalizer , it is clear that h  is always a 
normal subgroup of   ,�h�.  
 
Also If h  is normal in Ö  then  ,�h� = Ö  .  
 
Multiplication/Addition of cosets of normal subgroups  
 
Let Ö  be a group and ,  a normal subgroup of  Ö .  For two cosets ,�,,�  of ,  we define the multiplication  as �,���,�� = ,��  
 
We first show that this  multiplication of  cosets of  N  is  well- defined  
namely – if ,� = ,#			�-�		,� = ,!  then  ,�,� = ,#,! 
To prove this ,  
 
We have  	,� = ,# ⇒ �#L�Þ	, ⇒ �#L� = -�Þ, ⇒ � = -�# 

Similarly ,� = ,! ⇒ � = -�!  for   -�Þ,  

Now  ,�,� = ,�-�#�,�-�!� = �,-��#�,-��! = ,#,!  as   -�	, -�	Þ	, 
 
We can translate the above definition to addition as  �, + �� + �, + �� = , + �� + �� 
with these definitions , we an proceed to the next topic .  
 
Factor Group/Quotient Group 
 

Definition:  Let Ö  be  a  group  and   , be  a normal  subgroup  of Ö .  Let   
�
(   

be   the  collection  of  all distinct  right (or  Left)  cosets  of  N in  G .  
 

i.e    
�
( = {,v ∶ vÞÖ		}   or  

�
( = {, + v ∶ vÞÖ	}  for  an additive  group  G 

 

Then  
�
(  is   a  group under  cosets multiplication . This  group  is  called a  

quotient group  or  Factor group of  G by  N .  
 
Proof:  * Let ,�,,�   be  two  rights cosets of  N .  As   N  is normal , we  have   ,�,� = ,�� is  aslo a  right  coset  of  N .  
 

 i.e  ,�	, ,�	Þ �
( ⇒ 	,�,� = ,��	Þ	 �(   .  So the  closure property  holds .  
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*  If  ,�, ,�	, ,		Þ �
(   then �,�,��,	 = ,��,	 = ,��	 = �,���,�	� =�,���,�,	� 

Therefore  the associative property holds .  
 

*We  have  (Þ	Ö ⇒ 		,( = ,		Þ �
(  

 
and �,��,�� = ,(,� = ,(� = ,� = ,�( = ,�,( = �,���,�  
 
Therefore & = &å  is  the  identity  element . 
 
Lastly ,  if  �ÞÖ   then   �L�ÞÖ	 
 

therefore  ,�	Þ �
( ⇒ ,�L�	Þ �

(	  
 
and  ,�,�L� = ,��L� = ,( = , = ,�L�� = ,�L�,� 
 

showing that  &ELM is  the  inverse  of   ,�  in  
�
(  

 

Hence  
Ü
&  is   a  group . 

 
Theorem 6.07: If  G is  a  finite  group and  N  is  a normal subgroup of  G   
then   q�(r = ����

��(�  . 
 
Proof : Let -  be the  order of  Ö  and  ' be the  order of  N.  
 
Let   6	 be  the  index of  ,	0-		Ö	.  (  index of  N  is  the  number of  distinct 

right cosets of  N  in  G ) then   q�(r = 6 .  

 
Also we know that  if  ,v�		, ,v�		, ,v«	, ⋯,v~ 		, ⋯,vN   are the  6 distinct 
right  cosets  of  , in  G then  Ö = ,v� ∪ ,v� ∪ ,v« 	∪ 		⋯∪ ,v~ ∪⋯∪,vN  
so that  - =  �Ö� =  �,v�� +  �,v�� +  �	,v«� +		⋯+  �,v~� +		⋯+ �,vN�   as  each ,v~  are  disjoint  .  
 
 
Since  �,� = '  therefore   �,v� = '  
 

from above   we have - = '6     or   6 = H�  ie   q�(r = ����
��(�  
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Example: Examine the elements of   a  group   
)¸)    where  +  is the  set  of  

integers  and  4+ is  the  set  of  all integers which are  multiple  of  4. ( or  4+ = {4#: #Þ+		} 
 
Ans: We first note  that  +  is  a  group under  + .  
 

Hence any  element in 
)¸)		 is of the  form  4+ + *  where   *	Þ	+ . 

 
Now *		Þ	+ ⇒ 		* = 4D	 %	4D + 1		 %		4D + 2			 %		4D + 3   

Thus  4+ + * = 4+ + 4D = 4+    as   4D	Þ	4+	                                     
or 4+ + * = 4+ + �4D + 1� = �4+ + 4D� + 1 = 4+ + 1 

or 4+ + * = 4+ + �4D + 2� = 4+ + 2 

or 4+ + * = 4+ + �4D + 3� = 4+ + 3  

Hence 
)¸)	  has  four  elements  i. e  

)¸) = {4+	, 4+ + 1, 4+ + 2	, 4+ + 3		}  
 
As  seen  above  we can  generalize  the  statement  as   
 

If ' is  any  positive  integer,   then  
)�)   has  '  elements   

namely '+, '+ + 1	, '+ + 2	,⋯⋯ , '+ + �' − 1� . 
 
Product/Sum of Two Subgroups 
 
Let h,Õ  be two subgroups of  Ö . The product of H and K is  a set  define as  hÕ = {ℎD: ℎÞh		, DÞ	Õ	}  
 
The Sum is defined as  h + Õ = {ℎ + D: ℎÞh		, DÞ	Õ	}   
 
Note that hÕ  is a  subset  of  Ö  
 
Result: Let h  be a subgroup of  Ö . Then  hh = h	  (or h +h = h for 
additive  group )  
 
Proof: ℎÞh ⇒ ℎ = (ℎÞhh ⇒ h ⊆ hh		And #Þhh ⇒ # = ℎ�ℎ�Þh		                         
for  ℎ�	, ℎ�	Þ		h   and h  is closed. 
 
Theorem 6.08: If  H and K are two  subgroups of G  then hÕ is a subgroup of 
G   if and  only if    hÕ = Õh 
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Proof: Suppose hÕ is a subgroup of G.  
 
To show that +k = k+  
 
Let   ù	Ý		+k.  
 
Therefore # = Dℎ		for	some		ℎÞh		and		DÞÕ  

Now  D	 = 	(D	 ∈ 	hÕ and   ℎ = ℎ(	 ∈ 	hÕ  

Since hÕ is closed  being a  subgroup  

we have  # = Dℎ	 ∈ 	hÕ.  

Thus ,  Õh	 ⊆ 	hÕ.  

Now let 	,	Ý	k+ 

As hÕ		is  a  subgroup , we have  !L�ÞhÕ 

Let !L� = ℎD ∶ ℎ	Þh	, D	ÞÕ 

Now ! = �!L��L� = �ℎD�L� = DL�ℎL�		Þ	Õh  

This shows that hÕ	 ⊆ 	Õh.  

Hence if hÕ is a subgroup of Ö, then. hÕ	 = 	Õh 
 
-?7.å:ìå/, suppose hÕ	 = 	Õh. We will show that  hÕ  is  a  subgroup  of  
G . 
 
Let �, �	 ∈ 	hÕ;   say �	 = 	ℎ�D� and �	 = 	ℎ�D� where ℎ�, ℎ� 	 ∈ 	h and D�, D� 	 ∈ 	Õ.  
 
Now ��L� = �ℎ�D���	ℎ�D��L� = ℎ�D�D�L�ℎ�L� = ℎ�D«ℎ�L� {where Gt =GMGsLMÝ+ 
 
Also  D«ℎ�L�ÞÕh = hÕ => D«ℎ�L�ÞhÕ 
 ⇒ D«ℎ�L� = ℎ«D  where ℎ«Þh		, DÞÕ 
 
Therefore ��L� = ℎ�D«ℎ�L� = ℎ�ℎ«D = ℎD	ÞhÕ  { ℎ = ℎ�ℎ«Þh   
 
Hence hÕ	 is  a subgroup of Ö 
 
Theorem 6.09: Let h be a normal subgroup of a group Ö and Õ be any 
subgroup of G.  
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Then hÕ =	 {ℎD		|ℎ ∈ 	h, D ∈ 	Õ} is a subgroup of G. 
 
Proof: If #	, !	 ∈ hÕ  then # = ℎD	, ! = ℎ�D�			âℎ(%(			ℎ	, ℎ� 	 ∈ h			, D	, D� ∈ Õ 
Now #!L� = �ℎD��D�L�ℎ�L�� = ℎ�DD�L��ℎ�L� = ℎ�D�ℎ��  where D� = DD�L� ∈Õand ℎ� = ℎ�L� 	 ∈ h = ℎ�D�ℎ�D�L��D�	     = ℎ«D� ∈ hÕ	   
where  D�ℎ�D�L� ∈ h  as h  is normal  and		ℎ« = 	ℎ�D�ℎ�D�L�� 
 
Hence hÕ  is a subgroup of Ö . 
 
Internal Direct product:  Let Ö  be a group , h,Õ  be normal subgroups of  Ö . 
We say that Ö  is the internal direct product of h and Õ  if Ö = hÕ  and h ∩ Õ = {(}. 
 
If Ö  is the internal direct product of  h		�-�	Õ  we shall write  Ö = h⨂Õ 
 
Example: Consider the Klein’s  4- group  Ö = {	(, �	, �, 		} and the two 
subgroups h = {	(, �	}	, Õ = {	(	, �	} . Being an abelian group , both these 
subgroups are normal and h ∩ Õ = {(} Also we have , ( = ((	, � = �(	, � =(�		, 	 = �� 
i.e Ö = hÕ 
 
External Direct Product 
 
Let Ö�, Ö�, . . . , ÖH be a finite collection of groups. The external direct product of  
 Ö�, Ö�, . . . , ÖH   denoted by  Ö� × Ö�…… . .× ÖH	, is the set of all n-tuples for 
which the 0{|  component is an element of Ö~ and the  operation is 
componentwise. 
 
In symbols,  Ö� × Ö�…… . .× ÖH = {	�#�	, #�	, #«, … . . #H� ∶ #~ ∈ Ö~ 		} 
 
Theorem 6.10: Let Ö�, Ö�, . . . , ÖH be a finite collection of groups. The external 
direct product   Ö� × Ö�…… . .× ÖH  is a group under the operation  of each Ö~  
componentwise with �(�	, (�	, … . (H�  as identity element ( where (~  is the 
identity element  in Ö~ 	�  and  ���L�	, ��L�	, … . . �HL��  as the inverse of  ���, ��, ……�H� As the proof is straight forward , we leave this as an exercise .  
 
Proposition:  Let  Ö = Ö� × Ö�…… . .× ÖH  be the external direct product of  -  
finite groups. The order of Ö  is the product of the orders of each Ö~ .  
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i.e |Ö| = |Ö�||Ö�| … . . |ÖH|  
 
The proof is not required as it is a direct counting of elements in the product of 
sets.  
 
Example:  The set  � × � = {	�#, !� ∶ #	, !	} ∈ �		}  is the direct product  or �  
with itself . 
 
We can easily verify that this is a group under componentwise addition.   
 
Example: The set �z × �z = {	�#, !�		|	#, !	 ∈ �z	}  where �′  is the set of non 
zero real numbers  , is a group under componentwise multiplication.  
 
Example: The set  Ö = +� × +« = {�	0,0�, �0,1�	, �0,2�	, �1,0�	, �1,1�	, �1,2�	}	  
under the componentwise operation  ( addition mod  2  for the first coordinates 
and addition mod 3 for the second )  is a group.  We have  �0	, 0�	 as the identity 
element. �0	, 1� × �0	,2� = �0,0�   etc ..  
 
Example: The groups   +� × +Î		, +¸ × +¸	, +��   are each or order  16	 .  
 
Order of an Element in a Direct Product  
 
Let  Ö = Ö� × Ö�…… . .× ÖH be the external direct product of a finite number of 
finite groups .  If v = �v�, v�, … . vH� ∈ Ö   then the order of ′v′ is the least 
common multiple of the orders of the  components.  
 
i.e |v| = J	'	�	|v�|, |v�|, … . . |vH|�	  
 
Proof :  Let (~  be the identity element  of Ö~   so that  ( = �(�, (�	, … (H�  is the 
identity element of  Ö . 
 
For each 0 = 1,2…-	.	   Let  '~  be the order of  v~  and  
 
 let  ' = J	'	{	'�	, '�, … .'H}  
As  '  is a multiple of each  '~ ,  it is clear that  

 v� = �v�, v�, … . vH�� = �	v��	, v��	, … . vH�� = 	 �(�, (�	, … (H� = (  

Next we need to show that v�1 ≠ (  for 0 < '­ < '	 
Suppose  v�1 = (	  and 0 < '­ < ' 

Then   v~�1 = (~  for each 0 = 1.2… . . - 
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Since '  is the J	' of the v~z&  and 0 < '­ < ' ,  therefore  . there is atleast 

one ′0′  where  '­ is not  divisible by '~  . 
so that   '­ = '~2 + %				 with 0 < % < '~ 
Now v~­� = (~ ⇒ v~�2é®¦ = (~ ⇒		v~�2év~¦ = (~ 	⇒ 		 v~¦ = (~  
This is a contradiction as  v~  is  of oder   '~   and  0 < % < '~  
Hence v­� ≠ (  for any  '­ ∈ +   where  0 < '­ < ' 

Therefore  |v| = ' = J	'  of the orders of  v~z&  
 
Example:  Let  Ö = +¸ × +� × +Î  
Let   v = �2,4,6� 
We have  2 ∈ +¸		  and  |2| = 2   since  2 × 2 = 4 ≡ 0	' �	4   

Similarly 4 ∈ +�   ,   |4| = 3  and   6 ∈ +Î		, |6| = 4 J	'	{2,3,4} = 12  

Therefore |v| = 12 

 
Example: Let   Ö = � × +¸ × Q«      where �  is the Klein’s 4-group . 

Let v = ��, 2	, ó�   where ó = �1		3		2�    
We have |�| = 2	,			|2| = 2			, |ó| = 3  

Therefore |v| = J	'	{2,2,3} = 6 
 
Example: Let Ö = +� × +¸  

Then   Ö = {�0,0�	, �	0	,1	�, �0,2�, �0,3�, �1	, 0	�	, �	1,1	�, �1,2�	, �1,3�}	 
It is easy to see that  |�0,0�| = 1		, |�0,1�| = 4	, |�0,2�| = 2		, |�0,3�| = 4  |�1,0�| = 2		, |�1,1�| = 4	, |�1,2�| = 2		, |�1,3�| = 4  

Since Ö  is of order  8  and non of its  elements  are of order  8 , therefore Ö  is 

not cyclic. We demonstrate below a similar example but cyclic. 

 
Example:  Let  Ö = +« × +¸ 
Then  
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Ö = {�0,0�	, �	0	,1	�, �0,2�, �0,3�, �1	, 0	�, �	1,1	�, �1,2�	, �1,3�	, �2,0�	, �	2	,1	�, �2,2�, �2,3�}	 
We have |�0,0�| = 1		, |�0,1�| = 4	, |�0,2�| = 2		, |�0,3�| = 4  |�1,0�| = 3		, |�1,1�| = 12	, |�1,2�| = 6		, |�1,3�| = 12  |�2,0�| = 3		, |�2,1�| = 12	, |�2,2�| = 6		, |�2,3�| = 12  
 
Since Ö  is of order 12  and  there are many  ( at least one ) elements of order  
12 .Hence Ö  is cyclic.  
 
We present below a theorem that state the condition under  which the external 
direct product of two groups  is   cyclic , the product for any finite number of 
groups can then just  be generalized by induction.  
 
Theorem 6.11: Let h and Õ be finite cyclic groups. Then h × Õ is cyclic if and 
only if |h| and |Õ| are relatively prime. 
 
Proof :  Let  |h| 	= '		, |Õ| = -        and  let  h = ⟨ℎ⟩	, Õ = ⟨D⟩  
              i.e  ℎ  and  D  are generators of  h  and Õ  respectively .  
 
and |ℎ| = '	, |D| = - 

Assume  that  h × Õ is cyclic .   

It is clear that �ℎ, D�  generates  h × Õ .  

Since   |h	 × Õ| = '- , we must have  |�ℎ, D�| = '-  

Also  |�ℎ, D�| = J	'{', -} = �H
345{�,H}  

Thus we have '- = �H
345{�,H}			 ⇒ gcd{'	, -} = 1	   i.e   '  and -  are relatively prime .  

Conversely , assume that   '  and -  are relatively prime.  

Then   |�ℎ, D�| =	  J	'{'	, -} = '- 

 Since |h	 × Õ| = '-  

We conclude that   h	 × Õ  is cyclic .  
 
We continue below from the previous example above to verify that  
if  h = ⟨ℎ⟩	, Õ = ⟨D⟩   then  �ℎ, D�  is a generator of  h	 × Õ  .  
 
Example : Let  Ö = +« × +¸ 
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= {�0,0�	, �	0	,1	�, �0,2�, �0,3�, �1	, 0	�, �	1,1	�, �1,2�	, �1,3�	, �2,0�	, �	2	,1	�, �2,2�, �2,3�}	 
Here  +« = ⟨1⟩,			+¸ = ⟨1⟩ 
 
To verify that �1,1� is indeed the generator, you can check its order in ℤ« × ℤ¸ : �1,1�� = �1,1� �1,1�� = �2,2� �1,1�« = �0,3� �1,1�¸ = �1,0� �1,1�Ô = �2,1�  �1,1�� = �0,2� �1,1�À = �1,3� �1,1�Î = �2,0� �1,1�Ï = �0,1� �1,1��­ = �1,2� �1,1��� = �2,3� �1,1��� = �0,0� 
Which clearly show that all elements of   +« × +¸ are generated by  �1,1� 
 
Exercises   
 
1. Verify that the subgroups h�, h�	, h«  of order  2  are not normal subgroups 

of the symmetric group Q« . 
 

2. Determine all normal subgroups of the cyclic group 
)��)  .  

 

3. Let h = 6q� 0	 �r 	 ∶ 		�, 	, �	 ∈ �		, �� ≠ 0		7. Show that h  is a subgroup of Ög�2, �� . 
Is  h  normal . Conclude the result for Õ = 6q� �0 �r 	 ∶ 		�, �, �	 ∈ �		, �� ≠0		7. 

 
4. Let H  be a subgroup of a group G . Show that the normalizer N�H�  of H  is 

the  largest subgroup of  Ö where h  is normal.  
 

5. Show that the commutator subgroup  of a group  Ö  is normal in Ö. 
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6. For two subgroups h and Õ of an abelian group Ö , show that  
    hÕ = {ℎD	|	ℎ ∈ h		, D ∈ Õ	}  is a subgroup of Ö . 
 
