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Preface
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intelligible manner.

-Mr. Barometer Nongbri
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Chapter- 1

Revision of Operations on Numbers System

Introduction

In this chapter we shall take a quick look of smperations on real numbers
without detailing the classification that is suppdso have been covered in
lower standards .

Operations on real numbers include addition, sabtma, multiplication, and
division. These operations follow certain rules tttere fundamental to
arithmetic:

#1.1: Let’s now take a look at the usual propertiefollowed by addition and
multiplication in the set of real numbers

o Commutative property: The order of numbers can be changed without
affecting the result.

a+b=b+a
aXb=bXa

« Associative property: The grouping of numbers can be changed without
affecting the result.

(a+b)+c=a+(b+c)a+ (b+c)
(axb)Xxc=ax(bXc)

 Distributive property: Multiplication distributes over addition.
aX(b+c)=axb+axc (left)
(a+b)Xc=aXc+bXc (right)
« Identity elements: There exist additive identity element0” and
multiplicative identity element1’ with the property :
Additive identity a+0=04+a =a
Multiplicative identity:a X 1= 1Xa=a
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« Inverse elements:Additive and multiplicative inverses exist for @ac
number.

Additive inversea + (—a) = (—a) +a =0

T . . 1 1
Multiplicative inverse (for non-zero numbefs’): a x —=-xa=1

o Closure Property:
That(a+b)€ER V a,b € R and
ab€eR VYab€eR

#1.2: Cartisian Product

For any two setsA abd B, we defined the cartisian product or crossipob
as AXxB={(ab): a €A ,b €B} the cross product of A with itself is
understood andi x A will also be denoted by? .

#1.3: Relation

Definition: A relation R from a se#d to another s&® is a rule that associates
elements of A ( not necessarily each elements of A) with elets of B.

If an elementt € A is associated to an elemente B , we say thata is
related tob’ and write’aRb’.

If ‘aRb’” we call an elemenb’ animageof ‘a’ and 'a’ is thepre-image of
'b'.

The setd is called thelomain and the seB is called theo-domainof R.

Eg.Let A={a,b,c,d} , B={1,2,3,4,5}. Let R be a relation that relates
a tol,b to2,c to5 ieaRl1,bR2,cR5.

This relation R can also be view as a set of edigairs i.e

R ={(a,1), (b,2), (c,5)} which is essentially a subset df x B .
In view of the above example , we can also defneelation from a setA to

another setB as a subset ofd x B.
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Range of a relation

Let R be a relation from a set to a setB . The range ofR is defined as the
set of elements oB which has some pre-images

Rang€R) ={y €B : xRy forsome x€ A}.

Equivalently , The range oR is defined as the set of all the first co-oatas
of R ,whenR is viewed as a subset4fx B .

Binary Relation: A relationR from a sed to itself is called a binary relation
onA.

Type of Binary relations. Reflexive , Symmetric , Transitive and Equivalen

* Reflexive: A binary relatio® onA is said tobe reflexive if
Va€ A= (a,a) ER

* Symmetric: A binary relatioR onA is said tobe Symmetric if
(a,b) € R= (b,a) ER

» Transitive: A binary relatioR onA is said tobe transitive if
(a, b), (b,c) ER = (a.c)€ER

« A Dbinary relationR on A is called anEquivalence relation if it is
reflexive, symmetric, and transitive .

#1.4: Divisibility in the set of Integers

Another Peculiar operation is tlagvisibility in the set of integers ( denoted by
Z ) and the set of natural numbers ( denotedvbywhich is of more interest
later in this book .

We recall that if for three integera, b,c satisfying
ab =c then 'a’ and ‘b’ are called théactorsof ‘¢’ and c is called a
multiple of a and b .

The above statement is also synonymous to sayatg th
"a dividesc" tobe denoted aSalc" , "b divides c" tobe denoted as
"b|c" keeping in mind that the divisor should not &' .
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It is also tobe noted that given two integets and ¢ , we shall not always
haveab = ¢ with some integer b . We will briefly state below another
concept namely — The division algorithm” which is a fundamental concept
in arithmetic that defines how to perform divisiohintegers and obtain both a
guotient and a remainder, skipping aside the dew@dfinition of divisor |,
dividend ,quotient and remainder.

The division algorithm: for any integern, and any positive integerm, there
exists unique integersandr suchthatn = mqg + r where0 <r<m.

Eg. 10=8x1+2
Euclid's Lemma: If p isaprime anch |ab then p|aorp]|b.

#1.5: Arithmetic modulo n
We define what it means to take one integermodulo another integei,

Definition: Lettingn>1,n€ N,
"m (modn)" is the smallest integerwhere0 <r <n

such tham = nq + r for some integey.

e m(modn)=rem=nq+r ,0<r<n
Notice that{ m (mod n))(moed n) = r (modn) =r as0<r<n

= m (mod n)
#1.6: Congruence Modulon

Forn>1, a,b € Z,we say that is congruent tob modulon ( written
asa=b (modn) ) ifn|(a—>b) or n|(b—a)

Some properties dtongruence Modulo n

() It can be seen that|(a — b) = n|lka — kb

i.e a=b(modn) = ka = kb (mod n)

(i) Also we can see that(a —b) = n|(a—b)"
and aga — b)" = a"™ — b™ + (a multiple of n)
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we haven|(a — b) = n|a™ — b™
i.,ea=b (modn) = a™ = b™ (mod n)

(iii) If x =y (modn) anda = b (mod n)
thenn|(x —y) andn| (a — b)
=>n|(x+a)—(y+b)
= (x+a) = (y + b)(mod n)

(iv) Transitive property : If a=b (modn) andb = c (modn)
Thenn|(a — b) andn|(b —¢)
=>n (a—b+b—c) i.en|(a—c)

= a=c(modn)
#1.7: Fermat's Little Theorem

If p is a prime number and is an integer not divisible by then aP~1 =
1 mod p this theorem can also be stated as

If p is a prime number analis an integer not divisible kyy then the remainder
whena?~ 1 is divided byp is 1

#1.8: Congruence classes Modula
Let Z be the set of integers and a positive integer .

We define a relation o as "a is related tav " if and only ifa = b (mod
n).

We leave to the reader to verify that this relai®an euivalence relation an

Further , Let[a] be the set of all integers that are congruent tnodulon .
lLelal]={x€Z: x=a(modn)}

Then the set of integers will give rise to thedatesidue classes of the form
S = lo],[1], 2] .......[n—=1].[n], [n + 1], ...

We shall show the equality of these sets in therdra below.



Chapter 1: Revision of Operations on Numbers System

Theorem: [a] =[b] © a = b (modn)

Supposela] = [b]

we havea = a (modn) = a€[a]l = a € [b] as|a] = [b]
But a€e[b]=a=b(modn)

Conversely , Supposet = b (modn)

Letx € [a]

= x = a(mod n)

and sincea = b (mod n)

We havex = b (mod n)

= x € [b]

Showing that[a] < [b]

We can similarly show thafp] € [a] so that[a] = [b]
Using this theorem we can deduce that for a fixeditive integer n , the

residue classes moduto are [0],[1],[2],[3], ... .... [n — 2], [n — 1] , any from
the rest are equal to one of these .

#1.9: Addition modulon

For a positive integen , Addition modulon , denoted asa+,b), or "(a +
b)modn" is a mathematical operation that calculates ¢neainder when the
sum of two integera andb is divided byn.

Given two integera anda, the sum(a + b) is calculated first in the usual way.
Then, the result is reduced moduldy taking the remainder ¢t + b) when
divided byn.

l.e (a+,b) = (a + b) (mod n) = (least non-negetive integer whén+ b) is
divided byn .

Properties of modular addition

(1) Closure For any integera andb,
(a + b)mod n is also an integer and



Chapter 1: Revision of Operations on Numbers System

(2) (i) Distributive property
(a+ b)(mod n) = (a (mod n) + b (mod n)) (mod n)
Proof: Leta=qn+r, ,b=qgn+r, whered <r,nrn, <n
Then a(modn) =r, , b(modn) =r,
R.H.S =(a (mod n) + b (mod n)) (modn) = (r; + r,) (mod n)
= (Least non-negetive integer whén + ) is divided byn ) .
L.H.S <(a + b)(mod n) = ((q1 + gz)n + (ry + 13))(Mmod n)
= (Least non-negetive integer whefy, + g,)n+ (r, +1r,) is
divided byn )
= (Least non — negetive integer when (r; + 1) is divided by n ) .
Thus.H.S =R.H.S
(i) (a(mod n) + b) (mod n) = (a + b)(mod n)

Proof: Leta=qn+nr ,b=q,n+1r, whered <r,r, <n
Thena(modn) =r, , b(modn) =,
Now (a(modn)+ b) (modn) = (r;(mod n) + b)(mod n)
= (r; + b) (mod n) as0 <rn, <n>=>r(modn)=r
= (r,(mod n) + b (mod n)) (mod n) using (i)
= (r, + rp)(mod n)
And (a + b)(mod n) = (a (mod n) + b(mod n)) (modn) using (i)
(r; + 12) (mod n)
Thus (a(mod n) + b) (mod n) = (a + b)(mod n)

(3) Associativity: For any integera , b andc
(a+,b)+,c = a+,(b+,0)

or
((a+ b)(mod n) + ¢) (mod n) = (a+ (b + c)(mod n))(mod n)
Proof. Using the previous property ,
LHS=RHS=(a+b+c)(modn)
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(4) Commutativity: (a+,b) = (b+,a).
Proof is trivial .