7. Give an example  of a group Ö  and two subgroups h and Õ  where  
    hÕ  is not a subgroup .  
 

8. If Ö  is a finite group  and h	, Õ	  are subgroups of Ö, then  |hÕ| = |�||;||�∩;|  
 

9. Let Ö�, Ö�, . . . , ÖH be a finite collection of groups. Prove that t he external 
direct product   Ö� × Ö�…… . .× ÖH  is a group under the operation  of each Ö~  
componentwise .  

 
10. Suppose H is the only subgroup of order  �h� in the finite group G. 
      Prove that h is a normal subgroup of Ö. 
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Chapter- 7 
 

Group Homomorphism 
 
 
Introduction  
 
In this chapter, we shall be discussing about some type of functions from a 
group to another, that satisfy certain conditions and preserve some of the group  
features.  We assume that readers  are aware of basic definition  and features of 
functions.  
 
Definition :  A mapping u		from a group  ⟨Ö,∗⟩ into a group   ⟨Öz,∗z⟩  called   a  
homomorphism if for all �	, �	Þ	Ö  we  have  u�� ∗ �� = u��� ∗ ′u���        
 
We shall omit the notation for ∗  and ∗ ′  and write  u���� = u���u���      but 
it must be understood that  product   �	, � ∈ Ö  so the operation between �  and  �  is the operation on Öwhile the operation between   u���		�-�		u���	  is  the  
operation in  Ö′ .  
 
Definition:  Two  groups  Ö  and  Ö′ are  said  tobe  homomorphic  if  there  
exists  a  homomorphism between  them .  
 
Definition:   Let Ö	, Ö′  be two groups  # ∈ Ö	, ! ∈ Öz		, h ≤ Ö		, Õ ≤ Ö′  . Then  
 
(i)  The image of  ′#′  under  $  is   an element ! = $�#� ∈ Ö′ . 
(ii) The image of h  under  $  is the set $�h� = {	! ∈ Öz	|		! = $�#�	 for some # ∈ h	} . 
(iii) The inverse image of ′!′  under  $ is the set  
         $L��!� = {	# ∈ Ö		|	$�#� = !	} 
 (iv) The inverse image of Õ  under $  is the set  
          $L��Õ� = {	# ∈ Ö		|		$�#� ∈ Õ		}  
 
Note:   Let  �	, �		, �  be   three groups  and   $: � → �		, v: � → �		  be  
homomorphisms. 
 
Then   the  composition  �v ∘ $�: � → �   is   a  homomorphism 
 
Proof:  Let   #	, ! ∈ � �v ∘ $��#!� = v>$�#!�A = v>$�#�$�!�A = v>$�#�A		v>$�!�A= �� ∘ ü��ù�		�� ∘ ü��,� 
 



Chapter 7: Group Homomorphism 
 

102 

Therefore  �$ ∘ v�  is  a   homomorphism. 
 
Eg 1: Let  Ö   and  Ö	′ be  two  groups  with  identity elements  (	�-�		(′  
respectively.  
 
The two functions   $: Ö → Ö	′  where   $�#� = (	′		∀	#	Þ	Ö and  �: Ö → Ö  given 
by  ��#� = #	∀	#Þ	Ö  are  homomorphisms   called     trivial  homomorphism   
 
Proof: For  �	, �	ÞÖ    we have  $��� = (z		, $��� = (z	 , $���� = (′ 
Therefore $���� = (z = (z ∙ (z = $��� ∙ $��� 
 
Eg 2:  let  Ö  be  a   group  of  all  real numbers under  addition  and let   Ö′  be  
a group of   non zero real numbers under multiplication . Show that the   map  u:Ö → Ö	′	    defined  by    u�#� = 2= is  a homomorphism .  
 
Proof: We have   u�� + �� = 2�®> = 2� ∙ 2> = u��� ∙ u��� 
 
Eg 3: Let G be the group of integers under addition. A function $: Ö → Ö  given  
by $�#� = 2#  is   a homomorphism. 
 
Proof:  We have  $�� + �� = 2�� + �� = 2� + 2� = $��� + $��� 
 

Eg 3: Let  Ö  be  a  group  of  all  2 × 2	 invertible  real  matrices  q� �	 �r   
under  matrix  multiplication and  Ö′  a  group  of  all non-zero  real  numbers  

under multiplication . A  map  $: Ö → Ö′  define  by  $ q� �	 �r = Äq� �	 �rÄ   is   

a  homomorphism . 
 
Proof : For  �, �	 ∈ Ö 
 $���� = |��| = |�||�| = $���$��� 
 
Lemma:   Let  G  be  a group  and  N  a  normal  subgroup  of  G .  

A  map $: Ö → �
(  given    by  $�#� = ,#   is  a   homomorphism of  G  onto 

�
( . 

 
Proof: If   Ò	Þ �

(   then  Ò = ,#    where  #	Þ	Ö 

i.e  # = $�#�    so that   $  is  onto . 

Also  �$	�	, �	Þ	Ö   we  have  $���� = ,�� = ,�,� = $���$��� 
Therefore   $ is  a   homomorphism  of  G  onto 

�
( 
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Theorem7.01 (Identity Preservation) : Let  u be a homomorphism of  Ö into Ö′.  
Then u�(� = (′   where  (, (′   are the identity elements of  Ö  and  Ö′  
respectively 
 
Proof :  We have  u�(�u�(� = u�((� = u�(� = u�(�(′ 
 
By  left cancellation law  we  have  u�(� = (′ 
Theorem 7.02: (Inverse Preservation) : Let  u be a homomorphism of  Ö into Ö′ .  Then u��L�� = >u���AL�   for   any  �	Þ	Ö 
 
Proof : For  �	Þ	Ö    

We  have  u���u��L�� = u���L�� = u�(� = (′ 
Multiplying  by  >u���AL�  from  the  left  we  have  

             u��L�� = >u���AL�  
 
Theorem 7.03: Let  u be a homomorphism of  Ö into Ö′  and  let v ∈ Ö .  
If  v  is of finite order  then the order of u�v� divides the prder of v .    
 
 i.e    >u�v�A|	 �v� 
 
Proof : Let  �v� = - 

Now >u�v�AH = u�vH� = u�(� = (  ⇒  >u�v�A|	-	  
 
Definition: If u is a homomorphism of  Ö into Ö′, the kernel of  u is 
defined by  Õ(%�u� = {#	Þ	Ö ∶ 		u�#� = (z}		 where (′  is the identity element 
of Ö′. (Note : the  kernel is  never empty as  the identity element is in the  
kernel) 

Example: For a map  $: Ö → Ö′  define  by  $ q� �	 �r = Äq� �	 �rÄ   where Ö  is 

the set of invertible 2 × 2  real matrices and Ö′ the set of non zero real numbers, 
the kernel is given by Õ = {	� ∈ Ö	 ∶ 		 |�| = 1	}   
 
Theorem 7.04: Let  u be a homomorphism of  Ö into Ö′  with  kernel  Õ.  
Then  Õ is  a normal  subgroup of Ö.   
 
Proof:  Let  	�, �		Þ	Ö   

Then  u��� = u��� = (′  



Chapter 7: Group Homomorphism 
 

104 

⇒ u��L�� = >u���AL� = (zL� = (′  
Now  u���L�� = u���u��L�� = (z(z = (′ ⇒ ��L�	Þ	Õ	  
Therefore  Õ  is  a  subgroup of   G 

Let  DÞÕ   and  v	Þ	Ö 

Then u�vDvL�� = u�v�u�D�u�vL�� = u�v�(zu�vL�� = u�v�>u�v�AL� =(′ 
Therefore  vDvL�	Þ	Õ 
 
Hence  Õ is  normal in  G 
 
Theorem 7.05: Let  u:Ö → Ö′   be  an  onto homomorphism with  kernel  K  
and !		Þ	Ö′ . The  set of all inverse  image of  ! in  Ö  is given  by  Õ#­ ={D#­:		D	Þ	Õ}  where   #­  is  any  particular inverse image of !    i.e  u�#­� =!. 
 
Proof 
Let  �	Þ	uL��!�		 then  u��� = ! 

Now  � = ��#­L��#­ 

and  u��#­L�� = u���u�#­L�� = u����u�#­�L�� = !!L� = (′	 ⇒ �#­L�		Þ	Õ  

Hence  � = ��#­L��#­		Þ	Õ#­ 

Therefore  uL��!� ⊆ 	Õ#­				 
 
Conversely,  let  �	Þ	Õ#­   then   � = D#­ 	 ∶ D	Þ		Õ 

Now  u��� = u�D#­� = u�D�u�#­� = (z! = !                           as  DÞ		Õ	, u�D� = (′ ⇒ �	Þ	uL��!�  ⇒ Õ#­ 			⊆ uL��!�  
hence  Õ#­ 		= 	uL��!�   
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Isomorphism 
 
Definition:  A homomorphism u ∶ Ö → Ö′ is  called  an isomorphism  if u  is   
                    one-one and onto .  
 
Definition:   Two groups   Ö  and  Ö′ are  said tobe  isomorphic if  there  exists  
an  isomorphism  between  them . If  Ö  and Ö′   are isomorphic    ,  we write  Ü ≅ Ü′  . 
 
Theorem 7.06: An onto homomorphism   u ∶ Ö → Ö′  with  kernel  K  is  an 
isomorphism if  and only  if   Õ = {(}.  
 
Alternatively , a  homomorphism   u ∶ Ö → Ö′  with  kernel  Õ	0&	 one-one if and 
only if  Õ = {(} 
 
Proof : Let  u be an isomorphism . Therefore  u  is  1-1  . 

Let  #		Þ	Õ  .  Then   u�#� = (′ .  Also   u�(� = (	′ 
As  u is   1-1  we  have  # = ( i.e   Õ = {(} . 
 
Conversely  ,  Let  Õ = {(}  
Let  #�			,			#�	Þ			Ö    such  that   u�#�� = u�#�� 
now  u�#�� = u�#�� ⇒ u�#���u�#��L�� = (z ⇒ u�#��u�#�L�� = (z ⇒ u�#�#�L�� = (z ⇒ #�#�L�		Þ		Õ = 		 {(} ⇒ #�#�L� = ( ⇒ #� = #�  

 Hence   u  is  one-one .  
 
Cayley’s Theorem: Every group is isomorphic to a group of permutations. 
 
Proof :  Let Ö  be a group .  

 For v ∈ Ö  ,  let @A: Ö → Ö  be  a map defined by  @A�#� = v#		∀	# ∈ Ö   

If  @A�#�� = @A�#��  for #� , #� ∈ Ö  

Then v#� = v#� 	⇒ #� = #�  , so @A  is  one-one . 

For any # ∈ Ö  , we have ! = vL�#	 ∈ Ö  and  @A�!� = v! = v�vL�#� = # 

showing that @A  is  onto   and so a permutation on Ö  . 
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Also  @�>�#� = ����#  and  �@� ∘ @>��#� = @�>@>�#�A = @���#� = ���#� =����# 

   ⇒ @�> = @�@> …………..(1) 

Now  let  Öz = o	@A 	 ∶ 		v	 ∈ Ö		p  
Define   $ ∶ Ö → Öz   by  $�v� = @A  

We have  ,  $��� = $��� ⇒ 	@� = @> ⇒ @��(� = @>�(� ⇒ � = � 

So , $  is one-one . $  is clearly onto  since @B 	 ∈ Öz ⇒ ! ∈ Ö ⇒ 		$�!� = @B	  
Finally  ,for  �	, � ∈ Ö	 we have   $���� = @�> = @�@> = $���$��� 
This completes the proof that $  is an isomorphism .  

So Ö  is isomorphic to  Ö′ . 
 
** Let  �	, �		,-  be   three groups  and   ü: � → �		,�: � → -		  be  
isomorphisms. 
 
Then   the composition  �� ∘ ü�: � → -   is   a  isomorphism. 
 
Proof: The composition  of  two  homomorphisms   is  a  homomorphism  
therefore   �$ ∘ v�  is  a   homomorphism. Also the composition of  bijective  
functions  is  a   bijective   functions , Therefore  �$ ∘ v�  is   1-1  and   onto 
Hence   �$ ∘ v�  is   an   isomorphism  
 
Theorem 7.06: Let $: Ö → Ö	′  be   an  isomorphism .  Then   $L� ∶ Öz → Ö   is   
also an isomorphism.  
 
proof:   Let   !	, * ∈ Ö	′    
 
Since   $  is  an  isomorphism  so  onto  ,  therefore  there exist  �	, �	 ∈ 		Ö   

such that  $��� = !	, $��� = *  

Now $L��!*� = $L�>$���$���A = $L�>$����A = �� = $L�>$���A		$L�>$���A =$L��!�	$L��*�  
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Therefore   $L�  is  a homomorphism  

Also  we  know  that  the  inverse  of  a  bijective  function  is   bijective  ,  

therefore  $L�  is  an  isomorphism . 

 
Theorem 7.07: If  u:Ö − Ö′  be an  isomorphism , then  
 
(i)   u�(� = (z .  ( Isomorphism preserves identity ). 

(ii) 	u��H� = >u���AH 

(iii) If � ∈ Ö  is of  finite order then   ��� =  >u���A 
Proof  (i)  and (ii)  : u  is a homomorphism  and so  u�(� = (z, u	��H� =>u���AH. 
 
Proof  (iii) : Let  ��� = '		,			 >u���A = - 
 
Then  (z =	>u���AH = u��H� = u�(� 
As u  is  1-1   we have ,  �H = (		 . Since  ���� = ' 

Therefore  '|- 

Also  >u���A� = u���� = u�(� = (′ 
Since   >u���A = -   we have   -|' 

Hence ' = - .  
 
Theorem 7.08: If u ∶ Ö → Ö′  is an isomorphism   then  Ö = ⟨�⟩ ⇔ Gz =⟨u���⟩   
 
To prove   Ö = ⟨�⟩ ⇒ Gz = ⟨u���⟩   
 
Let  ! ∈ Ö′ . Then ! = u��� 	 ∶ # ∈ Ö . 
 
But  # = ��  for some  '  . ⇒ ! = u���� = >u���A�	  ⇒ Gz = ⟨u���⟩   
 
Conversely to prove  Gz = ⟨u���⟩ ⇒ Ö = ⟨�⟩   # ∈ Ö ⇒ u�#� ∈ Öz 		⇒ 		u�#� = >u���AH  for some   -  . 
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 ⇒ u�#� = u��H� ⇒ # = �H    as   u   is one -one . ⇒ Ö = ⟨�⟩  
 
Theorem 7.09: Let  u ∶ Ö → Ö′  be an isomorphism   , � ∈ Ö	 . For a fixed 
integer ' , if the equation  #� = �  has a solution in  Ö   then the equation  #� = u���  has the same number of solutions in  Öz  as  #� = �  . 
 
Proof: If  #­ ∈ Ö   is a solution of  #� = �  then >u�#­�A� = u�#­�� = u��� 
Therefore u�#­�  is a solution of  #� = u��� . 
 
Theorem 7.10: ( Isomorphism preserves commutativity ).  
 
If Ö and Ö′  are isomorphic  then  Ö is  abelian if and only if  Ö′  is abelian . 
 
Proof : u:Ö → Ö′  be an isomorphism .  

Let Ö  be abelian .  

Let !, * ∈ Öz . As  u  is onto , ! = u���		, * = u���		, �	, � ∈ Ö		 #! = u���u��� = u���� = u���� = u���u��� = !#	  ⇒ 		Ö′  is abelian .  
 
Conversely , let Ö′  be abelian . 

We have u���� = u���u��� = u���u��� = u���� 
As u  is one-one  we have  �� = �� 

 Hence Ö  is abelian .  
 
Theorem 7.11: ( isomorphism preserves cyclicity ) .  
 
If Ö and Ö′  are isomorphic then  Ö is  cyclic if and only if  Ö′  is cyclic . 
 
Proof : u:Ö → Ö′  be an isomorphism . 

Let Ö = ⟨�⟩  be cyclic generated by ′�′  
Let ! ∈ Ö′ . By onto of u  , ! = u�#� ∶ 		# ∈ Ö . 

But # = �H   for some integer  - . 

Therefore , ! = u�#� = u��H� = >u���AH 

Thus Ö′  is  cyclic   generated by u��� .  
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Conversely ,  let Öz = ⟨�⟩   be cyclic  generated by ′�′ .  
Since � ∈ Ö′  ,  by onto of u  ,  � = u���  for  � ∈ Ö .  

Let 	v ∈ Ö . Then  u�v� ∈ Öz  ⇒ 		u�v� = �� 		= >	u���A� = u����    for some integer  '  

As u	0&	1 − 1	  we have  v = ��   showing that  Ö  is cyclic  generated by  ′�′ . 
This theorem can also be stated as  
 
Theorem 7.12:  ( isomorphism preserves  subgroups ) .  

If  u ∶ Ö → Ö′  be an isomorphism  and  � ≤ 		Ö		,			� ≤ 		Ö′  then  u���  is a subgroup of Ö′  and uL����  is a subgroup of Ö .  
 
Proof : We shall prove the first part only namely that u��� is a subgroup . 
The second follows  by considering uL�  being an isomorphism  from Öz → Ö . 
 
Let 	!	, *	 ∈ u��� ⇒ ! = u���, * = u��� 		 ∶ 		�	, �	 ∈ �  ⇒ *L� = >u���AL� = u��L��  
Now !*L� = u���u��L�� = u���L�� ∈ 		u���  as  ��L� ∈ � . 

This proves that u���  is a subgroup of  Öz . 
 
Theorem 7.13:  ( isomorphism preserves  the center ) .  
If  u ∶ Ö → Ö′  be an isomorphism  and  +�Ö�	, +�Öz�  be the centers of  Ö and Ö′  respectively  . then  u>+�Ö�A = +�Öz� . 
 
Proof: let * ∈ u>+�Ö�A ⇒ * = u�#� ∶ 		#	 ∈ 	+�Ö�	  
 
Let    ! ∈ Öz ⇒ ! = u��� ∶ � ∈ Ö     since  u  is onto . 

Now , !* = u���u�#� = u��#� = u�#�� = u�#�u��� = *! 

    ⇒ * ∈ +�Öz�  
Therefore  u>+�Ö�A ⊆ +�Öz� 
 
Conversely , Let ! ∈ +�Ö′�   ⇒ 	! = u��� 	 ∶ 		� ∈ Ö  
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Let # ∈ Ö 

Then u�#�� = u�#�u��� = u���u�#�   as   u��� = !	 ∈ +�Öz� 
 = u��#� 
As  u  is one-one , we have , #� = �# ⇒ � ∈ +�Ö�  ⇒ ! = u��� ∈ u	>+�Ö�A	  ⇒ 	+�Öz� ⊆ u>+�Ö�A	  
Therefore  u>+�Ö�A = +�Öz� 
 
 
Classification of groups of order 3 
 
Let Ö  be a group of  order  3 .  Ö  is  cyclic  as  3 is a prime ,    

Hence Ö = ⟨�⟩ = {	(, �	, ��	}		 
Consider a map  $ ∶ Ö → +«  where +« = {0,1,2}	  is a group of integers mod 3 . 

defined  by   $��¦� = %									�	- �(		$�(� = $��­� = 0 

We have so define  $  tobe an isomorphism   ( verify )  .  

Hence Ö  is isomorphic to  +« . 

As this Ö  is the only form of group  of order  3 , we conclude that  

 " Every group of order  3  is isomorphic to  +«  " 
In other words , there is only one group ( upto isomorphism )  of   order   3 .  
 
Classification of groups of order 4 
 
Let Ö  be a group of  order  4 . Then G is abelian .  

For any  # ∈ Ö  , # ≠ 	( ,   we shall always have   �#�|	4  

Therefore ,  �#� = 2  or   �#� = 4  
 
Case I:  If  �#� = 4	   then  Ö  is cyclic .  

Let Ö = ⟨�⟩ = {	(	, �	, ��, �«} 
As  above ,  Define a map $ ∶ Ö → +¸	  by  $��¦� = % 

This is an isomorphism , so that cyclic groups of  order  4  are isomorphic to +¸. 
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Case II:  If  �#� = 2		∀	# ∈ Ö		, # ≠ (  

In this case , Ö will be of the form  Ö = {	(, �, �	, 		}  which is the Klein’s 4 group . 

We define  $	; Ö → +� × +�   by  $�(� = �0,0�	, $��� = �1,0�		, $��� = �0,1�	, $�	� = �1,1�  
By computation, we have  , $���� = $�	� = �1,1� = �1,0� + �0,1� = $��� +$���   and  etc .. .so that  $	  is a homomorphism . It is clear that $  is 1-1 

and  onto. 
 
Hence Ö  is isomorphic to +� × +�  

In other words , there are two  groups ( upto isomorphism )  of   order   4  

namely  +¸  and  +� × +�  .  
 
 
** Automorphism  is   an  isomorphism  from  a   group  onto  itself 
 
Theorem/definition 7.14:  Let  Ö  be   a   group  and   v ∈ Ö  be  a   fixed  
element .A   map @A: Ö → Ö  defined   by   @A�#� = v#vL�   is   an  
isomorphism  called  an   Inner   automorphism. 
 
Proof: Let   �	, � ∈ Ö	 
 
We  have   @A���� = v����vL� = �v����vL�� = �v�vL�v���vL�� 
 = �v�vL���v�vL�� = @A���@A��� therefore   @A   is   a   homomorphism 
 
@A�#� = @A�!� ⇒ v#vL� = v!vL� ⇒ # = !   by  cancellation  law 
 
Therefore   @A  is   one-one . 
Let   ! ∈ Ö   ,   since   v ∈ Ö  we  have   vL�!v ∈ Ö 

and   @A�vL�!v� = v�vL�!v�vL� = !   showing  that   @A  is   onto 

Hence   @A  is   an  isomorphism    .   
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The  group of   automorphisms  on  G  :  ��Ü�    
 
Let  Ö   be  a   group .  Let  ��Ö�   be   the   collection  of   all  automorphisms  
on  G . 
 
i.e  ��Ö� = {$		|			$: Ö → Ö   is   an   isomorphism  } 
Then   ��Ö�  is   a   group   under   composition   of   functions  
 
Proof  : 
The   composition of  automorphisms is  an  automorphism    (closure property)    
The   identity  function   �: Ö − Ö   ,   ��#� = #	∀	# ∈ Ö    is   an   identity   
function we know  that   composition of   functions is   associative. Also  the  
inverse  of   an automorphism  is   an  automorphism   ∴ ��Ö�  is   a   group .  
 
7.15: Fundamental Homomorphism theorem( First Isomorphism theorem) 
 
Let u:Ö − Ö′  be  an  onto  group homomorphism  with kernel Õ .  
 

Then   
�
; is  isomorphic to Öz .										q	�; ≅ Öz	r  .  

 
Proof : As u:Ö → Öz is   onto ,  every  element of  Ö′ has  pre-image . 
i.e (1(%!	  element  of  Ö′  are  of  the  form  u�#� ∶ 		#Þ	Ö 

We define a function C: �; → Ö′   as  C�Õ#� = u�#� 
 
We  first have  to  show that  D is  well-defined  
We  have   Õ#� = Õ#�			Þ	 �; ⇒ #�#�L�Þ	Õ  ⇒ u�#�#�L�� = (z ⇒ u�#��u�#�L�� = (z ⇒ u�#��>u�#��AL� = (′ ⇒ u�#�� = u�#�� ⇒ C�Õ#�� = C�Õ#�� 
Hence C   is  well-defined 

To Show  that  D  is ahomomorphism  
 
We have C�Õ#�Õ#�� = C�Õ#�#��  as   Õ  is normal  
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= u�#�#�� = u�#��u�#��  as   u is a homomorphism  = C�Õ#��C�D#��  
Hence  C  is  a  homomorphism . 

To Show that  D  is   one-one  
 
Let  Õ#�		, Õ#�		Þ	 �;  such  That  C�Õ#�� = C�Õ#�� 
Now  C�Õ#�� = C�Õ#�� ⇒ u�#�� = u�#�� ⇒ u�#��>u�#��AL� = (′   ⇒ u�#��u�#�L�� = (z ⇒ u�#�#�L�� = (′    as  u  is  a  homomorphism . ⇒ #�#�L�	Þ		Õ  ⇒ Õ#� = Õ#�     so  that   C  is  one-one  

Hence  C	  is  an  isomorphism .  

i.e  
�
; ≅ Öz 

…………………. 
For  an alternative statement :  
We know that   if  u:Ö → Ö′  is  a   function , then   u: Ö → u�Ö�  is  always  
onto . Replacing  Ö′  by  u�Ö�  above , we have  the  full proof . 
 
7.16: Second Isomorphism theorem  
 
Let N  be  a  normal subgroup  of  G   and  K  be  a  subgroup of  G . Then  

 �0�.				Õ, = ,Õ ≤ Ö                (here  ≤	  stands  for  subgroup )  
      �00�.					, ⊲ Õ,  �000�.				�, ∩ Õ� 	⊲ Õ  �01�.					 ;

(	∩; ≅ (;
( 			   

 
Proof : (i)  
 
Let #	Þ	Õ,	 
Then  # = D- ∶ 		DÞ	Õ	, -Þ	, 

Now  # = D- = �D-�( = �D-��DL�D� = �D-DL��D  

As  Õ ⊆ Ö  therefore   D	Þ	Õ ⇒ 		D	Þ		Ö    
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Hence  D-DL�	Þ		,   as  N  is  normal     

I.e  D-DL� = -z	Þ	, 

Therefore  # = �D-DL��D = -zD	Þ	,Õ 

Hence  Õ, ⊆ 		,Õ 

In a  similar  way  we  can  show  that  ,Õ ⊆ Õ, 

So that  ,Õ = Õ, 
 
Now let  �, �	Þ	Õ,  

Therefore  � = D�-�			,			� = D�-� 		 ∶ 		 D�, D�		Þ	Õ			,			-�	, -�	Þ		, ���L�� = �D�-���D�-��L� = �D�-���-�L�D�L�� = D��-�-�L��D�L�  = D�-«D�L�     (   where  -« = -�-�L�Þ	,	 ) = �D�D�L���D�-«D�L��                          = D-		Þ			Õ,             (where  D = D�D�L�		Þ	Õ			, - = D�-«D�L�	Þ		,  as   N  is  

normal   ) 

i.e   ��L�		Þ		Õ,		$ %		�-!			�		, �		Þ	Õ, 

Hence  	Õ,  is  a  subgroup  of  Ö  
 
Proof of (ii)    
 
To  show   that  ,  is  normal in  Õ,   we  only  have to  show that  ,  is  a  

subset  of 	Õ, 

We  have  -	Þ	, ⇒ 		- = (- ∶ 			(	Þ	Õ		, -	Þ	, ⇒ -Þ		Õ,  

Therefore  , ⊆ 		Õ, 
 
Proof of   (iii)  
 
We  have  , ∩ Õ	 ⊆ 		Õ   always  

Also  , intersection of  subgroups is    subgroup .  

Let  D		Þ	Õ	  and �	Þ	, ∩ Õ	 ⇒ D	Þ	Ö			, �	Þ,  and   �	Þ	Õ  

Now  D�DL�	Þ		,  as  N  is  normal   
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Also  D�DL�		Þ	Õ			�&	  both  D	, �		Þ	Õ 

Hence  D�DL�		Þ		, ∩ Õ	 
Therefore  , ∩ Õ	  is  normal  in   K . 
 
Proof  of   (iv)  
 

Any  element  of   
(;
(   are  of  the  form  ,!	 ∶ 		!	Þ		,Õ  

Now  !Þ	,Õ ⇒ 		! = -D	 ∶ 		-Þ	,		, D	Þ	Õ	 
Therefore  ,! = ,�-D� = �,-�D = ,D   

We  now define  a  map  u:Õ → (;
(  

as  u�D� = ,D  

We first have to  show  that  �	 is  well  defined  

  D� = D�	Þ	Õ ⇒ D�D�L� = (z	Þ	, ⇒ 		,D� = ,D� ⇒ u�D�� = u�D��		  
Therefore  u  is  well defined  

We  next  show that  �  is  a  homomorphism  

Let  	D�		, D�		Þ	Õ	 
Then u�D�D�� = ,D�D� = �,D���,D�� = u�D��u�D��  
Therefore  u is  a  homomorphism .  

Again  if   ,!		Þ	 (;(   where   !		Þ		,Õ 

Then 		,! = ,�-D� = �,-�D = ,D  where    -	Þ	,		, DÞ	Õ = u�D�  
Therefore    u  is   onto.  
 
To find  the  kernel  of  u  .  ( note   that  identity element of  

(;
( 		0&			,			�ℎ(%($ %( 

 Kernel  of  u = {	D	Þ		Õ	 ∶ u�D� = ,	}   )  
 Now  D	Þ	Õ(%�u� 
  ⟺ u�D� = , 

  ⇔ 	,D = ,  
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⟺ 	D	Þ	,	  
 ⟺ D		Þ	, ∩ Õ   as      D	Þ	Õ 

 hence  Õ(%�u� = , ∩ Õ 

Using  The  first  isomorphism  theorem,  

 we  have  
;

(	∩; ≅ ;(
(  

 

(Note:  Statement  (iv)  can be  written  as  
+

&	∩+ ≅ +&
& 			   

Notice  that  Õ, = ,Õ  and  so  any  element  of  
;(
(   is  of  the  form ,!:		!Þ	Õ,  

Now  !Þ		Õ, ⇒ 		!	Þ		,Õ ⇒ ! = -D  as   before   )  

 
7.17: Third Isomorphism theorem  
 
Let  ,  and  Õ  be normal  subgroups  of   Ö  and  ,   be  normal in  Õ .   
 

Then  
;
(  is  normal  in  

�
(         and  

�
; ≅ qFGrqHGr  

 
Proof :  we  have Õ ⊆ Ö ⇒	;( ⊆ �

( 

 

Let 		� = ,D�, � = 	,D�	Þ	 ;(	  where  D�		, D�		Þ	Õ  

 

Then  ��L� = �,D���,D�L�� = ,�D�D�L��	Þ ;
( 

 

Therefore   
;
(  is  a subgroup  of   

�
( 

 

We now  define  a  function  u: �( → �
;  by  

 u�,v� = Õv  
 
We  first  show that  u is  well defined .  
Let ,v� = ,v� 
 ⇒ v�v�L�		Þ		,	  
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⇒ v�v�L�		Þ			Õ	    as   , ⊆ Õ	 
 ⇒ Õv� = Õv� ⇒ u�,v�� = u�,v��  
 
Therefore  u  is  well defined  
 
we  shall show that u  is  a  homomorphism .  
 
We have  u�,�,�� = u�,��� = Õ�� = Õ�Õ� = u�,��u�,��  
 
Therefore u  is  a  homomorphism . 
 

Again  every  element of  
�
;  is  of  the  form  Õv	 ∶ 		v	Þ	Ö 

 

and   Õv = u�,v� ∶ ,v		Þ �
(   so  that   u	  is  onto 

 
We  proceed  to find  the Kernel  of  u  
 

We  have  Õ(%�u� = {	,#		Þ	 �( ∶ 		u�,#� = Õ}  Õ  is  the  identity element  in  
�
;     

 
Now  	,#		Þ			Õ(%�u� 
 

⟺ u�,#� = Õ	 ⟺ Õ# = Õ ⟺ #	Þ	Õ ⟺ ,#	Þ ;
(   

 

Thus  Õ(%�u� = ;
( 

 
Using  The  first  isomorphism  theorem , 
 

  we  have   
qFGr

;I¦�y� 	≅ �
;           or  

qFGrqHGr 	≅ �
;  

 
Exercise  
 
1. Let G  be a  group of  all positive  real  numbers under  multiplication and  Ö′  

a  group  of   all real numbers  under  addition . The  map $: Ö → Ö′   given  
by   $�#� = log�­ # is  a  homomorphism . 
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2. Show that  The  map $: � → �z   given  by   $�#� = (=  is  a  
homomorphism where �z  is the set of positive real numbers excluding ′0z. 
 

3. Show  that    ��Ö�  the  set  of   all inner  automorphism  on  G   is    normal  
subgroups  of  ��Ö� 
 

4. Let �′ be the group of positive real numbers under multiplication. 
Show that the mapping $�#� = √#   is an automorphism of �′. 
 

5. If a group Ö is isomorphic to h, prove that �I��Ö� is isomorphic to �I��h�. 
 

6. Let  à�16�  be the group of units modulo 16. Show that  
     u:à�16� → à�16�		, u�#� = #«  is an automorphism .  
 
7. Let u  and  C  be two isomorphism  from  a cyclic group Ö = ⟨�⟩ to  another 

cyclic  group  Ö′  .   If  u��� = C���  , show that  u�#� = C�#�		∀		# ∈ Ö   
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Chapter- 8 
 

Rings 
 
 
In this chapter, we will introduce another algebraic system different from group 
which is a two-operational system called ring. 
  
8.1Definition:  Let � be a non – empty set on which two operations denoted by 
+ and are defined, satisfying the following properties: 
 
i) �	 + �	 ∈ �			∀		�, �	 ∈ 	� 
ii)  �	 + �	 = 	� + �			∀				�, � ∈ � 
iii)  ��	 + 	�� 	+ 			 = 	�	 +	��	 + 		�		∀			�, �, 		 ∈ 	� 
iv) There is an element 0 in � such that �	 + 	0	 = 	0	 + 	�	 = 	�		∀	�	 ∈ 	� 
v) ∀	�	 ∈ 	�, there exist   −	�	 ∈ 	� such that �	 +	�−�� 	= 	0	 = 	 �−�� 	+ 	� 
vi) �. �	 ∈ 	�, ∀	�	, �	 ∈ 	� 
vii)  �. ��. 	� 	= 	 ��. ��. 					∀			�, �, 		 ∈ 	� 
viii)  �. ��	 + 	� 	= 	�. �	 + 	�.		and  ��	 + 	��. 		 = 	�. 		 + 	�. 			∀				�, �, 			 ∈ 	� 
 
[Left and right distributive laws of multiplication over addition] 

 
Then, ��;	+, . � is called an associative ring. 
 
A ring ��;	+	, . � such that  �	. � = �. �		∀			�, �	∈	�	is called a Commutative 
ring. 
 
A ring ��;	+	, . � where there exist  1	 ∈ 	� such that  �. 1	 = 	1. �	 = 	�, ∀	�	 ∈	� is called a ring with unity. 
 
8.1.1 Examples of rings 
 
1. �	 = 	 �ℤ;	+	, . �, the set of integers  is a  commutative ring with a unit 

element. 
2. �	 = 	 �2ℤ; 	+	, . �, the set of even integers is a commutative ring without 

unity. 
3. �	 = 	 �ℚ; 	+	, . �, the set of rational numbers is a commutative ring with 

unity. 
4. �	 = 	 o0�, 1�, 2�, 3�, 4�, 5�, 6�p, the set of integers modulo 7 is a commutative ring 

with unit element. 
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8.1.2 Types of rings 
 
Definition:  Let � be a ring, �	 ∈ �, �	≠	0  is said to be a zero divisor if there 
exist � ∈ 	�	, �	≠	0 such that �	. �	 = 0. 
  In ��	 = ℤ�	; 	+�	, .� � = 	 o0�, 1�, 2�, 3�, 4�, 5�p	, 2� and 3� are zero divisors 
in ℤ�.  
 
Definition:  A commutative ring � is said to be an Integral domain if � has no 
zero divisors. 
 
1. 	�ℤ; 	+	, . � is an integral domain. 
2. �ℤ�	; 	+�	, .� � is not an integral domain when ' is composite. 
 
Definition:  If the non – zero elements of a ring � form a multiplicative group, 
then � is said to be a division ring. 
 
Definition:  A commutative division ring is called a field. 
 
Definition:  A non – commutative division ring is called a skew – field. 
 
8.1.3 Examples 
 
1. �ℤ;	+	, . � is not a division ring. 
2. �ℝ; 	+	, . �  is a field. 
3. �ℚ; 	+	, . �   is a field .  
4. �ℂ;	+	, . �  is a field.  
5.  >ℤN	; 	+N	, .N A , 6    a prime, is a field. This is an example of a finite field.  
6.  Consider the set � = ℝ ×ℝ = {	�α	,β	�	; 	α	,β		 ∈ ℝ} 

We define,  �	α	,β	� 	= 	 �γ	, δ	� if and only if α	 = 	γ		 and β	 = 	δ 
and (α , β ) + ( γ , δ ) = ( α + γ , β + δ ) as addition in � .  

Then �0,0� is the identity element and for �	α	,β	� 	 ∈ 	�, �	−	α	, −	β	� 	 ∈ �	is the inverse.  

 
Thus, with respect to addition defined above, � is an abelian group. 
 
Now, define a multiplication ‘.’   as follows: �	α	,β	�	.		�	γ	, δ	� 	= 	 �	α	γ	 − 	β	δ	,α	δ	 + 	β	γ	� 
The element �1, 0� is the unit element.  
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If �α	,β	�	≠	�0,0�, then §� 	+ 	¨�	≠		   and the element q O
OÂ	®	PÂ , LP

OÂ	®	PÂr is the 

multiplicative inverse of �α	,β	�. 
 