(5) Identity Element: The identity element for addition modutas 0.
That is, (a + 0) (mod n) = a (mod n)

(6) Inverse Element: Every integera modulon has an inverse module,
denoted-a, such thafa + (—a))(mod n) =0

In a similar way we can define
#1.10: Multiplication modulo n

(denoted by a X, b or ab(modn))
(a X, b) =r wherer (least non-negetive integer whei is divided byn
and the following properties follows :

Properties of Multiplication Modulo n

(1) Closure:For any integera andb,
(ab)(mod n) is also an integer.

(2) Commutativity: (a X,, b) = (b X,, a) or ab (modn) = ba (mod n)
(3) Distributive property
(ab) (modn) = { (a (mod n))(b (mod n))} ( mod n)
Proof: Leta=mn+r,, b=m,n+r, where0 <r,nrn, <n
Thereforat(modn) =r;, ,b (modn) =r,
R.H.S = iy, (mod n)
L.H.S = (( mymyn + myr, + myr;)n + rlrz)(mod n)
= ((mymyn + myry, + myry)n(mod n) + 1,7, (mod n))(mod n)
(using didstributive property for addition modulo )
= (0+nrnr) (modn) =nrr, (modn) =R.H.S

(4) Associativity:For any integera , b andc ,
(ax, b) X,c=ax, (bx,c)

or
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( (ab (mod n)) x ¢) (mod n) = (a X (bc(mod n))) (mod n)

Proof: Letting a (modn) =1r,, b(modn) =r, , c(modn) =r;
and using the previous property we shall have
LHS=RHS=(rryr;)(modn)

(5) ldentity Element The identity element for addition modwas 1.
Thatis,ax,1=1X%x,a

#1.11: Euler’s Phi function

(p(n): positive integer n)

Euler's phi function, denoted ggn), is a function that counts the number of
integers up ta that are relatively prime ta. In other wordsg(n) gives the
count of integerk such thatlt < k <n andgcd(k,n) = 1, where gcd denotes
the greatest common divisor.

Some key properties of Euler's phi function inctude
* If pis a prime number, theth(p) =p — 1.
e dp(p*) = p* — p*1 for any primep and integerk > 1.
* ¢ is multiplicative, meaning if gden,n) = 1, theng(mn) = ¢p(m) -
¢(n)

#1.12: Euler's generalization of Fermat's Little Treorem

Euler's generalization of Fermat's Little Theorexterds the concept to any
integera coprime to n, wheren is not necessarily a prime number.

Euler's theorem states that
« If a andn are coprime integers, ther?™ = 1(mod n)



Chapter-~ 2

Matrices and Determinant

Introduction

The theory of matrices is a fundamental area oherattics that deals with the
study of matrices, which are rectangular arraysnombers (or elements)
arranged in rows and columns. Matrices are extehsiwsed in various
branches of mathematics, as well as in physicaneagng, computer science,
and economics, among other fields.

#2.1: Definition

A matrix is an arrangement af X n’ numbers inm horizontal lines called
Rows and n vertical lines calleccolumns and enclosed by brackets or
parenthesis.

A matrix havingm rows and n columns is said tobe ofder m x n .
Matrices are denoted by capital letters.

An entry of a matrix lying in th&" row andj‘" column is denoted bya;;" .
#2.2: Representation of a matrix

A matrix of orderm x n of the form

mxn

a;; - Qqq
2 =< S ) will be denoted as4 = (a;)

Am1 " Amn

#2.3: Types of Matrices

1. Row Matrix: A row matrix has a single row and multiple columhss of
orderl X n, wheren is the number of columneg A=[1 3 7 9]
Row Matrix are also calleRow Vector.

2. Column Matrix: A column matrix has a single column and multiges.

It is or orderm X 1, wherem is the number of rows.
Column Matrix are also calle@olumn Vectors.

10
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3. Square Matrix: A square matrix has an equal number of rows anghauas.
It is of ordem X n .

4. Diagonal Matrix: A diagonal matrix is a square matrix where adneénts
except those on the main diagonal (top-left to diottight) are zero.
Equivalently, diagonal matrix is a matrix of therfo

100
A=(ay) . wherea; =0 if i#] Eg.A=<8 g 8),

5. Scalar Matrix: A scalar matrix is a diagonal matrix where allneéats
except those on the main diagonal (top-left todyottight) are zero and all
entries on the main diagonal are equal. EquivBlend scalar matrix is a
matrix of the form

A= (aij)nxn Where al-j =0 ifi ijand a; =a

7J
3 0 0
Eg. A = (0 3 0)
0 0 3

6. ldentity Matrix: An identity matrix is a diagonal matrix where elements
except those on the main diagonal (top-left tddyotright) are zero and all
entries on the main diagonal are equal to 1.

1 0 0
Eg.A=<0 1 0)
0 0 1

An identity matrix of order n x n will be denoted byl,,.
7. Zero Matrix: A zero matrix has all its elements as zero.

8. Upper Triangular Matrix: An upper triangular matrix has all its elements
below the main diagonal equal to zero. Equivalentlgper triangular matrix
Is a matrix of the form

1 3 1
A= (aij)nxn Where aij =0 ifi >] Eg A= (8 El)- é)

9. Lower Triangular Matrix: A lower triangular matrix has all its elements
above the main diagonal equal to zero. Equivaleralyfiower triangular
matrix is a matrix of the form

11
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1 0 O
A= (aij)nxn Where al-j =0 ifi <] Eg A= (é ;1- 2)

Equality of two matrices
Two matrices are said tobe equal if they are of esapnder and the
corresponding entries are equal.

LeifA = (aij)mxn , B = (bij)mxn thenA = B al-j = bl} A4 l,] =1ton
#2.4: Operations on Matrices

1. Scalar Multiplication: If A= (a;)  isa matrix andm a scalar , then
mA is a matrix or ordem x ngiven bymA = (ma;;)

mxn

In other words , if a matrix is multiplied by a scalar , all eet of the
matrix is tobe multiplied by that scalar.

2. Addition: Given two matricesA and B of dimensions m X n, the sum

A + B is also anim x n matrix where each eleme( + B) is obtained by
adding the corresponding elementsiaindB .

e ifA = (aij)mxn ) B = (bu)mxn then
(A + B) =C where C = (Cij)mxn and Cij = al-j + bl}

It is easy to see that(A + B) = (B + A) for any two matricesA ,B that
are conformable for addition.

Subtraction of two matricesare similarly defined.

3. Matrix Transposition: Let A = (ai j)mxn be a matrix . The transpose of

A is the matrix of orden X m , obtained by changing the rows 4f into
columns or vice versa and is denoteddlyor At .

ThUSA, = (Cij)nxm Whel’e Cij = aji .
We leave to the readers to verify the property that

« (A+B)=A+B'
e (kA) = kA’

12
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Definition: A square matrix is said tobesymmetric if A’ = A and
skew-symmetric ifA' = —A .

Note that a square matuk= (a;;) is symmetric if a;; = a;;
and skew Symmetl‘iC |tll] = —ajl- ,Aj = 0

0 1 2
Example: The matrixA =|1 3 4] IS symmetric.
2 4 7
0o 1 -2
andd=|-1 0 —4| is skew-symmetric.
2 4 0

Definition: The matrix obtained by replacing each element$ygonjugate
complex number of a given mati is called the conjugate dfand is denoted
by A.

1

L+i 1.] then 4 = [31+_2ii .

Example: If A = [3 _ ot
Definition: The transpose of a conjugate maftiis called a tranjugate matrix

of A and is denoted hy*.

L+i 1.] then 4* = [1Ii

3+2i]
3—2i 5i

Example: If A = [ i

Definition: A square matrix4 = [a;;] is called a Hermitian matrix  if
AT = A.

ThusA = (a;;) is hermitian matrix ifa;; = @; v i and j. and a; are real
numbers .

3 3—-i i
Example: A= |3+ 1 5i| is Hermitian.
—1 -5 0

Definition: A square matrixd = (a;;) is said to be a skew hermitian matrix
ifA* = —A ThusA is skew hermitian ifa;; = —a;, V i,j

anda;; = 0 or a;; is purely imaginary .

13
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[ 24+i —-5+4+2i
Example: A= [-2+i 0 3i Is skew-hermitian.
54 2i 3i 0

Definition: A square matrié is called arorthogonal matrix if A’A = AA" =1
Definition: A square matrid is called aunitary matrix if AA* = A*A = 1.

4. Matrix Multiplication: Two matricesA and B are conformable to form

the productAB if the number of columns ofd ( the first matrix ) is equal
to the number of rows df .

If A= (aif)mxn , B = (bij)nxp then AB is a matrix of ordem X p given
byAB =C where C = (Cij)mxp and Cij = Z;(l=1 aikbkj

Example: If A = (CC‘ Z) B= (1; ‘57)

Then AB — (ap +br aq+ bs)

cp+dr cq+ds

Theorem: If A and B are two matrices wheB exists then (4B)' =
B'A" .

Proof: Let A = (a;) B = (bij)nxp so that

A" = (rij)nxm ’B - (Sij)PXn

where rij = aji ) Sij = bjl

Now AB = (Cij)mxp and Cij = Z;(l:l aikbkj

= (AB)' = (xij)pxm wherex;; = ¢j; = Yg=1 Gxby e (1)
Also (B,A,) = (yij)pxm Whel‘eyij = ZZ=1 Sikrkj

But Sik = bki and rkj = ajk

Therefore ,
Vij = Lk=1SikTkj = Lk=1Dri@r = Xig=1 Grbrs - (2)

From (1) and (2) we concludéAB)’ = B'A’ .

14
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Theorem 2.01: Matrix multiplication is associative, i.e i4,B,C are three
matrices where the  productédB)C and A(BC) exist, then(4AB)C =
A(BC) .

Proof
We take A = (aij)mxn , B = (bij)nxp , C = (Cij)pxr , AB = (aij)mxp ,
BC = (By), .. » (AB)C=(x;) ., ABC) = (y;)

mxr

Then by definition we have;; = Xi_; aubr; » Bij = D=1 PikCr;
_ P _ P _ yP
Now x;; = Zk=1 AigCkj = k=1(2?:1 aisbgy) Ckj = Ek=1 Yie=1Aisbsy Ckj

Vij = Yk=1 AixPrj = k=1 ik (ZE:l bkscsj) = Yk=1 2?:1 A bysCs)

— \'P n —
= Demq 2k=1 aikbkscsj = Xij

Showing thatAB)C = A(BC) .

5. Matrix Inversion: Let A be a square matrix of order. Thend is said
tobe invertible if there exists another squaetrim B of same order such
that AB = BA =1,

The matrix B is called inverse o thenAd is the inverse ofB and we
writeA™'=B, B1=4 .

Example: If A= (% i) then A 1=

Verify that AA™1 = A"1A =1,

WINW]|R
Wlr WIinN

Theorem 2.02:(Uniqueness of Inverse ): A is invertible then the inverse is
unique .

Proof: Suppos& andC are two inverses of .
Then AB=BA=1 and AC=CA=1
Now B = BI = B(AC) = (BA)C =IC =C .

Theorem 2.03:1f A and B are two invertible matrices of same order then
(AB) is also invertible and(4AB)™'=B"14"1 .

15
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Proof: We have (AB)(B™1A ™) = A(BB VA1 = AIA ' =447 =1
= (AB)~'=B14"!

Definition: Two matricesA andB are said taommuteif AB = BA.
If AB = —BA, the matricesl andB are said t@nti-commute.
Positive Integral powers of a square matrix

Let A be a square matrix. Then we can wiit=1,A! = 4,A% = AA, A3 =
AAA.

Similarly, A™ = AA......A (n —times ), and A™A* = A"k, (4™ = A,
wherem, n andk are any positive integers.

Definition: A square matrip4 is said to benilpotent of indexn if n is the
least positive integer such thélt = 0 ( the zero matrix ) .

Example: A = [2 8]

> _ [0 0170 071_1p[0 O0O7_
=4 ‘[4 0]4 o]‘[o ol =0
Therefore A is nilpotent of index 2.
1 1 3
Example:A=|5 2 6 | is nilpotent of index 3  ( verify)
-2 -1 -3

Definition: A square matrix is saididempotent if A2 = A .

2 -2 -4
Example: Show that the matri[<—1 3 4 ] IS idempotent .
1 -2 -3
2 -2 -4
Ans: A=1]-1 3 4 .
1 -2 -3

A% =

2 =2 —4112 -2 -4
-1 3 4 (|1-1 3 4

1 -2 =311 -2 -3

16
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44+2-4 —4-64+8 —8-8+12
=[-2-3+4 249-8 4+124+4-12
| 242-3 —24+6-6 —4-8+9
2 -2 —4

=|-1 3 4]|=A

1 -2 -3

Therefore the given matrix is an idempotent matrix.

Definition: A square matri¥ such that? = I is called arinvolutory matrix

-5 -8 0
EgA=|3 5 0 |isinvolutory.
1 2 -1

Example: Show that A is involutory if and only {f + A)(1 — A) = 0.
Solution: Let A be an involutory matrix. The4? = 1.

>]—-A4%2=0

=>[2-42=0

>T+A)A-A)=0

Conversely, ifl + A)(I—A) =0

=>12—JA+Al—A*=0

S>I—-A+A—-4%2=0

=>1-A%2=0

Thus,A? = 1.

Example: If AB = A andBA = B, show that A and B are idempotent.
Solution: Given,AB = A
= A(BA) = A [+ BA = B]

= (AB)A=A

= AA = A[+ AB = A]

> A=A

= A is idempotent.
Also, BA=B

17
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= B(AB) = B [+ AB = A]

= (BA)B = B
= BB = B [+ BA = B]
= B?=B

= B is idempotent.
Example: If B is an idempotent matrix, show tha&t= I — B is also idempotent
and thatdB = BA = 0.
Solution: Since B is an idempotent matrix? = B.
Now,A4? = (I —B)?> = (I —B)(I — B)
=I1—1IB—BI + B?
=] —B—B+B?[-IB=BI=B]
=]—B—B+B[wB?=B.]
=]—-B [+—B+B=0.]
=A

= A% = A, henced is idempotent.

Now,AB=(I—-B)B=IB—BB=B—B*=B—-B=0.
Similarly, BA=B(I-B)=BI—-BB=B—-B*=B—B = 0.

6. Elementary Operations/Transformation: Elementary operations on
matrices are a set of three fundamental operatioats can be performed
without changing the fundamental properties ofrtatrix.

The three elementary Rows operations on matrices ar

* Row Interchange: Swap two rows of the matrix.
The operation when ai* row is interchanged with thi&* row will be
denoted by
Ri A axd R]

« Row Scaling: Multiply all elements of a row saj* row by a nonzero
scalark will be denoted by
Ri - kRL

18
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« Row Replacement:Replacing one row ( say" row ) of the matrix
with the sum or difference of itself and a mu#ipof another row say
jt™" row is denoted by

The Elementary column operations are similarly defned.

* Note: If an elementary operation is applied to the poddiB of two
matrices. It is applied to the first matx only.

Method to find Inverse using elementary operations

Given a square matrig |,

We write A=1A ............. (1)

Apply a series of elementary operations both eidd) ( keeping in mind that
in the right hand side , operations are applicabtfe first matrix ) until the left
hand side becomes identity matrix.

l.e until equation (1) is of the formh= BA .

The matrixB is then the inverse of .

The above steps is also same as these steps below:

Augment the matrix: Form an augmented matrix with the given ma#ion
the left and the identity matrikof the same size on the right. For exampld, if
Is a3 x 3 matrix, you formA | I5].

Perform row operations: Apply a series of elementary row operations to
transform the left part of the augmented mattixnto the identity matrixi.

These operations are:

* Swapping two rows.
* Multiplying a row by a non-zero scalar.
* Adding or subtracting a multiple of one row to drestrow.

Achieve the form [I | B]: Once the left part of the augmented matrix is the

identity matrix, the right part of the augmentedtmawill be the inverse o#,
denoted a4 1.

19



Example: Find the inverse of the matrix

-1 -3 3 -1
1 1 -1 0
2 =5 2 -3

-1 1 0 1

Sol Let A=1A4

1 -3 3 —1] [L 0 0 0

1 1 -1 ol o1 0 o0
>l 2 5 2 —=3[Tlo 0o 1 ol4

1 1 o0 1l lo o o 1

Chapter 2: Matrices and Determinant

Applylng RZ - RZ + Rl' R3 - R3 + 2R1, R4 = R4 - Rl’ we get

-1 -3 3 1 0 0 O

0 -2 2 1 1 0 O A
0 —11 8 2 01 0

0 -1 0 0 1

Applying R, — —%RZ we get

-1 =3 3 -1 1 0 0 O
o 1 -1 1/2 [—% -0 o]
0 -—-11 8 ~ 2 0 1 0
0 4 -3 2 l 1 0 0 1J

Applying R; = R; + 11R,,R, = R, — 4R, we get

-1 -
0 1 —1 1/2 —1/2 —1/2
0 0 —3 1/2 —7/2 —11/2
0 0

Applying R; <& R, we get
-1 -3 3 -1 [ 1 0 0
o 1 -1 12| |72 -1/2 0
o o 1 o | 1 2.0
o o -3 172 [-3; -5 1

20
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Applying R, = 2R, we get

-1 - 0 0
0 1 —1 1/2 —1/2 —1/2 0 0
0 0 0 1
0 0o - —11 2 0
Applying R, = R, + 6R3, we get
-1 - 0 0 0
0 1 —1 1/2 —1/2 -1/2 0 O 4
0 0 2 0 1
0 0 1 2 6
Applying R, - R, + R; we get
-1 -3 3 -1 1 0 0 O
0 1 0 1/2{_|1/2 3/2 0 1,
0o 0 1 of |1 2 0 1
0 0O 0 1 -1 1 2 6
Applying R, - R, — %R4 we get
-1 -3 3 -1 1 0 O 0
0 1 0 of_J1 1 -1 -2 A
0 0O 1 0 1 2 0 1
0 0O 0 1 -1 1 2 6

Applying R; = R; + 3R,, we get

3 -3 -6
0 1 -1 -2
0 2 0 1 4
1 1 1

2 6

-1

o o O
oS O - O
O =R O W

Applying R; = R, — 3R3, we obtain

-1 0 O 1 —3 -3 -9
0 1 0 O ‘ l 1 —1 —2 A
0 01 O 1 1
0 0 0 1 6
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ApplyingR; = R{ + R,

-1 0 0 0] [O -2 -1 -3
0 10 0f_f1 1 -1 -2f,
0 01 o0f |1 2 0 1
o oo 1 l-1 1 2 6

Applying R; = (—1)R; we get

1 0 0 O 0O 2 1 3
0 1 0 O 1 1 -1 —2A
0 0 1 O 1 2 0 1
0 0 0 1 -1 1 2 6
0o 2 1 3
4 _ |1 1 -1 =2
Therefore A= = 1 2 0 1
-1 1 2 6

We show below a similar example using the secoathod mentioned.