Thus �	– 	�0,0� is a commutative group with respect to multiplication. 
 
Hence, ��, +, . � is a field called the field of complex numbers.  
 
The real quaternions  
 
Put ß	 = 	 {��, �, 	, ��	|	�, �, 	, �	 ∈ ℝ}  
 
In ß, ��, �, 	, �� 	= 	 �(, $, v, ℎ� iff  �	 = 	(	, �	 = 	$	, 		 = 	v	, �	 = 	ℎ	. 
 
Define an addition by,  
 ��, �, 	, �� +	�(, $, v, ℎ� = �� + (, � + $, 	 + v, � + ℎ� 
 
Then �0,0,0,0� 	∈ 	ß is the identity.  
 
For ��, �	, 		, �	� 	 ∈ 	ß	, �	−	�, −	�	, −			, −	�	� ∈ 	ß is the additive inverse. 
 
Thus, with respect to this addition, ß is an abolian group.  
 
Define a multiplication as follows:  
 
Consider the elements of ß as symbols of the form �	 + 	0�	 + 	}		 + 	D	�	 =	�	�, �	, 		, �� where 0, }	, D are such  that 0� = }� = D� = 	1  and  0} = D, }D =0	, D0 = }, 0} = −	}0, }D = −	D}, D0 = −0D. 
 
This multiplication is not commutative. 
This unit element is �1,0,0,0�. 
 
If ��, �, 	, ��≠	�0,0,0,0�, then �� 	+ 	�� 	+ 		� 	+ 	��	≠	0 and its inverse is  
 q ��Â	®	>Â	®	RÂ	®	ÅÂ , L>�Â	®	>Â	®	RÂ	®	ÅÂ , LR�Â	®	>Â	®	RÂ	®	ÅÂ , LÅ�Â	®	>Â	®	RÂ	®	ÅÂr. 

 
Therefore, ß	– 	�0,0,0,0� is a multiplicative non – commutative group and hence �ß,+	, . � is a skew – field called the “Real quaternions“. 
 
Lemma 8.1.4: If � is a ring, then for all �	, �	 ∈ 	�,  
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i) �	.0	 = 	0. �	 = 	0 
ii)  �	−	��	. �	 = 	�	. �	−	�	� 	= 	−	�	�. �	� 
iii)  �−	��	. �	−	�	� 	= 	�. � 
 
If � has a unit element, then 
 
iv) �	−1	�	. �	 = 	−�	 
v) �−1	�	. �	−	1� = 1 

 
Proof: i) If 	∈ 	� , �	. 0	 = 	�	. �0 + 0� 	= 	�. 0	 + �. 0 
 

Since � is a group under addition, we get �. 0	 = 	0. 
 

ii)  We see that      �	�	. �	 +	�−�	�	. �	� 	= 	 �	�	 +	�−�	�	�	. �  
          																	= 	0	. �  																											= 0 

 																					⇒�−�	�	. �	 = 	−	��. �	� 
 
 Similarly, �. �−�	� 	= −	��	. �	� 
 

i) �−�	�	. �−�	� 	= 	−	��	. �−�	��								��!	�00�� 
 

    									= 	−	�−	��. �	��								��!	00�� 
 
     								= 	�. �  
 ii� � + �−1�. �	 = 	1	. � +	�−1�	. � = >1	 +	�−1�A. �	 = 	0	. �	 = 0			

⇒	�−1�. �	 = 	−�.	
  

iii)  Put �	 = 	−	1 in (iv) we get, 
 
 �−1�	. �−1� 	= 	−	�−1� 	= 	1. 
    

Lemma 8.1.5: A finite integral domain is a field. 
 
Proof: Let �	 = 	 {	#�	, #�	, …… . , #H	} be a finite integral domain and let #�	, #�	, …… . , #Hbe all its distinct elements. 
 
Let � ∈ �, �	≠	0. 
Consider the set {	�#�	, �#�	, …… . , �#H	}. 
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We claim that all these elements are distinct. 

For if �#~ = �#� ⇒ �#~ − �#� = 0 ⇒ �>#~ − #�A = 0 

But �	≠	0, and �	is an integral domain, 

So, #~ − #� = 0 giving #~ = #�. 
Hence the elements of {	�#�	, �#�	, …… . , �#H	} are all distinct and so,  

� = {	�#�	, �#�	, …… . , �#H	} 
 
i.e, every element of � can be expressed as �#~ for some #~ ∈ �. 
 
In particular, � = �#~­ 

 
We now claim that #~­ is the unit element of �.  
 
Let ! ∈ �. Then ! = �#~ for some 0, ∴ !#~­ = ��#~�#~­ 														= �#~��#~­ 														= #~��#~­� 				= #~�					= �#~ 					= ! 

Hence, #~­ is the unit element. 

Let us denote  #~­ = 1. 
We can write 1 = �#� for some }  
⇒ #� is the universe of � , since �	≠	  was an arbitrary element of  � 

Therefore, every non – zero element has an inverse.  

Hence, � is a field.  

 
Corollary:  ℤN, 6 a prime, is a field. 
 
Proof: Since ℤN is finite, by the above lemma it is enough to prove that ℤN is an 
integral domain.  
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  Let ��	, �� ∈ ℤN  such that  

 �� . �� = 0 and �	S  ≠ 0 

 ⇒ 6|	�� 

 ⇒ 6|	�	 %	6	|� 

 
Since �� ≠ 0, 6 ∤ �, and hence   6|�  
 ⇒ �� = 0 
 
Thus, ℤN is an integral domain and hence a field. 
 
Problems 
 
1. Prove that any field is an integral domain. 

Proof: Let U be a field. Let �, �	 ∈ 	U be such that �	≠	0 and �. �	 = 0. 
Now, �≠	0 and �	 ∈ 	U implies that �L�	exist since U is a field. So,               �. �	 = 	0  

 ⇒�L���. �� = 0 
 ⇒��L����		 = 0 
 ⇒              �	 = 0	 
 ⇒ U is an integral domain. 

 
2. The set M of 2×2 matrices over the field of real numbers is a ring with 

respect to matrix addition and multiplication. Does this ring possess zero 
divisors? Justify your answer.  
 

Solution: The null matrix V = �0 00 0� is the zero element of this ring. 

 

Now � = �1 00 0� , � = �0 01 0� are two  non-zero elements of this ring. 

i.e., � ≠ 0, � ≠ 0. We have 
 

 �� = �1 00 0� �0 01 0� = �0 00 0� = V. 
 
Thus the product of two non-zero elements of the ring is equal to the zero 
element of the ring. Therefore M is a ring with zero divisors. 
 

3. Define integral domain. Prove that ℤH = {0,1,2, … , �- − 1�} w.r.t addition 
and multiplication modulo n is not an integral domain if n is not a prime. 
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Solution: Taking n=4, we have ℤ¸ = {0,1,2,3}. 
 
We see that 2.2=0 but 2≠0. Hence ℤ¸ is not an integral domain. 
 

4. Show that the set ℤO0P of Gaussian integers (i.e. the set of complex numbers 
a+ib, where a and b are integers) forms a ring under ordinary addition and 
multiplication of complex numbers. Is it an integral domain? Is it a field? 
Justify your answer in each case. 
 
Solution: Let ℤ [i] = {a + ib | a, b ∊	ℤ, i2 = -1} – the set of complex 

numbers a + ib where a and b are integers. 

(a) Let a+ib, c+id be two elements in  ℤ [i].  

Then (a + ib)+(c+id)= (a+c)+i(b+d) 

and (a + ib) (c+id) = (ac - bd) + i(ad + bc) , which are again members 

of ℤ [i]. 

Thus, ℤ [i] is closed with respect to addition and multiplication of complex 
numbers. 
 
Further, in complex numbers both addition and multiplication are associative as 
well as commutative compositions. Also multiplication distributes with respect 
to addition.  
 

The Gaussian integer 0+i0 is the additive identity. 
The additive inverse of a+ib is (-a)+i(-b). 
The Gaussian integer 1+i0 is the multiplicative identity. 
 

Therefore the set of Gaussian integers is a commutative ring with unity for the 
given composition. 

 
(b) ℤ [i] is an integral domain 

Let x, y ∊ ℤ [i], x, y ≠ 0 , x = a + ib , y = c + id 

Let xy = 0 ⇒ (a + ib) (c+id) = 0  ⇒	(ac - bd) + (ad + bc) i = 0 

� ac – bd = 0  and  ad + bc = 0 

� ac=bd and ad=-bc 
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� adc = -bc2 

� bd2 = -bc2 

� d2 = -c2 

� d = 0 = c and consequently a=0,b=0 

which is a contradiction since x and y ≠ 0. ∴ the product of two non-zero member of ℤ [i] cannot be zero. 

Hence, ℤ [i ] is an I.D.  

 
(c) ℤ [i] is not a field since 2=2+0i does not possess an inverse. 

For if 2(a+ib)=1, this implies that 2a=1 and a=1/2, which is not an integer. 
 
8.2 Subring 
 
Definition:  Let {�,+	, . } be a ring. A non – empty subset Q of � is called a 
subring of � if {Q, +	, . } is a ring.  
 
If � is any ring, then {0} and � are always subrings of �. These are known as 
improper subrings of �. 
 
Other subrings, if any, of � are called proper subrings of �. 
 
Theorem 8.2.1: The necessary and sufficient conditions for a non – empty 
subset Q of a ring � to be a subring of � are 
 

i) �	, �	 ∈ 	Q	⇒	� − �	 ∈ 	Q 
ii)   �	, �	 ∈ 	Q	⇒	��	 ∈ 	Q 

 
Proof: The condition is necessary: 
 

Let	�Q, +, . � be a subring of ��	, +	, . � 
Since Q is a group with respect to addition, therefore �	 ∈ 	Q	⇒	 − �	 ∈ 	Q.  
Let �, �	 ∈ 	Q. Then �, −	�	 ∈ 	Q and so � + �−	�� 	∈ 	Q 

i.e   � − 	�	 ∈ 	Q, since Q is closed under +. 

Also, Q is closed with respect to multiplication. 

So, �, �	 ∈ 	Q ⇒ ��	 ∈ 	Q. 
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The condition is sufficient: 

 Suppose Q is a non – empty subset of � such that i) and ii) are satisfied. 

 From i) �, �	 ∈ 	Q ⇒   � − � ∈ 	Q 

  i.e,         0	 ∈ 	Q. 
Now, since 0	 ∈ 	Q, �	 ∈ 	Q, 

  ⇒ 0 − � ∈ 	Q 
  ⇒ −� ∈ 	Q 
 

i.e , each element of Q possesses additive inverse . 

Again, � ∈ Q, � ∈ 	Q ⇒ � ∈ Q,−	� ∈ 	Q  

  So � − �−	�� ∈ 	Q     (by (i)) 

 i.e   � + 	� ∈ 	Q 

∴ Q is closed with respect to addition.  

Let 	, �, 		 ∈ 	Q . Then ��	 ∈ 	Q (by (ii)) 

Clearly,          ���	� = ����	 

                														�	�� + 	� 	= 	��	 + 	�	  

   																��	 + 	�	�	 = 	��	 + 	�  

are true since Q	⊆	�.  

 Hence Q is a ring and so Q is a subring of �.  
 
Theorem 8.2.2: The intersection of two subrings of a ring � is a subring of �. 
 
Proof:  Let � and � be two subrings of a ring �.  

Clearly,  � ∩ � is non – empty, since 0 ∈ � ∩ �.  

Let �, �	 ∈ 	� ∩ �. 

Then �, �	 ∈ 	�  and �, �	 ∈ �. 

Since � and � are subrings of �, � − �	 ∈ 	�, ��	 ∈ 	�  and � − �	 ∈ 	�, ��	 ∈
B. 

So, � − �	 ∈ � ∩ �  and ��	 ∈ � ∩ �.  

Hence, � ∩ � is a subring of �. 
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Remark: The union of two subrings of � need not be a subring of �. 
 
Definition:  Let � be a ring. The centre of a ring �, denoted by Y	�m�, is 
defined as +	��� 	= 	 {�	∈	� ∶ 	#� = �#	$ %	�JJ	#	 ∈ 	�	} 
 
Theorem 8.2.3: The centre of a ring � is a subring of �.  
 
Proof: Since		0#	 = 	#0		∀	# ∈ �, therefore 0 ∈ +	��� is non – empty. 
  Let �, �	 ∈ 	+	���.  Then   
 #� = �#   and #�	 = 	�#	∀		# ∈ � 
 
Now, �� − ��	#	 = 	�#	– 	�# = 	#� − #�	 = 	#	�� − ��  
Thus �� − ��	# = #	�� − ��	∀	# ∈ � implying that � − �	∈	+���  
Also, ����# = ���#� = ��#�� = ��#�� = �#��� = #���� 
Hence, ����#	 = 	#����	∀		# ∈ �  implying that ��	 ∈ 	+���. 
Hence, +��� is a subring of �. 

 
Definition:   Let Q be a subset of a ring �. Then the smallest subring of �  
containing Q is called the subring generated by	Q. 
 
Definition:   An integral domain � is said to be of characteristic 0 if '�	 =	0, �	≠	0	 ∈ �, ' is an integer, then '	 = 	0. 
 
Definition:   An integral domain � is said to be of finite characteristic if there 
exist a positive integer ' such that '�	 = 0	∀	� ∈ �. 
 
The least such ' is said to be the characteristic of �. 
 
Lemma 8.2.4: The characteristic of a finite field is finite.  
 
Proof: Let U be a finite field.  
 
   Let  �U� = ', ' > 0 
 
Then,    � + � +⋯+ �Z[[[\[[[]�L{~�I© = 0	∀� ∈ U 

 
 ⇒ '�	 = 	0  
 
 ⇒ U is of finite characteristic. 
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Lemma 8.2.5: If an integral domain is of finite characteristic, then its 
characteristic is prime. 
 
Proof: Let � be an integral domain of finite characteristic 6. 
 
Suppose 6 is not prime. Then 
 6	 = 	6�	6�, where 6� ≠ 1, 6� ≠ 0 and 6� < 6, 6� < 6. 
Let �	≠	0, � ∈ �. 
 
Since � is an integral domain, ��≠	0 and since 6 is the characteristic of � we 
have 0 = 6�� = 6�	6��� 																																								= 6� 	��� + �� +⋯+ ��Z[[[[[\[[[[[]NÂ	{~�I© � 

 

																																								= �6���	�� + � +⋯+ �Z[[[\[[[]NÂ	{~�I© � 

 																= �6����6��� 
 
As � is an integral domain,  either 6�� = 0 or 6�� = 0, which is not possible as 6� < 6, 6� < 6. 
 
Hence, 6 is a prime. 
 
Lemma 8.2.6: In an integral domain, the left and right cancellation laws hold 
good. 
 
Proof: Let � be an integral domain  
 Suppose #�	 = #�,			#≠	0  

 ⇒ #�	– #�	 = 0 

 ⇒ #�� − �� 	= 0 

 ⇒ � − �	 = 0 

 ⇒ �	 = �  

Hence, left and right cancellation laws hold good. 
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Definition:  An element ′�′ in a ring �  is called idempotent, if �� = �.  
 
Definition:  An element ′�′ in a ring � is called nilpotent if �H = 0 for some 
positive integer -. 
 
Remark: If � is a ring with unity	1, then 0 and 1 are idempotent elements of �. 
Further 0 is always nilpotent.  
 

The element q0 10 0r in a 2 × 2 matrix ring is nilpotent. 

 
Problems 
 
1. If � is a ring such that #� 	= #	∀	#	 ∈ �, prove that  

i) # + # = 0	∀	#	 ∈ �	0. (. , each	element	of	�	is	its	own	inverse. 
ii)  # + ! = 0 ⇒ # = ! 
iii)  � is a commutative ring. 

 
Proof:  
i) Let # ∈ �, then 

                               �−#�	�−#� = 	 �−#�� 	= −# 
 
                         and �−#��−#� = 	#� 	= # 
 
         ⇒ 	# = −#		 … �∗�							 

  
Hence, # + # = 0	∀	#	 ∈ �. 
 
ii)  From i) we have # + # = 0 

 
Therefore, # + ! = 0 ⇒ # + ! = # + # 
 ⇒ ! = #, by left cancellation law for addition in �. 

 
iii)  Let �, � ∈ �. Then  �� + ��� 	= � + � 

 
and  					�� + ��� 	= 	 �� + ���� + �� 
 =	�� 	+ �� + �� + �� 

 
⇒		� + � = 	� + ��	 + �� + � 
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⇒	��	 + �� = 0 
 

⇒�� = −�� = ��					��!	�∗�� 
 
Hence, � is commutative. 
 

Definition: A ring � is called a Boolean Ring if all of its elements are 
idempotent i.e., if 
  #� 	= #	∀	#	 ∈ �.   
 
2. Prove that the only idempotent elements in an integral domain �  with unity 

are 0 and 1. What happen if � is not an integral domain? 
 
Solution:  Let � be an integral domain.  
 
Let # ∈ � be idempotent.  
i.e., #� = #	 
⇒ #� − # = 0 

⇒ #�# − 1� = 0 

⇒ # = 0	 %	# = 1  

 
Hence, the only idempotent elements in an integral domain �  with unity are 0 
and 1. 
 
Let � = ℤ�­, then � is not an integral domain and we see that  5	S , 6� are 
idempotent elements. 
 
3. If �  is an integral domain, then prove that �  does not possess any non – 

zero nilpotent elements.  
 

Solution: Let �	≠	0	 ∈ 	�. Then  �H = 0  ⇒ ��HL� = 0 ⇒ �HL� = 0  

Continuing in this manner we get   � = 0	which is a contradiction. 

Thus, �  does not possess any non – zero nilpotent elements.  
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8.3 Ideals 
 
Definition:  A non- empty subset Q of a ring � is called a left ideal of �  if  
 

i) �, �	 ∈ Q implies � − �	 ∈ Q 
ii)  � ∈ Q and % ∈ � implies %� ∈ Q  

 
Definition:  A non – empty subset Q of a ring �  is called a right ideal of �  if  
 

i) �, �	 ∈ Q implies � − �	 ∈ Q 
ii)  � ∈ Q and % ∈ � implies �% ∈ Q  

 
Definition:  A non – empty subset Q of a ring �  is called an ideal or a two-sided 
ideal of �  if  
 

i) �, �	 ∈ Q implies � − �	 ∈ Q 
ii)  � ∈ Q and % ∈ � implies %� ∈ Q and �% ∈ Q. 

 
Remarks:  
 

1)  In a commutative ring, every left ideal or right ideal is a two –sided ideal.  
2) Since each ideal Q of a ring �  is a subgroup of the additive group ��	, +�, 0 ∈ Q. 