1 1 0
0 2 1
0 1 2

Example: Let A = . Calculated ™!

Ans: The augment the matrix with the identity matrix:

1 1.0 1 0 O
0 21 0 10
01 2 0 01

Divide row 2 by 2 R, = 2.

1 1.0 1 0 O

0 1 - 0 - 0
2 2

01 2 0 0 1

Subtract row 2 from row 1R; = R; — R,.

22
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[1 0 _1 1 _1 O]
2 2
1
01 1 0 = O
| 4l
01 2 0 0 1

10 X1 1
2 2

01 1 0 X o
2

00 > o -1
2 2

Multiply row 3 byg "Ry = 2%.

10 -1 1 _1 g
2 2
01 1, 0 X o
2 2
00 1 o0 —1 2
| 33_

R3

Add row 3 multiplied by% torowl:R; =Ry + ,°.

100121
3 3
011010
2 2
001012
3 3

23
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100 1 -2 17
3 3
0100 2 _1
3 73
001 0 —= 2
i 3 3|

Since we got identity matrix on the left . themef on the right is the inverse
matrix.

D
o
=
Il
—
-} (e)
I
| |
I
1N g
| S —

Determinant of Order 2

a b

LetA = (C d) be a square matrix of order 2.

The determinant oA ( denoted byet(A) or |A| is defined as

b

a=|% 2

| = ad — bc
Minor: LetA be a square matrix . The minor of an entgy (denoted bym;;)

Is the determinant of a sub matrix obtained btiled the row and column of
A containinga;; .

Co-factors: LetA be a square matrix . The co-factor of an entyy (denoted
by A’J ) iS deﬁned aSAij = (—a)i"'jml-j

Determinant of a square matrix: The determinant of a square matux is the
sum of the products of each entries in any row dolumn ) with their
corresponding co-factors.

Adjoint of a matrix A: The adjoint ofA is obtained by first replacing each
element ofd by its cofactor and taking transpose . In otherds , the adjhoint
of A is the transpose of the matrB of co-factors of the entries of .

The adjoint ofA is denoted bydj(A)
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We show an example below with3ax 3 matrix

Let A= |G21 Qazx Qaz3

az1 Qdzpy dAzz

ai1 Qg a13]

The cofactors of the entries df are as follows:

A = |a22 a23| _ |a21 a23| . |a21 a22|
1" lag, assl’ 12 az; azzl’"13 7 laz;  as;
A = — |a12 a13| . |a11 a13| _ |a11 a12|
21 azz Qzzl’*722 7 laz; asz|’7%3 azy Az
P |a12 a13| A = — |a11 a13| . |a11 a12|
317 lagy  apsl’ 732 Ay1 Q31’733 7 laz; Ay
Ay A Ags Apn Az Az
— i sy , —
B=|4,1 Ay, Ays| thenAdj@) =B =|A;;, Ay Az
Az1 Azy Asz A1z Azz Asz

Proposition: If A is a square matrix ang| # 0 then A~! exists and

A_lzad](A)
|A]
1 1 o1
Example: Calculatel0 2 1| using the adjoint method .
0 1 2

Ans: We have

1 1 0
0 2 1|=@ED)E T+ @D I+
0 1 2 1 2 1 2

O, 1=l

The determinant of 2 X 2 matrix is|? Z| = ad — bc.

2 1 110
i Sl=@-@-m-®=3 ie |0 2 1]=3
0 1 2
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The co-factors are given below

Ap =02 Y=z 4= o) =0, an =) =0

A= (D] D= =2 A = (P2 Dl =2 A = -1 1] =1
Ay = D Y =10 A =020 O = -1 A = D3 )] =2
3 0 0
Thus, the cofactor matrix$=|-2 2 —1}{.
1 -1 2
3 =2 1
Thereforeddj(A) =0 2 -1
o -1 2

The inverse matrix is the adjoint matrix dividedthg determinant.

-

Thus, the inverse matrix 10

0

Wik
—

[
Wk WIN WD
[
wle|
AL

Trace of a square matrix

Definition: Let A be a square matrix of order n. The sum ef@élements of A
lying along the principal diagonal is called tin@ce of A, written astr A.

Thus, if=[a;;] -, then
tr A=Yl 0y = a1 +ay +azz + -+ dpy.
Some properties of trace of a matrix

Let A and B be the two square matrices of ordandiabe a scalar. Then,

) tr (AA) =ArA
i) tr (A+B) =trA+1trB
iii) tr (AB) =tr (BA)

Proof: Let4 = [aij]nxnand B =[b;;

‘]nxn
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i) We haveid = [ a;)]

nxn
tr AA = Z?=1 Aaii =i Z?=1 a;; = AtrA.

||) A+B = [aij + bij]n)(n' Then, tr (A+B) =Z?:1(aii +bii) = ?:1 a;; +
?=1bii =trA+trB

|||) AB = [Cij]nxn and BA =[dij]nxn,WhereCij = Z;(lzl aikbkj and dl] =

k=1 Dik Ak j
Now, tr (AB) =X, cji
= Xi=1 (Xk=1%ikbxi)
= Lk=1 (Uiz1 Qircbyi )
=Yk=1 (Cit1 briqix )
= Xk=1 Ak
=dy; +dyp +dsz+ -+ dyy
= tr (BA)

Determinant Rank of a matrix: The rank of a matrix4 is the order of the
highest order submatrix df whose determinant is non-zero.

The rank ofd is denoted by (A4) or rankA) .

Result: (i) If A is a rectangular matrix of ordem x n thenr(4A) <m , n.
(i) rank(A) = rank(A")

Normal Form: A matrix of the forn{lg 8] or [, O]or [16] Is said tobe
in normal form, wherel,. is the identity matrix of order .

Echelon Form: A matrix is in row echelon form if it satisfiesehollowing
conditions:

» The leading entry in any nonzero row is 1 calleslldading 1.
 The leading 1 of any row lies to the right of tleading 1 of the row
above it.
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* Entries below the leading 1 are all 0’s.
* All nonzero rows are above any rows of all zeros.

1 2 4
Example :A=[0 1 1] is in echelon form .
0 0 O

Row Rank of a matrix: The row rank of a matrix is the number of nomze
rows after reducing to echelon form.

Result: Rank of a matrix A Is the order of the identity sub-matrix after
reducing to normal form.

Result: Row rank = determinant rank.

1 510

Example: Reduce the matrix A = i g i g to normal form and find its
2 0 8 0

rank.

Solution

Subtract row 1 multiplied by 2 from row 2:

RZ = R2 - 2R1
1 5 10
0 -8 3 0
1 0 4 0
2 0 8 0

Subtract row 1 from row 3R; = R; — R;.

1 5 1 0
0 -8 3 0
0 -5 3 0
2 0 8 0

Subtract row 1 multiplied by 2 from row 4:

R4 = R4_ - 2R1
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5
—8
-5

—-10

S O O
W W
o O O O

Ry

Divide row 2 by -8R, = ey

1 5 1 0

| s |

IO 1 ~3 OI

lo -5 3 o

l0 —-10 6 0J

Subtract row 2 multiplied by 5 from row 1:
R1 = R1 - 5R2

10 2

8

1 o 2
8

0 1 3 0
8

o 0 2 o
8

0 —10 6 o

Add row 2 multiplied by 10 to row 4:

R4_ = R4 + 10R2
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10 2
8

0 1 > 0
8

0 O i 0
8

0 O i 0
4 i

Multiplyrow3byg:R3=%.

1 0 23 0
8

0 1 > 0
8

0O 0 1 0

0 O i 0

i 4 |

Subtract row 3 multiplied b»z%i from row 1:

_ p _ 23R;
R, =R, -
1 0 0 0
0 1 > 0
8
0 0 1 0
0 0 i 0
i 4 1

Add row 3 multiplied byz torow 2:R, =R, + %

10 0 0
|[0100]|
lo 0 1 ol
[0090J

4

Subtract row 3 multiplied b%from row 4.
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—p _2Rs
Ry =Ry — =2
100 0
010 0
00 1 0
00 00

Which is in normal form and its rank is 3.

Characateristic polynomial: The characteristic polynomial of a square matrix
of ordern x n the polynomial defined aB(1) = det( A — Al)

Characteristic equation: The characteristic equation of a square madrix
whose characteristic polynomial (1) is the equation
p(A)=0or |[A=A|=0

Characteristic Roots or Eigen ValuesThe roots of characteristic equation are
called characteristic roots or eigen values.

Example: Find the characteristic polynomial and charasteriroots of the

matrix
1 2 2
A= < 0 2 1)
-1 2 2

Solution: The characteristic polynomial is given by
p(A) = det (A — Al)
In this example we have:

1 2 2 A 0 0
p(A) = det (A — AI) = det <[ 0 2 1] — [0 A OD
-1 2 2 0O 0 2

0 2—4A 1
-1 2 2—41

1-21 2 2 }

= (A+D(A+2)(-21+2)+2-1-(-1)+2-0-
2—(2+1)-1-2-0-2-(=24+2)—(=1)- (=1 +
2)-2
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= - +522-81+4+(-2)+0—-(—22+2)—0—
(21— 4)

=—-A3+512-81+4

=A-1)(A%2—-41+4)
The characteristics roots ar#; 2, —2
Eigen Vector. LetA be an eigen value of a matux. A vectorX ( row or
column ) that satisfies the equatiodX = AX or (A —AI)X = 0 is called an

eigen vector corresponding to the eigen value

Example: Find the eigen values and eigen-vectors of matrix

A=10 2 6

0 0 5

314‘

Sol. The characteristic equation|i— AI| =0

3—41 1 4
0 2—1 6
0 0 5-1

=@B-D@-DGE-D}-0+0=0

Now, we consider the relatiqa@l — AI)X =0

ForAd = 2,

3—2 1 4 X1 X1
0 2—2 6 X2l =0X = |X2
0 0 5—211%3 X3
1 1 41[*%

= [0 0 6[[X2]=0
0 0 31LXx3

1
R; - R; — ERZ on coefficient matrix
1 1 4%
0 0 6[|*X2|=0
0 0 O0lL*xs
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= x;+x, +4x3 =0 andx; =0

. X1=

—k
‘|-

0

1
0
ForA = 3, from (i), we get
-1 6

41 [*1
x2 =0
211X3

R, = R, + R, on coefficient matrix

0 1 47"
0 0 10(|*2|=0
0 0 211X3
1
R3 - R3 - ERZ

TR

= x2+4x3=0and10X3=0:x3=0

— x2+0=0$x2=0,|etx1=1{

k 1 1
o] i M o M
0 0 0
Again, forA = 5, we get

1 47[*% 0
-3 6| [|X2| =10
0 011x3 0

2x1—x2—4X3=0
= 3x, — 6x5 = 0

X2 =

33
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x3 = k, then?)xz - 6k = 0
= x2 - Zk

=l

Hence the eigen values are= 2,3,5

and2x; — 2k —4k=0= x; = 3k

And eigen vectors are

1 1 3
X1: -1 ,X2= 0 ,X3: 2
0 0 1

Cayley-Hamilton Theorem

Let A be am X n square matrix, and lgt(1) be its characteristic polynomial.
The Cayley-Hamilton theorem asserts that if youssitiie the matripd into its
own characteristic polynomial, the result is theoz@atrix:

p(4) =0

Inverse of a square matrix using by Cayley-Hamitin Theorem

2 -1 1
Example: Find the characteristic equation of the ma[Fixl 2 —1] and

1 -2 2
also findA~! by Cayley-Hamilton theorem.
Solution: The characteristic equation 4fis

2—-1 -1 1
A-All=] -1 2-2 -1]|=0
1 -2 2-1

> Q2-D[A2—41+4-2]+[-2+21+1]+[2-24+2]=0
= A3 —-6A2+81-3=0

By Cayley-Hamilton theorem3 — 642 + 84 — 31 = 0.
Multiplying by A=1 on both sides, we get

A —6A+81—-3A"1=0

= A1 = é(AZ —6A+8D) ... (1)
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2 -1 11 2 —6 6
NowA? =4 -A=|-1 2 -1 [—1 —1] [ 7 —5]
1 -2 2 1 7
[6 —6 6 — 8 0 O 0 -1
wA2—6A+81=|-5 7 —5]—6 -1 2 0 8 0] [ 3 1]
6 -9 7 L1 -2 0 0 8 3 3

2 0 -1
1) =>At=:[1 3 1]
0 3

Exercises:

1. Find the producAB of the matrices

2 4 1 0 2
A=|3 4| ,B=|[2 3 0
6 0 0 1 2

2. Verify that (AB)' = B'A’ for the matrices

2 1 -1 1 1 1
A=|1 3 0| ,B=|-1 2 O
0 2 5 3 2 —4

3. Example 3. Find the inverse of the following maémploying elementary
transformations. Also verify th@B)~! = B~1471

3 -3 4 3 2 4
A=|2 -3 4| ,B=|2 0 4
0 -1 1 1 1 1

—2
4. Using Adjoint , find the inverse of the matri[<—1 3 0 ]
0o -2 1
6. Find the rank of

6 1 3 8
A= 156 ;L 132 185 using determint and echelon form and verify ribw
4 2 6 -1

rank is same as determinant rank .
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7. Find the rank of the following matrix by redugito normal form:

1 2 -1 3 000 0 0

e 1 2 1 o1 2 3 4
@3 21 1 2 @y 2 3 2 1]

1 2 0 1 03 4 1 2

8. Find the characteristic roots , eigen valuesagdn vectors of the following
matrices .

31 4 1 1 3 -1 0 2 -9 4 4
(D) [O 2 0]. (it) [1 5 1]. (iii) [ 0 1 2]. (iv) [ -8 3 4].
0 0 5 31 1 2 20 -16 8 7

36



Chapter- 3

Groups

Group introduction theory is a branch of abstralgelara that studies
mathematical structures known as groups. Groupdusm@amental objects in
mathematics because they capture the essence ofetgyrand can be used to
model a wide range of physical, chemical, and nra#tteal phenomena.

Binary Operation:

Let G be a non empty set

A function *:G X G — G is called a binary operation én
If a,b € G, we shall denotex (a,b) by (a*b) .

Commutative Property: A binary operation’ *’ on a setG is said tobe
commutative if* (a,b) =+ (b,a) or a*xb=bx*a foralla,b €G.

Associative Property: A binary operation’*’ on a setG is said tobe
associative ifx (a * b,c) =*(a,bxc) or (a*b)*c=ax(bxc) forall
a,b,c €G.

Identity element: LetG be a non empty set anda binary operation ofd .
An elemente € G is called an identity element with respect#oif a *xe =
exa=aVaceaqa.

Inverse of an elementlLet G be a non empty set anda binary operation on
G . An elementb € G is called an inverse of another elemerg G with
respecttox if axb =b+a =e (wheree is an idenetity element) . Such
an elementb shall be denoted hy ! .

Eg 1 On the set of integes the usual additiorl + ' is a function fron¥ x Z
to Z and hence binary operation dh with ‘0’ as identity elemenet and
"—a' asinverse of an elemente 7 .

Eg 2 On the set of integei®, the usual multiplication -’ is a function from
Z X Z to Z and hence binary operation & with ‘1’ as identity elemenet

1 .
and’ - " as inverse of an elemente R, a #0.

Definition of Groups

!

Let G be anon empty seind '+’ a binary operation of .
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!

The set; together with’ « ' is called a group denoted K¢ ,*)
if the following four conditions known @goup axioms are satisfied:

* (G isclosedunder, i.ea, beEG=>a*beC.

( This is actually implicit with the definition & binary operation )
(i) = is associative i.€a*xb)xc=ax(b*xc)V a,b,c €G.
(i) There exists an identity elemente ¢ with respect to* .

(iv) Each elementr € G has inverse ik with respect to* .

If further, the binary operatioh+’ satisfy the commutative property i.e
axb=>bxa for alla,b €G , then G is called an abelian group or
commutative group.

Note: For the sake of simplicity, we shall denotex b° by ‘ab’ whenever

! !

« ' is multiplication or the like and denote « b’ by ‘a+b" when'x' is
addition.

Theorem 3.01:LetG be agroup and,b € G . Then

(i) el = e i.e the identity element is its own inverse .
(i) (@)t =a ie‘aistheinverse dfa™!’
(i) (ab)™t=(b"ta™?1) i.e theinverse of'ab’is 'b~la™1'’

We shall skip the proof of (i) and (ii) as thexe too obvious .

Proof (iii): We have(ab)(b™ta™1!) = a(bb™Y)a™! by associative law
=aea ! =aa ! =eand
(b7 aV(ab) =b Y (ala)b=b"leb=b"'b=¢

Thus (ab)(b~ta™) = (b™'a V) (ab) = e
By definition of inverse , we havelab)™! = (b71a™1) .

Theorem 3.02 If G is an abelian group then any subgrodip @ is
also abelian.