 
Example: If �	 = 	ℤ  be a ring of integers and - be any integer, then �-� 	=	{-# ∶ #	 ∈ ℤ	} is an ideal of ℤ. 
 
Proof: Let , �	 ∈ 	 �-� . Then � = -#, � = -! for some integers # and !. 

Now � − �	 = -# − -!	 = 	-	�# − !� ∈ �-� 
Let % ∈ � = ℤ. Then %� = %�-#� 	= %-#	 = -�%#� 
∴ %� = �%	 ∈ �-� 
Hence �-� is an ideal of ℤ. 

 
Theorem 8.3.1: Every ideal of a ring � is a subring of �.  
 
Note: The converse of this theorem is not true.  

Example: � = ℚ, Q = ℤ  
 
Theorem 8.3.2: The intersection of two ideals of a ring �  is an ideal of �. 
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Remark: The union of two ideals of a ring � need not be an ideal of �.  
 
Theorem 8.3.3: If � and � are two ideals of a ring �, then, 
 � + �	 = 	 {� + � ∶ � ∈ �, �	 ∈ �	} is an ideal of �.  

 
Proof: Let �� + ��, �� 	+ �� 	 ∈ 	� + �. 

Then, ��, �� ∈ 	� and ��, �� ∈ �. 
Since � and � are ideals of �, therefore they are subgroups of ��, +� 
Therefore, ��, �� ∈ 	�	 ⟹ 	 �� − �� ∈ 	�	 
and ��, �� ∈ 	�	 ⟹ 	 �� − �� ∈ �	 
Consequently, ��� + ��� − ��� 	+ ��� = ��� − ��� + ��� − ��� 	∈ 	� + � 
 
Hence, � + � is a subgroup of ��,+�. 
Now let % ∈ � and � + � ∈ � + �  
Then �	 ∈ 	�	, �	 ∈ 	�  and we have %�� + �� = %� + %�	 ∈ � + �. 
Thus � + � is an ideal of �.  
 

Lemma 8.3.4:Let � be a commutative ring with unity, whose only ideals are �0� 
and � itself. Then � is a field. 

 
Proof: Let # ∈ �, # ≠ 0.  

Consider the set �#	 = 	 {%#|% ∈ �} 
Clearly, 0 = 0#	 ∈ �#. So �# is non – empty.  

Let %�#	, %�#	 ∈ 	�#. Then  %�# −	%�# = �%� −	%��# ∈ 	�#.  

Also, if %#	 ∈ �#	�-�	& ∈ �, then  &�%#� 	= �&%�# ∈ �# 

And  �%#�&	 = %�#&� = %�&#� = �%&�#	 ∈ �# 

Hence �# is an ideal of �.  
 
Since the only ideals of � are (0) and �, we must have �#	 = 	 �0� or �#	 = 	�. 
 
But �#	 = 	 �0� is not possible since 1 ∈ � and #≠	0, 1. #	 = 	#≠	0	 ∈ 	�#. 
Thus, we must have �#	 = 	�.  
 



Chapter 8: Rings 
 

134 

i.e, every element of � can be written as %# for some % ∈ �. 
 
In particular, 1 ∈ �, can be written %­# = 1. 
 
i.e, %­ is the multiplicative inverse of #. 
 
Since #	≠	0 was arbitrary, this means that every non – zero element of � 
has a multiplicative inverse. 
 
Therefore, � is a field. 

 
Problems 
 
1. If R is a commutative ring and � ∈ �, then prove that the set �� ={%�: % ∈ �}	is an ideal of R.  

 
Solution: Let %��, %�� ∈ ��. Then 

   %�� − %�� = �%� − %��� ∈ ��   

  Also if % ∈ �, �ℎ(-	%�%��� = �%%��� ∈ ��    

   And �%���% = %���%� = %��%�� = �%�%�� ∈ �� 

Thus Ra is an ideal of R. 

 
2. Let � be a commutative ring, � ∈ �, � ≠ 0. Let I= {# ∈ �|	#� = 0}.		Prove 

that I is an ideal of �. Give an example of	� and � ∈ �  such that I≠ {0}.  
 
Solution:  

(a) � is a subgroup 
Let #, ! ∈ �, � ∈ �, � ≠ 0.  
Now, �# − !�� = #� − !� = 0 − 0 = 0 ⇒ # − ! ∈ �. 
 
(b) � is a ideal 

 
Let  % ∈ �, # ∈ �. Then 

   �%#�� = %�#�� = %. 0 = 0 ⇒ %# ∈ �   
 Thus I is an ideal of R. 
 Take � = ℤ�, � = 2�, � = {0�, 3�}. 
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8.4 Ring Homomorphism 
 
Definition: Let � and �z be rings. A map ∅: � → �z is said to be a ring 
homomorphism if 
    	∅�� + �� = 	∅��� + ∅���;	∀	�, � ∈ � 										∅���� = ∅���∅���;		∀	�, �	 ∈ 	� 	
8.4.1 Examples of ring homomorphism 
 

i) ∅:ℝ	→	ℝ 
∅�#� = 	# is a ring homomorphism. 

 
ii)  ∅:	ℝ	→	ℝ 

∅�#� = 	0 is a ring homomorphism. 
 

iii)  ∅:	ℤ→	ℤ 
∅�#� = 2# is not a ring homomorphism. 
 

Lemma 8.4.2: Let ∅: � → �z be a ring homomorphism. Then, 
 

i) ∅�0� = 	0  
ii)  ∅�−�� = −	∅���	∀� ∈ �.  

 
Proof: Let � ∈ �. Then 
 

i) ∅��� 	= ∅	�� + 0� = ∅��� 	+ ∅�0� 
Thus, ∅�0� is the zero of �z. 
 

 ii)  ∅��� + ∅�−�� 	= ∅�� + �−��� = ∅�0� = 0 
                       	⟹ ∅�−�� = −∅���. 
 
Definition:  Let ∅: � → �z be a ring homomorphism. Then the set {# ∈�	|	∅�#� 	= 0} is called the kernel of ∅ and is denoted by Gå:∅ or ∅LM�=�. 
 
Lemma 8.4.3:If ∅ is a homomorphism of �  into �z with kernel D(%∅, then 
 

1. D(%∅ is a subgroup of �  under +. 
2. If # ∈ D(%∅ and r ∈ R, then both #% and %# are in D(%∅. 

 
Proof: 1. If �, �	 ∈ D(%∅, then ∅��� = 0,∅��� 	= 0 
Thus, ∅�� − �� 	= ∅��� − ∅��� 	= 0 
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⇒      � − � ∈ D(%∅ 
 
Also ∅�−�� = −∅��� = 0⇒	 − � ∈ D(%∅. 
 
2. Let # ∈ D(%∅ and % ∈ �. Then 
 
 ∅�#%� = ∅�#�.∅�%� 
            = 	0.∅�%� 
  = 	0 
⇒ #% ∈ D(%∅. 
 
Similarly, %# ∈ D(%∅. 
 
Definition: A homomorphism of � into �z is said to be an isomorphism if it is 
a one-to-one mapping. 
 
Definition: Two rings are said to be isomorphic if there is an isomorphism of 
one onto the other. 
 
Lemma 8.4.4: The homomorphism ∅ of � into �z is an isomorphism iff D(%∅ =	 �0�. 
 
Proof: Let ∅: � → �z  be a homomorphism. 
 
 Let 0, 0z be the zero elements of � and �z respectively. 
 
 We know that D(%∅ = {# ∈ �:	∅�#� 	= 0z} is an ideal of �.  
 
 Suppose ∅ is an isomorphism of � into �z. Then ∅ is one-one. 
 
 Let � ∈ D(%∅. Then ∅��� = 0z. 
    ⇒ ∅��� 	= ∅�0� 
    ⇒  � = 0 
 
Since � was arbitrary, hence D(%∅ = �0�. 
 
Conversely, suppose D(%∅ = �0�. 
 
Let �, � ∈ � such that ∅��� = ∅��� 
 
   ⇒ ∅��� 	− ∅��� 	= 0z 
   ⇒ ∅�� − �� = 0z 
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   ⇒ � − � ∈ D(%∅ 

   ⇒ � − �	 = 	0 

   ⇒ �	 = 	� 
  
Hence, ∅ is one-one and therefore ∅ is an isomorphism of � into �z. 
 
Problems 
 
1. If f is a homomorphism of a ring R into a ring �zwith Kernel S, then prove 

that S is an ideal of R. 
 

Solution: Given f : R � �z is a homomorphism with Ker f=S. 
To prove: S is an ideal of R. 
Let  �, � ∈ Q. Then f(a)=0, f(b)=0. 
Now f(� − �� = $�� + �−��� = $��� + $�−�� = $��� − $��� = 0 −0 = 0 
@ℎI&	� − � ∈ Q.   
Also if % ∈ �, � ∈ Q, �ℎ(-	$�%�� = $�%�$��� = $�%�. 0 = 0, implying	%� ∈Q and $��%� = $���$�%� = 0. $�%� = 0, implying	�% ∈ Q Thus S is an 
ideal of R. 

 
2. Prove that any non-zero ring homomorphism from ℤ	� 	ℤ	is identity. 

 
Solution: Let f:	ℤ	 → 	ℤ	be a non-zero ring homomorphism. Since a ring 
homomorphism takes 0 to 0 and 1 to 1, we have f(0)=0 and f(1)=1. 
  
Let m ϵ ℤ.  
 
 Case I: m is positive. Then 
    f(m) =f(1+1+…+1) 
 
     =f(1)+f(1)+…+f(1)  (m-times) 
 
     = 1+1+…+1   (m-times) 
 
     =m 
 Case II: m is negative. Then m=-n, where n is positive. 
 
 Now, f(m) = f(-n) 
 
   = -f(n)  , since f is a ring homomorphism 
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   = - n 
 
   = m 
 Therefore any non-zero ring homomorphism from ℤ	� 	ℤ	is identity. 
 
8.5 Quotient Ring 
 
Let � be a ring and � an ideal of �.  
 
Let �/� denote the set of all distinct cosets of � in �. 
 

 i.e., 
Á̀ =	 {�	 + 	�:	�	∈	�} 

  
For %� + �, %� + �	 ∈ 	�/�, we define  
 

i) addition by �%� + �� + �%� + �� = �%� + %�� + � 
 

and ii) multiplication by �%� + ���%� + �� = %�%� + �.  
 
Theorem 8.5.1: With respect to these operations defined above, �/� is a ring 
called the quotient ring of � by �. 
 
 Proof: a) The operations are well defined. 
 
 Let Ò,a ∈ �/�. Let Ò = �� + �	 = �� + �, be two representations of Ò.  
    ⇒ �� − �� ∈ �. 
 
 Put �� − �� = I� ⇒ �� = �� + I�. 
 
Let a = �� + �	 = �� + �, be two representations of a.  
 
    ⇒ �� − �� ∈ �. 
 
 Put �� − �� = I� ⇒ �� = �� + I�. 
 
Addition:   Ò + a = ��� + �� + ��� + �	�  
   = ��� + ��� + I 
   = ��� + I�� + ��� + I�	� + � 
   = ��� + ��� + �I� + I�	� + � 
   = ��� + ��� + � 
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   = ��� + I� + ��� + �	� 
 
Thus addition in �/� is well defined. 
 
Multiplication :  
  Òa = ��� + ����� + �	�  
   = ���� + I 
   = ��� + I����� + I�	� + � 
   = ����� + ��I� + I��� + I�I�� + � 
   = ���� + � 
   = ��� + I���� + �	� 
 
Hence multiplication in �/�  is also well defined. 
 
b) Closure property: By the definition of operations in �/�, it is closed w.r.t 
both addition and multiplication.  
 
c) Associativity in �/�: We have 
 �� + I� + O�� + �� + �	 + ��P = �� + I� + O�� + 	� + �P = O� + �� + 	�P + � = O�� + �� + 	P + � = O�� + �� + �P + �	 + �� = O�� + �� + �� + ��P + �	 + ��. 
 
d) Commutativity in �/�: We have 
 �� + I� + �� + �� = �� + �� + � = �� + �� + � = �� + I� + �� + ��. 
 
e) Existence of additive identity: We have � = 0 + 	� ∈ �/� and if � + I ∈ �/�, 
then  
 �0 + I� + �� + �� = �0 + �� + � = � + �. 
 
 Therefore, � is the additive identity. 
 
f) Existence of additive inverse: Let �	 + � ∈ �/�, then its additive inverse is 
–�	 + 	�. 
 
g) Associativity of multiplication: We have 
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�� + I�O�� + ���	 + ��P = �� + I�O��	� + �P = ���	� + � = ����	 + � 
 = O���� + �P�	 + �� = O�� + ���� + ��P�	 + ��. 
 
h) Distributive Law: We have 
 �� + I�O�� + �� + �	 + ��P = �� + I�O�� + 	� + �P = ��� + 	� + � 
 = ��� + �	� + � = ��� + �� + ��	 + �� = �� + ���� + �� + �� + ���	 + �� 
 
Similarly, O�� + �� + �	 + ��P�� + I� = �� + ���� + �� + �	 + ���� + �� 
 
Hence �/� is a ring with respect to two compositions.  
 
Proposition 8.5.2: The map φ ∶ �	→	�/� given by φ	�%� 	= 	% + � is a ring 
homomorphism with D(%φ	 = 	�. 
 
This mapping φ is called the projection mapping 
 
Proof:  Let %�, %� ∈ �. Then 

   φ (%� + %�) = (%� + %�) + � 
   = (%� + �) + (%� + �) 
   = φ (%�) + φ (%�) 

 
And  φ (%�	%�) = %�	%� + � 
   = (%� +	�) (	%� + �) 
   = φ (%�) φ (%�) 

  

ker φ = {#	∈	�:	φ	�#� 	= 	0 + 	�} 
 = {#	∈	�:	#	 + 	�	 = 	�} 
 = {#	∈	�:	#	∈�} 
 = � 
 
Theorem 8.5.3:  Fundamental theorem of ring homomorphism  
 
If	φ: �	→	�z is an onto homomorphism of rings, with kernel �, then �/�	 ≌ 	 �z.  
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Proof:  Define c:	�/� → �z by c	�%	 + 	�� 	= 	φ	�%�	∀	%	 ∈ �  
 

a) This map is well defined. 
Let %� + �, %� + � ∈ �/� be such that  
 %� + � = 	 %� + � 
    ⇒ %� −	%� ∈ � 
    ⇒ φ	�%� −	%�� 	= 	0 

    ⇒ φ	�%�� 	− 	φ	�%�� 	= 	0 

     ⇒ φ	�%�� = 	φ	�%�� 
     ⇒ c	�%� + �� 	= 	c	�%� + �� 
   ∴ c is well defined.  
 

b) c is a homomorphism: 
 

c	O�%� + �� +	�%� + ��P 	= 	cO�%� + %�� 	+ 	�P			= 	φ	�%� +	%��				= 	φ	�%�� + φ	�%��		
      = 	c	�%� + �� +c	�%� + �� 

And  

c	O�%� + ���%� + ��P 	= 	cO%�%� 	+ 	�P																															= 	φ	�%�%��																																							= 	φ	�%��φ	�%��		
         = 	c	�%� + ��c	�%� + �� 
 

c) Ψ is onto: For any %z ∈ �z, Ñ 	%	∈	� such that φ	�%� 	= %z. 
 

     ⇒ c	�%	 + 	�� 	= 	φ	�%� 	= 	 %z 
 

d) Ψ is one-one for if  
c	�%� + �� = c	�%� + �� 

    ⇒ φ	�%�� = φ	�%�� 
    ⇒ φ	�%�� − φ	�%�� = 0 
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    ⇒ φ	�%� − %�� = 0  

    ⇒ %� − %� 	 ∈ 	� 
    ⇒ %� + � = %� + � 
 ∴ Ψ is an isomorphism  
 Hence, �/�	 ≌ 	 �z. 
 

Proposition 8.5.4: (Relation between ideals of R and ideals of R/I) 
 
Let � be an ideal in a ring � and let  
   φ : �	→	�/�   
 
be the projection mapping.  
 i.e.,  φ	�%� 	= 	%	 + �	∀	%	∈	�. 
 
Then any d	⊃ � is an ideal in � if and only if φ �d� 	= 	d/� is an ideal in �/�. 
 
Proof:  Let d	⊃ � be an ideal in � and φ�d� 	= 	d/�. 
  Clearly d/� is a subgroup of �/�. 
 
  Now let �	 + 	�	∈	d/� with �	∈	d and +�∈ �/�. 
 
Then, �# + ��	�� + �� 	= 	#� + �	∈	d/�	�&	#�	∈	d. 
 
Similarly, �� + ��	�# + �� 	= 	�#	 + �	∈	d/�	�	#	∈		d. 
 
 Thus, d/� is an ideal in �/�. 
 
Conversely, assume that d/�	 = 	 {�	 + 	�	/	�	 ∈ d} is an ideal in �/�. Then,  
 
 d	 = 	φ	L��d/�� is an abelian subgroup of �.  
 
Also, for any #	∈	�, �	∈	d, 
 �# + ���� + �� 	= 	#� + �	∈	d/�       [ ∵ ��	 + ��	∈	d/� and d/� is an ideal of �/�] 
 
Showing that #�	∈	d. 
Similarly, �#	∈	d. 
Hence, d is an ideal of �. 
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8.6 Prime and Maximal Ideals 
 
Throughout this section, � is a Commutative ring with 1. 
 
Definition:   An ideal P in a ring � is said to be a prime ideal if whenever ��	∈	Ð, then either �	∈	Ð	 %	�	∈	Ð, Ð ≠ �. 
 
8.6.1 Examples 
 
1. Let �	 = 	ℤ and Ð = 6ℤ where 6 is a prime. 

 
Then, Ð is a prime ideal because if �� ∈ Ð then, 

 
 �� = 6D for some D ∈ ℤ. 

 ⇒ 6	|	�� 

 ⇒ 6	|	�	 %	6	|	�    (∵ 6 is a prime) 

 ⇒�	∈	6ℤ		 %		�∈	6ℤ 

 Hence, Ð = 6ℤ is a prime ideal. 

2. Let � be an integral domain. Then Ð = {0} is a prime ideal in � for if �� ∈ Ð = {0}, then ��	 = 	0. 
This implies that � = 0 or � = 0  

i.e., �	∈	Ð	or	�	∈	Ð. 

Hence, Ð is a prime ideal. 
 
Proposition 8.6.2: An ideal P in � is a prime ideal if and only if R/P is an 
integral domain. 
 