Proof: Let H be any subgroup of G
Let a,be H thenabeG as Hc G
Thereforeab = ba since G is abelian
Hence H is also abelian.
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Theorem 3.03: A groupG is Abelian if and only if
(ab)? = a? b? forall a,b €.
Ans: Let G be abelian
Then (ab)? = (ab)(ab) = a(ba)b = a(ab)b = (aa)(bb) = a?b?
Conversely , supposéub)? = a?b? foralla,beG ------ (1)
we have (ab)? = (ab)(ab)
and (ab)? = a?bh®> by (1)
therefore (ab)(ab) = a?b?
Multiplying by a~! from the left and by~ fromthe right we have
a (ab)(ab)b™! = a ta?b?*p!
= (a ta)(ba)(bb™1) = (a ta)(ab)(bb™1)
= e(ba)e = e(ab)e
or ba=ab HenceG is abelian.

Eg 3 It is obvious to see that the sétsQ ,R,C are abelian groups under
usual addition and?*, R*,C* are abelian groups under usual multiplication.
(Here Q* is the set of non zero rational numbers , sidyl&" ,C* )

Eg 4. (General Linear group (GL,(R)) Let G be the set of alR x 2
invertible real matrices . The@ is a group under matrix multiplication.

Proof
() G is closed since for any two invertible real nta&s A,B , the
product
AB is also an invertible real matrix which henseniG .
(i) The associative property holds multption of matrices is associative

(i) An element] = ((1) (1)

(iv) ForanyA € G , A isinvertible real matrix with its inversge?
Is also & x 2 real invertible matrix .

) Is an identity element .

Thus G is a group. This group is denotedsliy (R) .

This groupG is non-abelian as can be seen with the help of these elements
below :
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1= ) =G D =G s ) mene

Eg 5 ( Special Linear group(SL,(R)) . LetG be the set of all x 2 real
matrices whose determinant is 1. Thén is a group under matrix
multiplication .

Brief Justification

(i) For anytwo elementdl,B € G ,AB is a2 x 2 real matrix.
Also |[A|=|B|=1
= |AB| = |A||B| =1
=>AB € G
l.e G is closed under matrix multiplication.

(i) The associative property holds multiplicatiohmatrices is associative .

1 0

(i) Anelement] = (0 1

) Is an identity element .

(iv) ForanyA € G ,sincelA| =1+ 0 . ThereforeA is an invertible
2 X 2 real matrix .

If A=1 isthe inverse ol then A~ is also a2 x 2 real matrix .

Also |[A7Y| =ﬁ= 1 Therefored™! € G .

Therefore, every element 6f has inverse i .

Thus G is a group. This group is denotedsby(R)

This groupG is non-abelian as can be seen with the help of these elements
below :

4=(p 1) B=(1 7) am=(] 1) Ba=( o) an=na.

Eg 6.Letn be a fixed positive integer and L&t ={0,1,2,...(n—1)} .
Z, is an abelian group undaddition modulo n denoted by +,, .

Proof

Recall that (a+,p)=ro (a+b)=rmodn i.eng+r : 0<r<
n ,rez.
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Thus (i) the closure property holds by definitmraddition modulon .
(ii) '+, is associative ( property modular addition )
(i) Foranya € Z,,, Since0 < a < n, itis clear that whefa + 0) is

divided byn , the remainder izt . i.,ea+,0=0+,a=a
showing the existence of identity eleméat .

(iv) ForaeZ,= 0<a<n = 0<(n—a)<n
anda+n—a)=n=Mm—-a+a)
>at+,(n—a)=n—a)+,a=0
i.e(n —a) istheinverse ofa’ .

(v) We also havda+,b) =r
©a+b=ng+r where0 <r<n
©b+a=ng+r where0<r<n
& (b+,a) =71

l.ea+,b = b+,a
Hencg,, is an abelian group.

Eg 7.For a fixed positive integer , Consider the set of equivalence class
modulo n .

e 6G={0,1,2,.... n—1} wherer is a class of integers that leave
remainderr when divided byn .

We define addition of these classes ( tobe derteteelby +, ) as
a+,b =a+b =1 wherer isthe remainder whei + b) is divided byn

ThenG is an abelian group under this operation.

Justification

We first show that this addition is well- defined.

If a=x andb=1%

Thena=x(modn) andb=y(modn) (see chapter 1, congruence
modulo n)

= (a+b) = (x + y)(mod n)
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2>a+b=x+y ie a+,b=x+,y
(i) G is closed unde#, Since Foranya, b € G , if a+,b =7 thenr

Is the remainder whefm + b) is divided byn and as such is an
integersuchthdll <r<n .=>7reG .

(i) '+, is associative sincga+,b)+,f= a+b+,=a+b+c=
a+(b+c)=a+t,b+c=at,(b+,0) .

(iii) 0 € G is the identity element .

(iv) ForaeG wehave0<a<n= 0<(n—a)<n

>n—a€6G and dt,ni—a=a+tn—-a=0=n—-ata=

n — a+,a showing thatn—a is the inverse ofx .

(vV) Also a+,p=a+b=b+a=b+,a
Hence G is an abelian group
Eg8 LetZ, ={0,1,2,..... (n—1)} and letU, ={x € Z,:gcd(x,n) =1}.

ThenU,, is a group under multiplication modutocalled Thegroup of units
modolon .

Proof: Leta,b €U,,a+#1,b+1 ,Thengcd(a,n) =gcd(b,n) =1

= gcd(ab,n) =1
If ab < n then remainder when ab is dividedrbys ab itself .

=>axb=abe U,

If ab >n

Then ab=nqg+r wheref0 <r<n

sothata*xb =r

Also gcd(r,n) =1 otherwise igcd(r,n) =d # 1 thend|r and d|n

= d|nqg = d|(nq + r) > d|ab butgcd(ab,n) =1
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Thereforea x b =r € U,

Showing that/,, is closed under multiplication mad.

Associative property holds as multiplication modulas associative .
Clearly , the identity element is € U,, .

To check the existence of inverse to each element

Letm € U,

Thengcd(m,n) =1

Therefore there exists integetsy such that

mx+ny=1 ... (1)
>mx=1—ny (eithexk>n orx<n)

In any case we can write

x=ns+r: 1<r<n

Nowmr = m(x —ns) =mx —mns =1 —ny —mns
>mx*xr =1

Also (1) shows thagcd(n,r) =1

This proves the existence of the inversenoin U,
HenceU,, is a group which is abelian asis commutative .

Eg 9 .The setz, = {1,2,3,---,p — 1} is a group under multiplication modulo
p, p being a prime integer.

Ans: Let "+" Dbe multiplication modulg

i.e (ax*b) =remainder when ab is divided by p

Let a,b €G

Asa,b are notdivisible byp soab is not divisible byp

Therefore, ifr is a remainder wheab is divided byp thenr €G
i.ea*b eG so that G is closed under * .

The associative property follows as is associative
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Clearly "1" is the identity element

Let a € G

Then ged(a,p) =1

Therefore there exists integems ,n such that

am + pn = 1 ( consult number theory bopk

= am=1—pn sothat remainder wheam is divided byp is 1
Leaxm=1

If m eG thenm is the inverse ofa

If m & G

Let m=pk+71r where0O<r'<p ie r'eG

Now ar' = a(im — pk) = am — apk = (1 —pn) — apk
Thereforea xr' =1

In this caser’ is the inverse ofa

Hence G is a group under
Eg.10. Let n be a positive integer and Lét={x e C:x" =1}
Then G is an abelian group under usual multiplication .

Proof: () a,beEG=>a"=b"=1= (ab)"=a"b" =1
showing the closure property .
(i) Associative property follows @sc C .

(i) Itis clear that is the identity element .

n
(iv) Ifa € G thena® =1 = (i) —1=leg
a a
and - 1_ 1
a
Therefore(ll is the inverse ofa .

(v) Commutative property follows asultiplication of complex
numbers is commutative . HenGeis an abelian group .
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Definition: A group G is called a finite group if it has a finite nunnbef
elements otherwise it is called an infinite grolipe number of elements (h
Is denoted by#G .

Group Tables for Finite Group

! !

Let G ={a,,a;,,a;s, .. ... a,} be a finite group under+’ having 'n
elements witlu, = e.

Fori,j =12,..n. We denote an elemerfiz; * a;) by m;
There will ben® such elementsn;; ( not all are distinct ) .

If we let an elementm;;” tobe an entry lying in thé" row and

jt™ column of ann xn matrix . Then the grou@, = can be represented in a
table form .

We show an example of a group table with a gioaygng 4 elements  after
the next example .

Eg 11.The Klein four-group
LetG ={e,a,b,c} . We define’«’ on G as follows:
(lexx=xxe=x VXEG
(i) x*xx=e VxEG
(ilaxb=bxa=c,axc=c*xa=b,bxc=c*xb=a
As there are only four elements , it is easy tofyehat G is an abelian group

underx with each element being its own inverse.
We can represent this group by a table as follows

* e a b c
e e a b c
a a e c b
b b c e a
c c b a e

The particular case of the Klein four group is teup H ={e,A,B,C}
where

() amG Dm(hYe=(D
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We leave to the readers to show that this is aggneich follows the pattern of
the Klein four group above .

Eg. 12 Let G ={(cos8 +isinf): 8 is a rational number } . Show
that G is an abelian group under multiplication .

Proof: Let a,b € G
Then a =cosf +isinf , b=cos¢ +isin¢ for some rational numbers

0, ¢

Now ab = (cos8 + isinf)(cos ¢ + ising)
= (cos 8 cos ¢ — sin B sin @) + i(sinb cos ¢ + singcosh)
=cos(0 + ¢) +isin(6+¢) € G
Therefore G is closed
Associative property holds sinée is a subset of complex numbers and
multi[lication of complex numbers is associative.

The number 1 =cos0+isin0 € G, therefore identity element exists in
G.

Also for any a=cosf+isinf ¢ G , we haved is rational.
Therefore—0 is also rational

Hence a’ = cos(—6) + isin(—60) = cosf —isinf € G

andaa’ =a’'a= (cos8 —isinB)(cosO +isinh) = cos?O +sin?6 =1
Hencea' is the inverse ofa .

Hence G is a group.

Clearly ¢ is infinite and abelian.

Indices of Elements of a group

Let G be a group under=’ and leta € G . For any integem > 0 ,
we define (a*xax*a....... ntimes) = a™ .

If "+’ is addition then
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(axaxa...ntimes) =(a+a+a....ntimes) =na

Laws of indices

» Product of Powers For any elemeng in a groupG and any integers

andn
gm * gn — gm+n
Proof: gM+xgt=(g*g*g...mtimes)*(g*g+*g...ntimes)
g *g g*g*g g*g* es )
=(g*g*g....(m+n)times) usingassociativity
— gm+n

* l|dentity Law: For any elemerg in a groupG,
g° = e, wheree is the identity element of the group.

Proof: g =g 1"l =g lxgl=glxg=e
» Power of a Power:For any elemengin a groupG and any integers:
andn,
(gm)n — gmn
The proof of this is purely counting the numbemeés g has to occur

and left to the readers.
* Inverse of a Power:For any elemeng in a groupG and any integer,
(g t=g"
l.eg™"™ is the inverse ofg™ .
The proof follows from the previous property.

» Distributive Law: For any elementg andh in an abelian groug and
any integen
(g™ = g"h".

Proof : Left to the reader.

These laws of indices can be translated in termd addition in a usual way.

Cancellation Laws

LetG be agroup under anda,b,c € G . Then

() Right Cancellation Laws :a*xc=b*c=a=0»b
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(i) Left Cancellation Laws :a*xb =a*xc=>b=c

Proof (i) : As G is agroup ,ceG=>c t€G
Nowaxc=b*c = (a*xc)*c t=(bxc)*c?!
s>ax(cxc ) =bx(cxc 1) using associative property .

>axe=bxe >a=0>»

Proof of (ii) is similar and left out .

Uniqueness of Identity: Let G be a group . The identity elementdn is
unique .

Proof: Suppose and e’ are two identity elements .
Sincee is an identity element,

we havee’ = e xe’ ----- (1)
Sincee’ is an identity element
we havee = e x e’ --------- (1)

(1)and 2= e =¢'

Uniqueness of InverseilLet G be a group. The the inverse of any element
a € G is unique.

Proof: Suppose ‘b’ and’ b’ ' are two inverses ofa’ .
Then we shallhavea *b =e =a * b’
By cancellation law, we getb = b’ showing thata’ has one and only one

inverse .

Theorem 3.04: Let G beagroupand,b € G .
The equationsa *x =b andy=*a =>b have unique solution .

Proof: Sinceabe G ,a ! €G

Now a*(al*b)=(axa)xb=exb=5>b

Showing thatx = (a1« b) € G is a solution ofa xx = b .
Suppose there is another solutiop wherea * x, = b

By cancellation law we shall have

axx=ax*x,=x=Xx, Showing that the solution af * x = b is unique .
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The proof fory * a = b is similar and left as exercise.

Order of group: The order of a finite grougf is the number of elementsn
and is denoted by (G) or |G| or #G whichever is convenient to use.

Order of Element: LetG be a group and € G . The order of an element
‘a is the least positive integer 'n’ such  that
a™ =e (orna =e foradditive group) .Ifnosuchn exist ,thena’ is
said to have infinite order.

Example of finite order elements

1. LetG ={e,a,b,c} be the Klein four group.
We havea #e ,a’> =e¢
Thereforeo(a) = 2
Similarlyo(b) = o(c) = 2.

2. Let G =Z, ={0,1,2,3} . Under addition modulo 4¢ ='0" is an identity
element .
0(1) =4 sincel #e,12=2x1=2+#e, 13=3x1=3 # e similarly
0(2)=2,03)=4

Example: Let G be a group such that(a) =2 for eacha € G ,a +
e. ThenG is abelian .

Alternatively , ifG is a group such thaf = eV a € G , thenG is abelian .

Proof: Sincea? =e=a=a"! foralla€d .......... (1)
Letx,y € G

Then(xy) = (xy)™" by (1)
=y lx 1 =yx.

Theorem 3.05: LetG beagroupand e G . If o(a)=m and a* =e
then m|n .

Proof: Sinceo(a) =m

we havea™ =eanda” #e forO<r<m,r€N.......c.cceenn... (1)
Letn =mqg+1r where0 <r <m

Thene = a™ = a™*" = g™4q" = (a™)%a” = ea” = a”
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=>a =e
= r = 0 otherwise it contradicts (1)

Hencen = mq i.e m|n

Theorem 3.06:Let ¢ be a groupa € G . Theno(a) = o(a™1) finite or
infinite.

Proof : We first show that if a’ is of infinite order then so i&a~! .
Otherwise , ifo(a™!) = n forsomen € N thena™ =e .
Nowa™ = (a™™)"! = e~! = e which shows thdt2’” must be of finite order .

If order ofa is infinite then so is the order d™1’ so that they may be
treated as equal.

Supppos€a’ and ‘a™!’ are of finite order.

Leto(a) =m ando(a ) =n sothau™ =(a )" =e (1)
Nowa™ =(a™™)1=el=e andaso(a) =m

>mn ... (2)

Also ()M =a™m™=((@) '=el=¢e andaso(a™) =n

we haven|m .......... (3)

From (2) and (3) we deduce thvat=n .

Cyclic Groups: A cyclic group is a type of group characterizedttvy property
that all its elements can be generated by repegadgalying the group operation
to a single element, known as the generator ofjitbep.

Definition: A group G is called a cyclic group if there exists annsat
a € G such that every element (hcan be written ag™ for some integen.
The elementa’ is called a generator of the group.

Notation: A cyclic group generated By’ is usually denoted bia).

Order: The order of a finite cyclic groug: generated byu’ is the smallest
positive integern such that™ = e (the identity element )

Note: If G = (a) (a cyclic group generated By:' ) is infinite then
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a*=eon=0

This is obvious for ifa™ = e andn # 0, n is finite , thenG will be a finite
cyclic groupof ordem .

Theorem 3.07:Every infinite cyclic group has exactly two gesuer .

Proof: Let G be an infinite cyclic group generated’'hy i.e G = (a).
If ‘b’ is another generator thén= (b).

As botha and b are generators , there must exist integersr such that
a=b", b=a"

Nowa =b™ = (@") ™ =a™ = a™ l=¢

=>mn—1=0 and asm andn are integers
Wehavenn=1=>m=n=1 orm=n= -1

This showthathb =a or b=a" 1 .

Theorem 3.08:Let ¢ be a finite cyclic group of order. Then every element
a € G of ordern generates; . ( alternatively , ifG is a finite group of ordet
and if there exists an elemeate ¢ such thab(a) = n thenG is cyclic)
Proof: Leta € G,o(a) =n

We look at the sef = {a,a? a3, ....a" L,a" =e =a"}

ThenSS G. asa€eG .

We shall show that S has elements .

We only have to show that all elements listdabve are distinct .
Suppose Ifa” =a®* where 1<r,s <n, r#s

Then assuming >s we have a"°* = e Andsincel <r,s<n

we have 0 <r—s <n a contradiction to the order af being n

Hence a" # a° whenr # s

Therefore all elements f listed in (1) are distinct.

l.e S has n elements whichis equal to number of elemenits

As Sc G we concludeS =G

Since S is generated bya" , hence so isG .
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Examples

1. The setZ of integers under addition, is an infinite cydioup with 1 (or -1)
as a generator.

2. The multiplicative group of four non-zero complexmbers {1,—1,i, —i}
is a cyclic group of order 4 generated' By

Theorem 3.09:Every cyclic group is abelian.

Proof: Let G be a cyclic group generated by .

Letx,y € G . Thenx =a™ ,y = a" for some integersn ,n .

Now xy = a™a™ = a™*" = a™™ = q"a™ = yx .

Theorem 3.10:Every group of prime order is cyclic and henceliabe
Ans: Let G be a group witho(G) =p where p is a prime.
Let aeG where a#e.

If o(a)=m i.e a™=e , a"+ e for 0<r<m

Consider the cyclic subgroufl = {a,a? a3, .......am" Lam" =e }
If at=a’ where 1<i,j<m

Thenlfi>j we have a"/ =e sincei—j<m

thereforei —j =0

leal=al=>i=j

Hence all elements of H listed above arstiruit .
Thereforeo(H) = m

Theorem 3.11:Every group of order 4 is abelian.

proof: Case I- If there exists an elemem& G whose order is 4, thefi is
cyclic .

Case ll- Suppose there does not exists any eleohender 4.