Proof: Suppose P is a prime ideal of � 
 
 Let �� 	= �	 + 	Ð, 	�S 	= �	 + 	Ð ∈ �/Ð be such that ��	�S = 0 

 i.e., ��	 + 	Ð���	 + 	Ð� = 0 + Ð 

 ⇒ ��	 + 	Ð	 = 	Ð 

 ⇒ �� ∈ Ð 

 ⇒ � ∈ Ð or � ∈ Ð       (∵ Ð is a prime ideal) 

 ⇒ �	 + 	Ð = Ð			or		�	 + 	Ð = Ð  
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 i.e., �� = 0�		or		�� = 0� 

 Hence, �/Ð is an integral domain. 
 
Conversely, let �/Ð be an integral domain and let �� ∈ Ð. Then, 
 
          ��	 + 	Ð	 = 	Ð 
 ⇒ ��	 + 	Ð���	 + 	Ð� = Ð 
  i.e.,          ��	�S = 0.  
 
Since, �/Ð is an integral domain we must have  
 
 �� = 0 or 	�S = 0 
 i.e., � + Ð = Ð   or    � + Ð = Ð 
 i.e., � ∈ Ð or � ∈ Ð, showing that Ð is a prime ideal.  
 
Definition: An ideal M in a ring � is said to be maximal if M ≠ R, and if for 
any ideal I of � such that M ⊂ I ⊂ R, we have  
  I = M or I = R. 
 
8.6.3 Examples 
 
1. Let �	 = 	ℤ and ô = 6ℤ where 6 is a prime. Then, ô is a maximal ideal of �. 

 
Let � = 'ℤ  be any ideal containing ô. 

 i.e., 6ℤ = ô	⊂	�	⊂	�  

     Now, 6	∈	ô	⇒	6	∈	�	 = 	'ℤ 

      ⇒ 6 = 'D for some D	∈	ℤ 

   ⇒	'|6 

   ⇒ ' = 1	or	' = 6			�∵ 6 is a prime) 

 If '	 = 	1, then �	 = 	� 

 If '	 = 	6, then �	 = 	ô 

 Showing that ô is a maximal ideal of �. 
 
2. If � is a field, then ô	 = {0} is a maximal ideal in � because the only ideals 

in � are {0} and �. 
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Hence, no ideal of � except � properly contains {0}.  
 
Proposition 8.6.4:  Let � be commutative ring with 1. An ideal ô is a maximal 
ideal if and only if R/M is a field.  
 
Proof: Let ô be a maximal ideal.  

 To show: �/ô is a field.  

 Let d/ô be any ideal of �/ô, where d is an ideal of � containing ô.  

  i.e., ô	⊂	d	⊂	�. 

Since ô is a maximal ideal, d = ô or d = �. 

 i.e., d/ô	 = 	 {0}		or			d/ô	 = 	�/ô 

Hence, �/ô is a field. 

Conversely, let �/ô be a field. 

To show that ô is a maximal ideal. 

Since, �/ô is a field, the only ideals of �/ô are {ō} and �/ô itself. 

Let ô	⊂	d be any ideal. 

Then, d/ô is an ideal �/ô. 

⇒ d/ô	 = 	�/ô		or			d/ô	 = {ō}. 
i.e., d = �		or		d = ô. 
Hence, ô is a maximal ideal. 
 
Corollary:   If � is a commutative ring with 1, every maximal ideal in � is a 
prime ideal. 
 
Proof:  Let ô be a maximal ideal in �.  
  Then �/ô is a field.  (Proposition 8.6.4) 
  ⇒ �/ô is an integral domain 
  ⇒ ô is a prime ideal. (Proposition 8.6.2) 
 
Note: The converse is not true: 
For example in �	 = ℤ	, �	 = 	 {0} is a prime ideal which is not a maximal ideal. 
 
Corollary:   If � is a finite commutative ring, then every prime ideal of � is a 
maximal ideal.  
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Proof: If Ð is a prime ideal of �, then 
  �/Ð is an integral domain which is finite 
  ⇒ �/Ð is a field  (since � is finite, so is �/Ð) 
  ⇒ Ð is a maximal ideal.   
 
Problems 
 
1. Consider the ring of integers ℤ. In this ring 5ℤ = {5D: D ∈ 	ℤ} is an ideal of 

ℤ. How many distinct cosets are there in the quotient ring ℤ 5ℤ⁄ ? Is this 
quotient ring a field? Justify your answer. 
 
Solution: We have  0 + 5ℤ = 5ℤ = {… ,−15,−10,−5,0,5,10,15,… } 

              1 + 5ℤ = {… ,−14,−9,−4,1,6,11,16,… } 2 + 5ℤ = {… ,−13,−8,−3,2,7,12,17,… } 3 + 5ℤ = {… ,−12,−7,−2,3,8,13,18,… } 4 + 5ℤ = {… ,−11,−6,−1,4,9,14,19,… } 
Also,    5 + 5ℤ = {… ,−10,−5,0,5,10,15,20,… } = 5ℤ 6 + 5ℤ = 1 + 5ℤ 7 + 5ℤ = 2 + 5ℤ 

and so on. Thus the quotient ring ℤ 5ℤ⁄  has five distinct cosets. 

i.e.,  ℤ 5ℤ⁄ = {0 + 5ℤ = 5ℤ, 1 + 5ℤ, 2 + 5ℤ, 3 + 5ℤ, 4 + 5ℤ} 
 i.e., ℤ 5ℤ⁄ ≅ ℤÔ  

Since ℤÔ is a field, the quotient ring ℤ 5ℤ⁄  is also a field. 

 
2. Define maximal ideal of a ring R. Is {0} in the ring if integers ℤ a maximal 

ideal? Justify your answer.  
 
Solution: {0} is not a maximal ideal in the ring of integers ℤ since 

   {0} ⊂ {…… ,−4,−2,0,2,4,…… } ⊂ ℤ  
  

3. Let R be a ring with a unit element such that �� = �,	for all � ∈ �. Prove 
that every prime ideal of R is maximal. 
 

Solution: Let I be a prime ideal of a ring R with unit element 1. Then 
Á̀
 is an 

integral domain. 



Chapter 8: Rings 
 

147 

We need to show that I is a maximal ideal. 

i.e., we need to show that 
Á̀
 is a field. 

Let �� = � + � be a nonzero element of  
Á̀ 	 , where	� ∈ �. 

In the ring R, �� = �,	for all � ∈ �. ⇒ ��� = �� + ���� + �� = �� + � = � + � = ��. ⇒ ��� − �� = 0. 			⇒ ����� − 1�� = 0. 
But �� = � + � is a nonzero element of  

Á̀
 and  

Á̀
 is an integral domain. Thus 

   �� − 1� = 0 
   ⇒ �� = 1�	 
Therefore 

Á̀
 is an integral domain with two elements, 0�	�-�	1�. 

Since a finite integral domain is a field we obtain that 
Á̀
 is a field. 

Hence I is a maximal ideal. 
 
8.7 Divisibility (in an integral domains with 1) 
      
Definition:  Let � be an integral domain with identity element 1. An element a ≠ 0, �	 ∈ � is called regular element (or a unit) in � if there exists an element 
b ∈ �	such that ab=1.  
 
8.7.1 Examples 
 
1. If � = ℤ, then the only units are ±1. 

 
2. If F is a field, then every non-zero element is a unit. In particular, the units of 

ℚ  = ℚ− {0}. 
 

3. In ℤ� = o0�, 1�, 2�, 3�, 4�, 5�p,	the units are 1�	and	5�. 
 

4. Let us consider the set � = ℤ [√−5	P 	= 	 {	�	 + 	√−5	� ∶ 	�, �	 ∊ 	ℤ	}. 
 

Define a norm on ℤ [√−5] by ,�� + √−5�� = �� + 5��. Then,  
 

i) ,O� + √−5� = 0 ⇔ � = 0	and	� = 0.  
 

ii)  For #, !	 ∈ ℤO√−5P, ,	�#!� 	= 	,�#�. ,�!� 
 

iii)  ℤ [√−5] is an integral domain. 
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iv) All the units of ℤ [√−5] are those of  # ∈ ℤ [√−5] such that ,�#� 	= 	1 
     i.e., the units are ±1. 
 
Proof: 
 
i) Trivially true. 

 
ii)  Suppose # = � + √−5�		and	! = 	 + √−5�	 ∈ ℤ�√−5�. Then,   

 																														#!		 = >� + √−5�A	>	 + √−5�A= ��	 − 5��� + ��� + �	�√−5 
 
Thus, ,	�#!� = ��	 − 5���� + 5��� + �	�� 																																				= ���	� − 10��	� + 25����� + 5O���� + 2��	� + ��	�P 
 																							= ��	� + 25���� + 5���� + 5��	� 
 = ��� + 5����	� + 5��� 
 = ,�#�. ,�!� 
 
iii)  Let #, ! ∈ ℤO√−5P be such that #!	 = 	0 
iv)  ⇒ ,	�#!� = 0 
 								⇒ ,	�#�,	�!� = 0 
 
 ⇒	Either ,	�#� = 0	or	,	�!� = 0 																																									⇒ Either	# = 0	or	! = 0. 
Hence, ℤ [√−5]  is an integral domain. 
 
v) Let # = � + √−5�		be a unit. Then there exist ! = 	 + √−5�	 ∈ ℤ�√−5� 

such that #! = !# = 1 
 ⇒ ,	�#!� = ,�1� 
 ⇒ ,	�#�,	�!� = 1 
 
This means that ,	�#� divides 1. 



Chapter 8: Rings 
 

149 

But, ,�#� = �� + 5�� will divide 1 only if ,�#� = 1 which is possible only 
if � = 0 and � = ±1. 
i.e., the units are ±1. 

 
Definition:   Let � be an integral domain with unit element. If  � ≠ 0 and � are 
in � then � is said to divide � if there exists  c ∈ D such that �	 = 	�	. If this 
happen we say that �	and		 are factors of �. 
 
We shall use the symbol  E/F to represent the fact that a divides b and E ∤ F to 
mean that a does not divide b. 
 
Remarks 
 

i. If a / b and b / c then a / c. 
ii. If a / b and a / c then a / �� ± 	�. 
iii.  If a / b then a / bx for all  #Þ	�. 
iv. If a / b and a / c then a /�§� ± ¨	�; §, ¨ ∈ �. 

 
8.7.2 Examples 
 
1. In = ℤ , the ring of integers, 3 divides 15. 
 
2. In � = ℤ+ 0ℤ = {� + 0�|	�, �	 ∈ ℤ}, �1 + 30�	�010�(&	10	�(	�I&(														 10 = �1 + 30��1 − 30�. 
 
Definition:  Let D be an integral domain with unit element. Two elements 	�, � ∈ �;a ≠ 0, � ≠ 0,	 are said to be associates if b = ua for some unit u in D. 
 
8.7.3 Examples 
 
1. In = ℤ , associates of ' are ' and –'. 
 
2.In � = ℤ+ 0ℤ = {� + 0�|	�, �	 ∈ ℤ}, � = 1 + 0√2	and � = √2 − 0 are 

associates because � = �−0�� and –i is a unit in R. 
 
Definition: An element � ∈ � is called an irreducible element if (i) a is not a 
unit, and (ii) the only divisors of a are units and associates of a. 
 
For example, 1 –  i is an irreducible element of ℤ [i]. 
 
Solution: Clearly 1 – i is a non-zero and non-unit element of ℤ [i]. 
Let 1 – i = (a + ib) (c + di)   -----  (I) where a, b, c, d ∊ ℤ 
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Taking conjugate on both sides, we get 
 
       1 + i = (a - ib) (c - id) ----- (II) 
 
Multiplying (I) and (II) we get   
 

2 = (a2 + b2) (c2 + d2) 
 

Case I: a2 + b2 = 1 and c2 + d2 = 2 
 

� (a + ib) (a - ib) = 1 
 

� a + ib is a unit 
 

Case II: a2 + b2 = 2,c2 + d2 = 1 
 

  ⇒ (c + id) (c - id) = 1 
 
  ⇒	c + id is a unit. 
 
Hence 1 - i is an irreducible element of ℤ [i]. 
 

Definition: Let D be an integral domain with unit element and let a ≠ 0, �	 ∈ �. 
Then a is said to be a prime element of D if whenever a = ub, where u, b are in 
D, then one of u or b is a unit in D. 
 
Theorem 8.7.4: Let � be an integral domain with unity. Show that every 
prime element of � is irreducible. However, the converse need not be true. 
 
Proof: Let	6 be a prime element of �. 
Then 6	 ≠ 	0, 6 is not a unit. 
 
To show: 6 is irreducible. 
Let 6	 = 	��, where �, �	 ∊ 	�. 
 
We shall prove that either � or � is a unit. 
Now, 6	 = 	1. 6	 = 	�� 

� p | ab 

� Either p|a or p|b ( since p is prime) 
 

If p|a ⇒ a = pr for some r ∊ R 
So,  p = ab 
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� p = (pr)b 

� p(1 - rb) = 0   

� 1 – rb = 0, as p≠ 0 

� rb = 1 

� b|1 
 

i.e., b is a unit. 
Similarly, if p|b, then we can show that a is a unit. 
Hence, p is irreducible. 
However, the converse need not be true. i.e., an irreducible element in an 
integral domain may not be prime. 
Example: 3 is an irreducible element of ℤ [√−5], but not a prime element of 
ℤ [√−5]. 

 
Problems 
 
1. Prove that 3 is not a prime element in ℤ�√−5�. 

 
Solution: We know that ℤ�√−5�is an integral domain with unity. 

Now, >2 + √50A>2 − √50A = 9.  
So, 3 divides >2 + √50A>2 − √50A. 

But 3 does not divide >2 + √50A and >2 − √50A for if 3 divides >2 +
√50�, then >2 + √50A = 3>� + �√50A for some �, � ∈ ℤ. => 3� = 2, � ∈ ℤ, which is not possible. 

Similarly, 3 does not divide >2 − √50A. 
Hence, 3 is not a prime element in ℤ�√−5�. 
 

2. Find an associate of a non-zero element in ℤ. 
 

Solution:We know that 1 and -1 are the only units in the set of integers. 
 
Now, if � ∈ ℤ, � ≠ 0. Then, 
 

 � = �. 1	�-�	� = �−��. �−1� 
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Hence, associates of � are � and –�. 
 
3. Define the term ‘associates’ in a Euclidean domain. In ℤÔ, are 2 and 3 

associates?  
 

Solution: Let E be a Euclidean domain. Two elements 	�, �	 ∈ h ; a ≠ 0, � ≠0,	 are said to be associates if b = ua for some unit u in E. 
 

Addition modulo 5        Multiplication modulo 
5 

 0 1 2 3 4         0 1 2 3 4 
0 0 1 2 3 4        0 0 0 0 0 0 
1 1 2 3 4 0        1 0 1 2 3 4 
2 2 3 4 0 1        2 0 2 4 1 3 
3 3 4 0 1 2        3 0 3 1 4 2 
4 4 0 1 2 3        4 0 4 3 2 1 

 
From the above table we see that units in ℤÔ = {0�, 1�, 2,S 3�, 4�}	 are 1�, 2,S 3�, 4�. 

    Now, 2=4.3and 3=4.2. 
    Hence 2 and 3 are associates. 
 
8.8 Euclidean Domain and Principal Ideal Domain 
 
Definition: An integral domain D is said to be a Euclidean ring/ domain if for 
every a ≠ 0 in D there is defined a nonnegative integer d(a) such that 
 
1. For all a, b ∈ R, both nonzero, d(a) ≤ d(ab). 
 
2. For any a, b ∈ R, both nonzero, there exist t, r ∈ R such that a = tb + r where 
either r = 0 or d(r) < d(b). 
 
For example, � = ℤ, the	ring	of	integers	 is a Euclidean domain if ���� = |�|.  
 
Definition:  Let � be a ring. An ideal � of � is said to be a principal ideal if 
there exist �­ ∈ � such that =	 {#�­	/	#	 ∈ �} . Then �­ is said to be the 
generator of � and we write  � = ��­�.  
 
Example: In  � = ℤ, the	ring	of	integers, every ideal of ℤ is of the form 'ℤ 
which are principal ideals generated by ' or –'.  
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Definition:  An integral domain D with unit element is said to be a principal 
ideal domain (PID) if every ideal A in D is a principal ideal. ie., if every ideal A 
in D is of the form A = (a) for some a ∈ R. 
 
Theorem 8.8.1: Every Euclidean domain is a PID. 
 
Proof: We have to show that  

(i) Every ideal of a Euclidean domain is a principal ideal. 
 

(ii)  1 ∈	E, i.e., E possess a unit element. 
 

(i) Let E be a Euclidean domain and let A be any ideal of E. 

If A = (0), then A is a principal ideal. 

Let A ≠ (0). Let a0 ∈ A, a0 ≠ 0 be such that d(a0) is minimal in A. This 

is possible because d(a) is non negative. 

Now, let 0 ≠ a be another element of A. By the division algorithm in 

E, 

a = t a0 + r where r = 0 or d (r) < d (a0) 

Now, r = a- tao ∈ A, since A is an ideal. 

Hence d (r) ≮ d (a0) because d (a0) is minimal in A. 

This show that r=0 ,  a = t a0 . 

Therefore every element of A is a multiple of a0 and so A is a 

principal ideal. 

(ii)  Since every ideal of E is a P.I, E = (x0) for some x0 ∊ E. 
Now, x0 ∊ E => x0 = cx0 for some c ∊ E 
Let x ∊ E, then x = yx0 for some y ∊ E ∴ xc = (yx0)c = y (cx0) = yx0 = x 
Showing that c is the unit element in E.  
Hence, every Euclidean domain is a PID. 

 
Lemma 8.8.2: Let E be a Euclidean Domain and A an ideal of E. if a ≠ 0, a ∊ A 
be such that d (a) is minimal in A, then A = (a). 
 
Proof: Let x ∊ A be arbitrary. Then by division algorithm in E , ∃ t, r ∊ E  
such that 
 
x = ta +r  where  r=o    or d (r) < d (a). 
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Now, r = x – ta ∊ A,  as A is an ideal. 
 ∴ d (r) ≮ d (a) as d (a) is minimal in A. 
 Thus, r=0 , implying that x=ta. 

Hence,  A = (a).   
 
Theorem 8.8.3:In a Euclidean domain E, a g. c. d of any two elements a and b 
exists and it is of the form λa + µb for some λ, µ ∊ E. 
 
Proof: Consider the set �	 = 	 {	%�	 + 	&�	|	%, &	 ∊ 	h	} 
 
Claim 1:  � is an ideal of h. 

Let  r1a + s1b , r2a + s2b ∊ A, Then 

(r1a + s1b1) – (r2a + s2b) = (r1 + r 2) a + (s1-s2) b ∊ A 

Hence A is a sub group of E. 

Now, let x ∊ E, then 

x (r1a + s1b) = xr1a + xs1b ∊ A ∴ A is an ideal of E. 

We know that a Euclidean Domain is a PID. Thus every ideal of E is a principal 

ideal. 

Hence  ∃	d ∊ A such that A = (d) 

Claim 2: d is a g.c. d of a and b 

Since   1 ∊ E and a = 1.a +0.b ∊ A 

b = 0.a + 1.b ∊ A 

i.e., a, b ∊ A 

Hence ∃ x ∊ E such that a = xd ⇒ d|a 

And  ∃ y ∊ E such that b = yd ⇒ d|b   

Thus, d|a and d|b. 

Further d ∊ A ⇒ d= λa + µd for λ, µ ∊ E 

Suppose ∃ some c ∊ E s.t    c|a and c|b, then 

c|λa and c|µb ⇒ c|λa + µb⇒c|d ∴ d is the g.c.d of a and b.  
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8.8.4 A particular Euclidean Ring: Gaussian Integers 
 
Let ℤO0P = {� + 0� ∶ �, �	 ∈ ℤ, i� 	= 	−1}	 – the set of complex numbers a + ib 
where a and b are integers. 
 

(d) Define ���	 + 	0�� 	= 	�� 	+ 	�� 
 

Note: (i) If �	 + 	0�	 ≠ 	0, ���	 + 	0�� 	> 	0 
  i.e., if # ∈ ℤO0P, ��#� = 0	if	# = 0.  

(ii) �	�#� 	≥ 	0 
(iii) ��#!� 	= 	��#�. ��!� 
 g(�	# = � + 0�		and	! = 	 + 0�	 ∈ ℤO0P. Then,   																														#!		 = �� + 0��	�	 + 0��= ��	 − ��� + ��� + �	�0 

Thus, ��#!� = ��	 − ���� + ��� + �	�� 																																				= ���	� − 2��	� + �����+ O���� + 2��	� + ��	�P 																							= ��	� + ���� + ���� + ��	� 					= ��� + ����	� + ��� = ��#�. ��!� 
(e) ℤO0P is an integral domain. 

 
Let #, ! ∈ ℤO0P be such that #!	 = 	0 ⇒ ��#!� = 0 						⇒ ��#���!� = 0 

 ⇒	Either ��#� = 0	or		��!� = 0 	⇒ Either	# = 0	or	! = 0. 
Hence, ℤO0Pis an integral domain. 
 

Note: i) The units of ℤO0P are 1,−1, 0, −0, i.e., they are precisely those # ∈
ℤO0Psuch that  ��#� = 	1 
 

ii) 5 is a prime in ℤ but in ℤO0P, 
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5	 = 	 �1	 + 	20�	�1 − 20� 	= 	 �2	 + 	0�	�2	 − 	0� 
iii )ℤO0P is a Euclidean Domain. 

 
Proof: 
 
1) ��#� ≥ 0 
2) ��#� ≤ ��#!�, #, ! ≠ 	0 

For ��#� ≤ ��#���!� 
        									= 	��#!� 

3) The division algorithm: 
Given #, !	 ∈ ℤO0P, there exist �, %	 ∈ ℤO0P,  such that  !	 = 	�#	 + 	% where either %	 = 	0 or ��%� 	< 	��#� 

 
Proof: We shall first of all prove this for the case when # is an integer. 

Let !	 = 	�	 + 	0� where �, �	 ∊ 	ℤ. 
 

Using the division algorithm in the Euclidean domain of integers to get 

              			�	 = 	 1�#	 + I� where either I� = 0 or ��I�� < =Â� . 
 

Similarly, b	= 	 1�#	 + I� where either I� = 0 or ��I�� < =Â� . 
 
Thus, !	 = 	� + 0� = �1�#	 + I�� + 0�1�#	 + I�� = �1� + 01��# + �I� + 0I�� 
 
 where either I� + 0I� = 0 or ��I� + 0I�� = I�� + I�� 
 													< 	 #�2 	+	#�2  

 = #� 
 				= ��#� 
Hence, ��I� + 0I�� < ��#�.  
      
Now let # be any arbitrary element of ℤO0P and let #̅ be its complex conjugate.  
 
Then ##̅ ∊ ℤ, and applying what we have proved to !#̅ and ##̅ , we get  
 !#̅ = �##̅ + % where either %	 = 	0 or ��%� < ��##̅� 
         i.e.,  ��!#̅ − �##̅� < ��##̅� 
            i.e., ��! − �#���#̅� < ��#���#̅� 
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                             i.e., ��! − �#� < ��#� 
Putting !	– 	�#	 = 	 %�, we get ! = �# + % where either %� = 0 or ��%�� < ��#� 

 
Hence, ℤO0P is a Euclidean domain. 
 
Definition:  Let R be an integral domain with 1 and let a, b ∈ �. Then an 
element �	 ∈ � is said to be a greatest common divisor (gcd) of a and b if 
1. d / a and d	/ b. 
 
2. Whenever c /a and c	/ b for some 		 ∈ �,then c / d. 
 
We shall use the notation d = (a, b) to denote that d is a greatest common 
divisor of a and b. 
Example: In � = ℤ, gcd of � = 10 and � = −25 is 5. 
 
Lemma 8.8.5: If a, b ∊ E such that a|b and b|a, then a and b are associates. 
 
Proof: a|b ⇒ b = xa, for some x ∊ E 
  b|a⇒	a = yb, for some y ∊ E 
 
Now,  a = yb ⇒ a = y (xa) ⇒ a (1 – yx) = 0 

� yx = 1 (∵ a ≠ 0) 
� x and y are units 

 
Hence, a and b are associates. 

 
Lemma 8.8.6: Let d = (a,b) and let d1 be an associate of d. Then d1 is also a 
g. c d of a and b.  
 
Proof: d1 ~ d ⇒ d = ud1 where u is a unit. 
  ⇒		d1|d and d|a ⇒ d1|a. 

Also, d|b ⇒ d1|b. 
Now, let c|a , c|b ⇒ c|d and d|d1 . so c|d1 ∴ d1 is a. g. c. d. of a and b. 

 
Lemma 8.8.7: A unit is an associate of 1. 
Proof: Let x be a unit. Then ∃ y (which is also a unit) such that 

   xy = 1 ⇒x = y-11 ⇒x ∼ 1 
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Lemma 8.8.8: Let a ≠ 0, a ∊ E , a Euclidean domain. If b ∊ E, b not a unit, then 
d(a) < d(ab). 
 
Proof: Let A = {ax | x ∊ E}. Then by the first condition of a Euclidean domain, 
  d(a) ≤ d(ax) for any x ∊ E 
 
Hence, d(a) is minimal in A. 
 
If, d(a) = d(ab), then d(ab) is also minimal in A and so  A= (ab) 
 
Also, a ∊ A ⇒ a = aby for some y ∊ E 
 

� a (1 - by) = 0 
� by = 1 (as E is an I.D) 
� b is a unit , which is a contradiction ∴ d(a) ≠ d(ab) 
� d(a) < d(ab) 

 
Lemma 8.8.9: Let a ≠ 0, a ∊ E, a Euclidean domain. Then a is a unit if and 
only if d(a) = d(1). 
 
Proof: Let a  be a unit, then a -1 exist and aa-1 = 1 
Now, d(1) ≤d(1.a) = d(a) 

and   d(a) ≤ d (a.a-1) = d(1) ∴  d(a) = d (1) 
 
Conversely; Let , d(a) = d(1) 
If a is not a unit, then d(a) < d(1.a) 
But,  d(a) = d(1) ∴ a is a unit. 
 
Definition:  Let h be a Euclidean domain, then a and b are said to be relatively 
prime if their greatest common divisor is a unit of E. 
 
Note: i) An associate of a g.c.d is again a g. c. d. 
 ii) A unit is an associate of 1. 
 
Lemma 8.8.10: If a|bc and (a,b) = 1, then a|c. 
 
Proof: (a,b) = 1 

� λa + µb = 1 
� λac + µbc = c 
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Now, a|λac and a|µbc 
 ∴ a|c. 
 
Theorem 8.8.11: In a P.I.D, an  element is prime if and only if it is irreducible. 
 
Proof:  Let � be a P.I.D.  Since �  is an integral domain, every prime element 
of �  is irreducible. 
 
Conversely, let 6 be any irreducible element of �. Then 6 ≠ 0 and 6 is not a 
unit. 
 
To prove: p is a prime. 
 
Let 6|��, where �, � ∈ � 
 
Let 6 ∤ �. Since �6� and ��� are ideals of �, so �6� 	+	��� is also an ideal of �. 
 
But �  is a P.I.D, �6� 	+	��� = ���                   ……………    (1)  
 
or some d ∈ �  
 

From (1), �6� ⊆ ��� ⇒ 6 ∊ ��� ⇒ 6 = �#       ……………   (2)  
 
 

for some # ∈ �.  
 

Since 6 is irreducible, either � or # is a unit. 
 
Suppose � is a unit, then  �L� ∈ 	� and ��L� = 1 ⇒ 1 ∈ �d�. 
 ⇒ 1 ∈ �6� + ��� ⇒ 1 = 6% + �& for some %, & ∈ 	� 

 ⇒ � = �. 1 = �6% + ��&                    ………………   (3) 
 

Now, 6|6 ⇒ 6|�6% and 6|�� ⇒ 6|��& 
 
Then, 6|��6% + ��&� and so, 6|�  (by (3)), which is contrary to our assumption. 
So � cannot be a unit. 
 
It follows that # is a unit, i.e,  #L� ∈ � . 
 
From (2) we get � = 6#L� 
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Let § ∈ ���. Then § = �! for some y ∈ �. 
 ⇒ § = �6#L��! = 6�#L�!�, #L�, ! ∈ � ⇒ § ∈ �6�	∀§ ∈ ��� ⇒ ��� ⊆ �6� ∴ ��� = �6�. ∴ (1) gives �6� 	+	��� = �6� 
       ⇒ ��� ⊆ �6�  
      	⇒ � ∈ �6� 
       ⇒ � = 6�, for some t ∈ �  

       ⇒ 6|� 

 
Hence, 6 is a prime. 
 
Theorem 8.8.12: Let � be a Euclidean domain. Then every element in � is 
either a unit or can be written as the product of finite number of prime elements 
of �. 
 
Proof: Let � be a Euclidean domain. 
Let � ∈ �. We will prove the theorem by induction on ����. 
If ���� = ��1�, then � is a unit and so the theorem is true for � when ���� =��1�. 
 
Now, we assume that the theorem is true for all � ∈ � such that ���� < ����. 
We shall prove the theorem for �. 
 
If � is a prime element, we have nothing to prove. 
 
Suppose � is not a prime element. Then � = �. 	 where neither � nor 	 is a unit. 
Now,  ���� < ���. 	�, since			is	not	a	unit 

       = ����. 
Also,  ��	� < ���. 	� = ����		as	�	is	not	a	unit 
 
By induction hypothesis, the theorem is true for � and 	. 
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Hence, � = 6�. 6�. 6«… . 6H where 6�, 6�, 6«, … , 6H are prime elements and - is 
finite. 
 
Similarly, 	 = 6�z. 6�z. 6«z… . 6�z where 6�z, 6�z, 6«z, … , 6�z are prime elements 
and ' is finite. 
 
Therefore, � = �. 	 = �6�. 6�. 6«… . 6H��6�z. 6�z. 6«z… . 6�z�. 
 
Hence � is expressible as a product of finite number of prime elements. 
 
Lemma 8.8.13: Let n ∈ �, a Euclidean domain, be a prime element. If n/�� 
then n/� or n/�. 
 
Proof: If n ∤ � ⇒ �n, �� = 1 ⇒ n/�.  (Using Lemma 8.8.10) 
 
Theorem 8.8.14: (Unique Factorization  Theorem) 
 
Let � be a Euclidean domain and � ≠ 0, a non-unit element of �.  
 
Suppose � = 6�. 6�. 6«… . 6� = 2�. 2�. 2«… . 2H, where 6~ z& and 2�z& are prime 
elements of �. Then, ' = - and each 6~ , 1 ≤ 0 ≤ '  is an associate of some 2� , 1 ≤ } ≤ -   and conversely each 2wis an associate of some 6¦ . 
 
Proof:  We have 6�. 6�. 6«… . 6� = 2�. 2�. 2«… . 2H. 
 
Now 6�|	6�. 6�. 6«… . 6� ⇒ 6�|2�. 2�. 2«… . 2H 
 

     ⇒ 6�|2� 	for	some	1 ≤ } ≤ -   ( by Lemma 8.8.13) 
 ⇒ 2� = #�6�, where #� is a unit. 

Thus, 6�. 6�. 6«… . 6� = #�6�. 2�. 2�…2�L�. 2�®�… . 2H 
 ⇒ 6�. 6«… . 6� = #�. 2�. 2�…2�L�. 2�®�… . 2H 
 
We can proceed as above for 6� and then with 6« and so on till we finally have 
1 on the LHS and a product of possibly some 2�z&. ⇒ ' ≤ -. 
 
If we do these steps with 2�z& we would similarly obtain that - ≤ '. 
Therefore, ' = -. 
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We also have shown that each 6~ , 1 ≤ 0 ≤ ',  is an associate of some 2� , 1 ≤} ≤ -,   and vice versa.  
 
Problems 
 
1. Prove that every field is a Euclidean ring. 

 
Solution: Let F be a field. 
We take ���� = 1, ∀	� ≠ 0 ∈ U. 
Let 	�, �	 ∈ U; � ≠ 0, � ≠ 0	.Then �� ≠ 0, since every field is an integral 

domain. Consequently, ���� = 1 and ����� = 1. 

This implies that ���� = �����. 
Also � ≠ 0 ∈ U ⇒ �L� ∈ U and so � = ���L��� + 0 = �� + %, 
where � = ��L� ∈ U and % = 0 ∈ U. 
Hence F is a Euclidean domain. 

 
8.9 Unique Factorization Domain (U.F.D) 
 
Definition:  An integral domain D with unit element is said to be a unique 
factorisation domain (U.F.D) if 
 
i) Every non-zero element of D is either a unit or can be expressed as a product 

of a finite number of prime elements. 
ii)  This factorisation is unique up to order and associates.  
 
Examples:  1. � = ℤ is a U.F.D. 
 

  2. Every field U is a U.F.D. 
 
Theorem 8.9.1:Every Euclidean domain is a unique factorisation domain. 
Proof: Follows from Theorems 8.8.12 & 8.8.14. 
 
Theorem 8.9.2: An ideal � = ��­� of a Euclidean domain R is maximal if and 
only if �­ is a prime element. 
 
Proof: We shall prove that � = ��­� is not maximal if �­ is not prime and 
that � = ��­�  is maximal if �­ is prime.  
 
Suppose �­	is not prime. Let �­ = �. 	, where neither � nor 	 is a unit. 
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Put � = ���. Then �­ ∈ � ⇒ � ⊆ � ⊆ �. 
 
If � = � ⇒ � ∈ � ⇒ � = �­%	for	some	% ∈ � 
 

                       ⇒ � = �	%  
 ⇒ ��1 − 	%� = 0  	⇒ 	% = 1  	⇒ 		 is	a	unit, which is a contradiction. 
 

If � = �, then every element of � is generated by �. 

Now 1 ∈ �, therefore there exist # ∈ � such that 1 = �#. ⇒ �	 is	a	unit, which is a contradiction. 

Thus, � = ��­� is not maximal in �. 
We now assume that �­ is prime.  

Let à be an ideal of � such that  � ⊆ à ⊆ �. 
 
Since a Euclidean domain is a PID, à = �I­� for some I­ ∈ à. 
So �­ ∈ � ⊆ à ⇒ �­ = I­#	for	some	# ∈ �. 
Since �­ is prime, either # is a unit or I­ is a unit. 

If I­ is a unit, then à = �. 
If # is a unit, then #L�exists and we have �­#L� = I­ ⇒ I­ ∈ � ⇒ à ⊆ � ∴ 			� = à. 
 
Hence � is maximal in �. 
 
8.10 Polynomial Rings over commutative Rings 
 
Definition: Let R be a commutative ring. Then the symbol  
 
p(x) = a0 + a1x + a2x

2 + … + an x
n ;  a0 , a1…. an ∊ R  is called a polynomial in x 

over R. 
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We denote the set of all such symbols by R [x]. 
 
Definition: In R [x], p (x) = a0 + a1x + … + an x

n and q(x) = b0 + b1 + b1x + … 
+ bmxm are said to be equal if n= m and ai = bi for all i. 
 
Definition:   Addition in R [x] 
 
Let p(x) = a0 + a1x + … + an x

n ; q(x) = b0 + b1 + b1x + … + bmxm be elements in 
R[x]. Then p(x) + q(x) = c(x) ∊ R[x], where c[x] = c0 + c1x + … + cix

i + … and 
ci = ai + bi for all i. 
 
Definition:   Multiplication in R[x] 
 
Let p(x) = a0 + a1x + … + an x

n and q(x) = b0 + b1 + b1x + … + bmxm be elements 
of R[x]. Then 
 
p(x) q(x) = c0 + c1x  + c2x

2 + …….. ∊ R[x] 
Where, 
 
cj = a0 bj + a1 bj-1 + a2 bj-2 + … + ajb0. 
 
Theorem 8.10.1: With the addition and multiplication defined above, R[x] is a 
commutative ring. 
 
Note: If, 1 ∊ R , then R[x] also has the identity element. 

R[x] is called the ring of polynomials in x over R. 
 
Definition:  Degree of a Polynomial 
 
Let p(x) = a0 + a1x + … + an x

n ∊ R[x] such that an ≠ 0. 
 
Then n is said to be the degree of p(x) and we denote degree {p(x)} = n. 
 
Note: i) We do not define the degree of the zero polynomial. 
 ii) A polynomial of the form p(x) = c ∊ R is called a constant  
polynomial and deg (p(x)) = 0 
 
Hence, for any p(x) ∊ R [x], deg (p(x)) ≥ 0. 
 
Lemma 8.10.2: Let R be an integral domain. The degree of the product of 
two polynomials in R[x] is equal to the sum of their degrees. 
 
Proof: Let p(x) = a0 + a1x + … + an x

n , an ≠ 0 
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And q(x) = b0 + b1x + … + bmxm , bm ≠ 0 be elements of R[x]. 

Then, degree (p(x)) = n and degree (q(x)) = m 

p(x) q(x) = C0 + C1x  + … + Cjx
j + … 

where Cj = a0bj + a1bj-1 + … + ajb0 

We see that Cm+n = an bm ≠ 0 , since an ≠ 0 , bm ≠ 0 and R is an I.D 

If j > m + n, Cj = ∑ ���®w��	 �w ; then l + k > m + n 

� Either l > n or k > m 

If l > n , al = 0 and if k > m ,bk = 0 ∴ each al bk = 0 

� Cj = 0 if j > m + n 

Hence, deg (p(x) q(x)) = deg p(x) + deg q(x). 
 
Lemma 8.10.3: If p(x) ≠ 0 , q(x) ≠ 0 ∊ R[x], then deg (p(x)) ≤ deg (p(x).q(x)). 
 
Lemma 8.10.4:  If R is an I.D, then R[x] is also an I.D. 
 
Proof: Let p(x) and q(x) ∊ R[x], p(x) ≠ 0, q(x) ≠ 0 

  Let deg (p(x)) = m , deg (q(x)) = n 

  Let p(x) = a0 + a1x + … + amxm  and  q(x) = b0 + b1x + … + bnx
n ;  

am ≠ 0 , bn ≠ 0 

 
Since R is an I.D ,  am bn ≠ 0 
 
Then, p(x) q(x) = C0 + C1x + C2x

2 + … + Cm+nx
m+n 

 
and  Cm+n = ambn ≠ 0 
 
Hence  p(x) q(x) ≠ 0 
 ∴ R[x] is an integral domain. 
 
Corollary: If F is a field , F[x] is an I.D. 
 
Lemma 8.10.5: Let F be a field. Then for any two non-zero polynomials p(x), 
q(x) in F[x] there exist polynomials t(x), r(x) such that 
p(x) = t(x) q(x) + r(x) 
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where  either r(x) = 0 or deg (r(x)) < deg (q(x)) 
 
Proof: If deg (q(x)) > deg (p(x)), put t(x) = 0 and r(x) = p(x) and the lemma is 
proved. Suppose deg (q(x)) ≤ deg (p(x)) 
 
We shall prove the lemma by induction on deg (p(x)). 
 
Let  p(x) = a0 + a1x + … + amxm ∊ F(x) , am ≠ 0 ∊ F 
 
  q(x) = b0 + b1x + … + bnx

n ∊ F(x) , bn ≠ 0 ∊ F 
 
Then deg (p(x)) = m , deg (q(x)) = n and m ≥ n. 
 

If m = 0, then n = 0. ∴ p(x) = a0 and q(x) = b0 

 

and we can write   a0  = a0 (b
-1b0) = a0b

-1b0 

 

          i.e,  p(x)  = t(x) q(x) + r(x) 
 
where   `    t(x) = a0b0

-1 and r(x) = 0 
 
Thus the result is true for m = 0. 
 
Suppose that the lemma is true for all non-zero polynomials in F(x) of degree 
less than m. 
 
Let p1(x)  = p(x) - 

�o
>p

 xm-n  q(x) 

 
i.e.,  p1(x) = (a0 + a1x + … + amxm) – ambn

-1xm-n (b0 + b1x + … + bnx
n)  

 
  = (a0 + a1x + … + amxm) – (ambn

-1b0 x
m-n + … + amxm) 

 
It follow that deg (p1(x)) ≤ m – 1 < m = deg (p(x)) 
 
Thus, by induction hypothesis, there exist polynomials t(x) and r(x) in F(x) such 
that 
 
p1(x) = t1(x)q(x) + r(x) 
 
where either r(x) = 0 or deg (r(x)) < deg (q(x)) 
 

i.e., p(x) - 
�o
>p

 xm-n  q(x) = t1(x)q(x) + r(x) 
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i.e., p(x) =( 
�o
>p

 xm-n  - t1(x)) q(x) + r(x) 

 
    = t(x) q(x) + r(x) 
 
where either r(x)=0 or deg (r(x)) < deg (q(x)) 
  
Theorem 8.10.6: Let F be a field. Then F[x] is a Euclidean Domain. 
 
Proof:  Since every field is an integral domain, F is an integral domain and so 
F[x] is an integral domain. 
 
Further, for any two non-zero polynomials p(x), q(x) in F[x], we have  deg (p(x) 
q(x)) = deg p(x) + deg q(x) ≥ deg(p(x)). 
 
Thus, deg (p(x)) ≤ deg (p(x).q(x))   …………… (1) 
 
We define the Euclidean valuation d on F[x] as follows: 

d(p(x))= deg(p(x)), for all p(x)≠0 ϵ F[x]. …………….(2) 

Then d is a non-negative integer. 
 
Lemma 8.10.5, for any two non-zero polynomials p(x), q(x) in F[x] there exist 
polynomials t(x), r(x) such that  
 
p(x) = t(x) q(x) + r(x) 

where either r(x) = 0 or deg (r(x)) < deg (q(x)). 
 
Hence, F[x] is a Euclidean domain. 
 
Theorem 8.10.7: Let F be a field. Then F[x] is a principal ideal domain. 
 
Proof:  Since F is a field, F[x] is a Euclidean domain. 
  Further, every Euclidean domain is a PID. 
  Hence, F[x] is a PID. 
 
8.10.8  Roots of a Polynomial  
 
Let $�#� be a polynomial over any ring �. An element § ∈ �, such that  $�§� = 0, is called a root of $�#� = 0. 
 
Definition: A polynomial $�#� 	∊ 	U�#� is said to be irreducible if for every 
factorization  
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$�#� 	= 	v�#�. ℎ�#�, either	v�#�	or	ℎ�#�	is	a	unit	in	U�#�. 
 
Units in F(x) are all non-zero polynomials of degree ‘0’  
 
i.e., all constant polynomials. 
 
Note:  The field over which the polynomials are constructed plays a vital role in 
irreducibility. 
 
For example,f(x) = x2 + 1 ∊ ℝ(x) is irreducible 
 
  f(x) = x2 + 1 ∊ ℂ[x]  
 
                = (x-i) (x+i) is reducible   
 
Remarks 
 
1) F[x] is a P.I.D 

 
i.e,. every ideal of F[x] is of the form <p(x)> 

 
2) All the units in F[x] are non- zero elements of F. 

 
3) Any two non- zero polynomials f(x) and g(x) ∊ F[x] have a g.c.d and it can 

be written as λ (x).f(x) + µ(x).g(x) where λ (x), µ(x) ∊ F[x] 
 

4) The ideal A = <p(x)> in F[x] is a maximal ideal if and only if p(x) is an 
irreducible element of F[x]. 
 
Proof:(a) we shall prove that A is not maximal if p(x) is not irreducible. 
Let p(x) = f(x).g(x) where neither f(x) nor g(x) is a constant. 
Put B = <f(x)> . Then, p(x) ∊ B 
� A ⊆ B ⊆ F[x] 

If A = B, then f(x) ∊ A 

� f(x) = p(x) h(x) for some h(x) ∊ F[x] 

� f(x) = f(x) g(x) h(x) 

� f(x) (1 – g(x) h(x))= 0 

� g(x) h(x) = 1 ( ∵	F[x] is an I.D) 

� g(x) is a constant, which is not possible. 
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If B = F[x] , then 1 ∊ B. 

� 1 = f(x) q(x) for some q(x) ∊ F[x] 

� f(x) is a constant, which is not possible. 

Hence A is not maximal. 

 

b) We shall prove that A is a maximal if p(x) is irreducible. 

If possible, let A ⊆ C ⊆ F[x] 

Since F[x] is a P.I.D, there exists c(x) ∊ C such that C = <c(x)> 

Now, A ⊆ C  ⇒ p(x) ∊ C  ⇒	p(x) = c(x) b(x) for some b(x) ∊ F[x] 

But p(x) is irreducible. 

� Either c(x) or b(x) is a constant. 

If c(x) is a constant, then C = F[x] 

If  b(x) is a constant, then c(x) = p (x)(b(x))-1 ∊ A 

� C ⊆ A       ∴ A = C   

i.e., A is not maximal. 

 
8.10.9: Factorisation of Polynomials 
 
(Eisenstein’s Criterion): Let R be a UFD and let    $�#� = �H#H +�HL�#HL� +⋯+ ��# + �­ be a polynomial in �O#P, - ≥ 1. If there exist an 

irreducible element 6 ∈ � such that 6/�­, 6/��, … , 6/�HL�, 6 ∤ �H, 6� ∤ �­, 

then f(x) is irreducible. 
 
For example: If $�#� = 25#Ô − 9#¸ + 3#� − 12, we have �Ô = 25, �¸ =−9, �« = 0, �� = 3, �� = 0, �­ = −12	 
 
Taking 6 = 3 we see that 
 6/�­, 6/��, 6/��, 6/�«, 6/�¸, 6 ∤ �Ô, 6� ∤ �­. 

 
Hence by Eisenstein Theorem, f(x) is irreducible. 
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Remark: A polynomial f(x) ∊ F[x] is reducible iff f(x) has a zero in F. 
 
For example, f(x) = x2 + 1 has no root in ℝ but has  a root in ℂ. 
 
Problems 
 
1. Prove that 
 �i� x2 + x + 1 is irreducible over ℤ2 �ii� x2 + 1 is irreducible over ℤ 7 �iii� #« – 9 is reducible over ℤ 11 

 
Solution: 
  
(i) Left to the readers. 
(ii)  Here, ℤ 7 = { 0�, 1�, 2�,	3�, 4�, 5�, 6� } 
 
f (3�) = 3�� + 1 = 3�,  

f (4�) = 4�� + 1 = 3�,  

f (5�) = 5�� + 1 = 5�,  

f (6�) = 6�� + 1 = 2�  
 
We see that x2 + 1 has no zero in ℤ 7. So it is irreducible in ℤ 7.   

   

(iii) We have f(x)=x3 – 9 = (#̅ - 4�) (x2 + 4�x + 5�) 

and f (4�) = 4�« - 9 = 64 – 9 = 55 = 0� ∴  4� is a zero of x3 – 9 

i.e, (x - 4�) is a factor of x3 – 9.   
 

2. Prove that 
ℤqO=P〈=Ã®=Â®�	〉 is a field. 

 
Solution: Since #« + #� + 1 is irreducible in ℤÔO#P, the ideal 〈#« + #� + 1	〉 
 is maximal and hence  

ℤqO=P〈=Ã®=Â®�	〉 is a field. 

 

3. How many elements are there in 
ℤqO=P〈=Ã®=Â®�	〉	? Justify. 

 

Solution:We have 
ℤqO=P〈=Ã®=Â®�	〉 = {$�#� + 〈#« + #� + 1	〉; $�#� ∈ ℤÔO#P}. 
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 By Division algorithm in ℤÔO#P, there exists 	��#�, %�#� ∈ ℤÔO#P such that 
 $�#� = ��#��#« + #� + 1� + %�#�, where 

 %�#� = 0	 % deg %�#� < deg�#« + #� + 1� = 3. 
 

We may take %�#� = §#� + ¨# + r ∈ ℤÔO#P. 
 
Since  ��#��#« + #� + 1� ∈ 〈#« + #� + 1	〉, �ℎ(%($ %( 
 

 $�#� + 〈#« + #� + 1	〉 = %�#� + 〈#« + #� + 1	〉 
 ⇒ $�#� + 〈#« + #� + 1	〉 = §#� + ¨# + r + 〈#« + #� + 1	〉…… �1� 
 
In the above expression, α, ¨, r ∈ ℤÔ and order of ℤÔ = 5. Consequently, each 
of α, ¨, r can be selected  in 5 ways. Hence by (1), the number of elements of 

the field 
ℤqO=P〈=Ã®=Â®�	〉 is 5« = 125. 

 

4. Show that < x+2 > is a maximal ideal of ℚ [x] and hence 
ℚOsP

t=®�u is a field. 

 
Solution: < x+2 > = {(x + 2) f(x): f(x) ∊ ℚ [x]} 
 
 Let x + 2 = f(x) g(x) ; f(x), g(x) ∊ ℚ [x] 
 
Then deg (f(x)) + deg (g(x)) = 1 (∵ℚ [x] is an I.D) 
 
Case I: deg f(x) = 0 and deg g(x) = 1 
 

Let  f(x) = a 0  , g(x) = b0 + b1x,  so that f(x) g(x) = a 0b0 + a0b1x 
 

� a0b1 = 1 ⇒ a0|1 ⇒ f(x) = a0 is a unit. 
 

So, x + 2 is irreducible. 
 

Case II: deg (f(x)) = 1 and deg (g(x)) = 0, then g (x) is a unit. 
 

Hence < x+2 > is maximal. 
 

Since ℚ [x] is a commutative ring with unity, 
ℚO=P

t=®�u is a field. 
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Unsolved Problems 
 
1. Prove that any finite integral domain is a field.  

     
2. If R is a ring such that �� = �,	for all � ∈ �,	 prove that � + � = 0,	for all � ∈ �.  

 
3. Define maximal ideal of a ring R. Is {0} in the ring if integers ℤ a maximal 

ideal? Justify your answer.        
    

4. Prove that a field has only two ideals 0 and itself. 
 

5. Show that ℤN = {0,1,2, … . , 6 − 1} modulo 6 is a field if and only if 6 is a 
prime. 
 

6. Determine all the ideals in ℤ�. 
 

7. Define units. Determine the number of units in the ring of integers. 
 

8. Let U be an integral domain and U�	�-�	U� be subrings of U. Show that 
U� ∩ U�is an integral domain. 
 

9. Let R be an integral domain and �, � ∈R. When do we say the following? 
 
i) a and b are associates in R 
ii)  a is an irreducible element in R 
iii)  a is a prime element in R 
 

10. Show that the polynomial #� + # + 4	is irreducible over F, the field of 
integers modulo 11. 
 

11. Prove that  2+√−5 is an irreducible element but not a prime element in 
ℤ�√−5�. 
 

12. Let �be a commutative ring with unity. Prove that an ideal ô of � is 
maximal if and only if vw is a field. 
 

13. Show that a non-zero commutative ring with unity is a field if it has no 
proper ideal. 
 

14. Let � and � be two ideals of a ring �, prove that 
Æ®xÆ ≅ xÆ∩x. 
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15. Show that a commutative ring � is an integral domain if and only if for all �, �, 	 ∈ �, � ≠ 0, �� = �	 ⇒ � = 	. 
 

16. Prove that in a principal ideal domain, every non-zero prime ideal is 
maximal. 
 

17. Let � be a commutative ring with unity. When are the elements �, � ∈ � 
called associates? If � be an integral domain with unity and �, � ∈ � be non-
zero elements such that �|� and �|�, prove that � and � are associates. 
 

18. Show that every field is an integral domain. Is the converse true? Justify 
your answer. 
 

19. Define prime ideal and maximal ideal in a commutative ring �. Prove that an 

ideal Ð of � is a prime ideal if and only if 
Á
y is an integral domain. 

 
20. Prove that every Euclidean domain is a principal ideal domain. 

 
21. Show that in a unique factorization domain 

 
i. �|	, �|		�-�	��, �� = 1 ⇒ ��|	 
ii. ��, 	� = ��, 	� = 1 ⇒ ���, 	� = 1 
iii.  Any two elements have a greatest common divisor. 
 

22. Prove that every field is a Euclidean ring. 
 

23. What do you mean by a prime element 6 of a commutative domain � with 
unity? Show that in a principal ideal domain, an element is prime if it is 
irreducible. 
 

24. Prove that in the ring of integers ℤ, if p is a prime number, then the ideal 6ℤ 
consisting all multiples of 6 is a maximal ideal.  
 

25. Prove that the principal ideal (�­) of a Euclidean ring � is a maximal ideal of �	 ⟺ the element �­ is a prime element of �. 
 

26. Let F be a field. Prove that if f (x) and g(x) are two non-zero elements of F 
[x], then 
 
deg (f(x) g(x)) =deg (f(x)) +deg (g(x)) 
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Give an example of two non-zero polynomials u (x) and v (x) in ℤ¸[x] such 
that 
deg (u (x) · v(x)) ≠ deg (u(x)) +deg (v(x)) 
 
[Here deg (f (x)) denotes the degree of the polynomial f(x) and ℤ¸ denotes 
the ring of integers modulo 4] 
  

27.  Let R be an integral domain, a and b be non-zero elements of R. Prove that a 
is an associate of b <=> the principal ideals (a) and (b) are equal. 
 

28. Show that any non-zero ring homomorphism from a field F to a ring R is 
one-one. 
 

29. Show that the only field isomorphism $:ℚ → ℚ	(ℚ is the field of rational 
numbers) is the identity mapping on ℚ. 
 

30. Prove that if F is a field, then the ideal A=(p(x)) is a maximal ideal of F[x] ⇔ p(x) is an irreducible polynomial over F. 
 

31. Let 6 be a prime number. Determine all the ideals of ℤN , the ring of integers 
modulo 6. 
 

32. Show that the only units in ℤO#P are 1 and -1. 
 

33. Show that every ring R without identity element can be embedded in some 
ring with identity.	 	

34.  If � be an ideal generated by x2+1 in ℝO#P, show that		
i. ℝO#P/� is a field;	
ii. ℝO#P/�	 ≅ ℂ, the field of complex numbers.		

35. Determine the irreducible elements of ℤ. 
 

36. Show that x2+1 is a prime element of ℝO#P.  
 

37. If $: � → Q is a ring homomorphism and	� is an ideal of �, then is it 
necessarily true that $��� is an ideal of	Q? Answer with justification. 
 

38. Let $:ℤ → U be a ring homomorphism form the ring of integers ℤ onto a 
field U. Show that U is a finite field and the number of elements in U is a 
prime. 
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39. Is x2+1 an irreducible element of ℤO#P? Justify. Show that u:ℤO#P →
ℤO0P		such	that	u>$�#�A = $�0� is an onto ring homomorphism whose 
kernel is the principal ideal generated by x2+1. (Here ℤO0P = {� + 0�|�, � ∈
ℤ}	�-�	0� = 1.	 	

40. Consider the ring homomorphism u:ℝO#P → ℂ  such that u>$�#�A = $�0�. 
Show that ∃	a prime element $�#� ∈ 	ℝO#P such that u>$�#�A is not a prime 
element of ℂ.	 	

41. Prove that if  $: � → �z is an onto ring homomorphism, then $ induces a ring 
isomorphism between  �/ ker�$� and �z	. 
 

42. If R is a finite commutative ring with unity element, prove that every prime 
ideal of R is a maximal ideal of R. 
 

43. Show that the polynomial #� − 3 is irreducible over the field of rational 
numbers. 
 

44. Prove that every prime element in an integral domain with unit element is 
irreducible. 
 

45. Define integral domain. Prove that ℤH = {0,1,2, … , �- − 1�} w.r.t addition 
and multiplication modulo n is not an integral domain if n is not a prime. 
 

46. Define an ideal of a ring. Prove that ℤ = 98ℤ+ 99ℤ. 
 

47. What is a principal ideal domain (PID)? Is ℤ [x] a PID? Justify. 
 

48. Prove that the polynomial #« + #� + 1 is irreducible in ℤÔO#P.  
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