Let a be any non identity element of G,

Since o(a)|4 thereforeo(a) =1 or 2 or 4

Sincea # e we haveo(a) # 1

also o(a) # 4 by our assumption .
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Henceo(a) = 2
Thusae G=a’=e
Also e? =¢

Hencea? = e for every elementie G
=>a=a"! ie every element is its own inverse .néke G is abelian

The Quarternion Group Qg:

Let G ={e,—e, 1,—1,j,—f, k,—k}

were e=(1 0, i=(0 0, 5=( 0 Y, k=(0 ) | e-
-1.

Under simplification by matrix multiplication weaiie
ex = xe = x foreachk € G So that'e’ is an edentity element .

andij= —ji=k, jk=-kj=1,ki=—tk=j.... (1)
Showing the closure property.

Again by simplification we have

=6 G 9= DG Y=e-cm
(D) = (=P = k(=k) = (-R)k = e

This proves the existence of inverse of each elemed with —x being the
inverse of any € G .

As multiplication of matrices is associative, Tl becomes a group called
The Quarternion Group Qg .

Again by computation we get

o~
N
Il
~
N
Il
N
&9
N—’
N
Il
I
Q
~>
w
Il
I
o~
~
w
Il
|
>
&9
w
Il
I
&9
~>
RS
Il
—~>
S
Il

(R)'=e .. )

The last relation show that each element ( othean¢h) are oforder 4 .
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Taking x=1, y=j ,andsuing (1) we have

G={e,x?,x,x3,v,x%y,xy,yx }which ( upon using (1) and (2) ) can be
represented bg = (x,y |x*=y*=e, x?2 =y?, xy =y 1x)

Exercise

1.

Let S = (g 2) :a€R, a+ 0}. Show thafS is an abelian group under

matrix multiplication .

let S={1,w,w?:w>=1} . Show thatS is a group under usual
multiplication .

Show that the seM,,(R) of nxn real matrices form a group under
addition of matrices .

Let G = R?> =R X R .For two elementfa,b),(x,y) € G define @ by
(a,b) ® (x,y) =(a+x,b+y).Showthats is a group under® .

Let G be agroup and,b € G . Show that the equatiow *xa = b have
unique solution ir7 .

Let G be the set of all real valued continuous funcoor{0,1] . For two
functions f ,g € G , define point wise addition of these functiors a
(f +g) =h where h(x) = f(x) + g(x) Vx € [0,1] . Show thatz is a
group under this addition.

Let G be the set of all bijective functions frof®,1] to itself . Show that
G is a group under the composition of functions.

Prove that every group of order 4 is abelian.
Hint: eitherG is cyclic or any non identity element is itsroinverse.
((ab) = (ab) ' =b7ta ! = ba

Give an example of a non abelian group which haabatian subgroup.
Hint: Scalar matrices of same order commute with edwoér ot

10lf G is of orderm andae G thena™ =e .

11.f in the groupG, a® = e, aba™! = b? for somea, b € G, ind o(b).
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Permutations and Symmetries

Permutation: Let S be a non empty set . A bijective ( one -one antb Q

functiono: S — S is called a permutation ¢h. A permutation group of a set
S is a set of permutations Sfthat forms a group under function composition.
Also if o is a permutation ofi , we shall writes? for (o o) and so on.

In this chapter, we shall be concentrating on sdeatures of permutation
groups of a a finite sef having a certain number of elements .

The Symmetric Group §,,

Let S be the set olh symbols . For simplicity we tak& = {1,2,3, ...........
n}

Let S,, be the set of all bijective functions peratigns on S.

The fact that

(i) Compostion of bijective functions is a bijeatifunction .

(i) Composition of functions is associative .

(i) The identity function/(x) = x V x € S is bijective .

(iv) Inverse function of a bijective function exdsind is itself bijective.

Make S, into a group under composition of functio@ multiplication
of permutations) called trymmetric group of degreen . Also S,, has n!
elements .

Two lines representation of permutations

Consider the sef = {1,2,3,4, .... n} havingn elements.

LetS,, be the set of all permutations &nlf o € S,, theno can be represented
in a matrix of orde2 x n  where the first row consists of elementsSofand
the second consists of images under

. B 1 2 . n
i.e 0—<0(1) o(2) ... G(n))
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Cyclic Permutation / Cycle

LetS = {x1, x5, o ver o , X} be the set of n symbols arfdS - S be a
permutation on S.

Then f is called an n- cycle if(x;) = x;4, , f(x,) =x;. ( eachx; are
distinct )

_ (X1 X e Xn
e f = (x2 X3 aee ee s xl)
Such permutation shall be denotedfby (x; x, x5 ..... x;,)
It should be noted that
(X1 x3 X3 ... Xp) = (X3 X3 Xg e XpX1) = (X3 X4 o . Xy X1 X))
Inverse of a cycle
If o=(x; x, X3...... x,) then 71 = (xq,%,,Xp—1 v oon X3 Xy)
This can be seen by directly checking all the insaay&d inverse images.

Fixed element of a permutation

An element which has itself as an image undeeraptation is called a
fixed element.

Eg.1 In S;, in the permutationp,; = (
element.

1 2 3

1 3 2), an elementl is the fixed

Note : Fixed element can be omitted in permutationesgntation
1 2 3\_ /2 3\ _ (2 1 3
Eg'(l 3 2)_(3 2)_(23)_(3 1 2)
Def™: The length of a cyclic permutation is the temof elements

permutes by the permutation . I = (x; x, x3 ....... x,) thenoc isa
cycle of lengthn .

Def™: A cycle of length 2 is called a transposi.
A transposition is always of the forim = (a b) which is its own inverse .

i.e 071 = (ab)
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Def™: Two cycles are said tobe disjoint if the set leh@nts permute by the
two cycles permutations are disjoint .

Eg. Let f = (xq1, %3, v vu xX) ,9 = (Y1,Y2 ..Vs) be two cyclic permutations

on a non-empty seét. Then f andg are said tobelisjoint if

{x1, %5, e 30 {y1, Y2, ...} =@ (¢ isan empty set.)

Composition of two permutations Quick Simplification

If f and g are two permutations, to simpliff{f o g), (keep in mind that

(feg)() =f(9(x) )

We demonstrate this with the help of a concretengta below.

(1 2 3 4 (1 2 3 4 :
Letf = (2 -1 4), = (3 4 1 2) be two permutations on
S={1,234}

To calculatg(f o g, we first list all elements of the set in thesfirow, keeping
the second row unoccupied.

(1234)

Next To find the image ofl’ under(fog), we firstfind the image dfl’
underg which is '3’ then find the image of3’ under f whichis'1’.
We can proceed this way to each elements of thie ggt

fro=( 239G3 Y s s

The Symmetric Group of degree 3 S5

Let S={1,2,3}

A\

w

—
Il

et e=(1 23 g=(1 2 =2, p=( 23
(1,3),

h=(1 3 =0 2=

(1,3,2)

—_
N
w

=029 0=, 2 9)-
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be the six permutations on S.

It is clear thate is the identity element of5;

Wehave,¢>§=(1 2 3)(1 2 3):(1 2 3) .

2 1 3/\2 1 3 1 2 3
Similarly ¢2 = ¢,* =e=d3° e, (1)
=20 20 2 Yo @
Similarly w2 =y e, (3)
and == (3 3 )G 3 DG 5 )=G 2 3)=¢
Similarly w3 =e=x3 e (4)

Also we can see that
yo =(1,2,3)(1,3,2) =e = (1,3,2)(1,2,3) = WY  cevvvereeeeeeiriieeeeeennn (5)

Equation (1) shows that¢,,¢, ,¢3 each are their own inverse
(since a’?=e=>aa=e=>a=al)

Equation (4) shows thaty and w are inverse to eachother.

Also equation (1) shows thet; ,¢, ,¢p3 are each of order 2 and
equation (2) shows that and w are of order.3

Of course e is of order 1 being the identity element.

By calculation we also have

oon=( 2 D0 2 D=0 2 9=
bn=( 20290 2 Y=o
bin=( 290 2 D=0 2 Y=
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bata=(, 1 3G 2 D=6 1 =0

oi=( 2 DG 2 D=0 7 Y=o
oti=( 2 D0 2 D=0 % D=

The above two equations show th& is non-abelian (The smallest non-
abelian group in the sense that any grouploiver order) are always
abelian .

We present below the group tableSegf

° e b1 | 2 | P X | W
e e (21 b, | b3 X |W
e

Theorem 4.01: Disjoint Cycles Commute with each other.

Proof: Let f and g be two disjoint cycles on a non empty Set

Let A be the set of elements fpermutes byf and

Let B be the set of elements Hfpermutes byG .

As f and g are disjoint, we havel N B = ¢ (an empty set)

Also f(x)=x if x¢A and g(x) =x If x¢B.

Toshowthaf o g =g-of ,wetake any element € S and show that
(feg)x)=(g°f)x)

Let xe€S
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Case (i)x A ,x&B

In this case(f o g)(x) = f(g(x)) = f(x) =x and (g° Hx) =g(f(x)) =
gx) =x

Case (ii):x € A

If xe A thenf(x) A and x€B = g(x) =x

Now (fog)(x)=f(g9(x)=f(x) and (gof)(x)=g(f(x))=f(x) as
f(x) € A andg do nothing to elements df.

Case (ii):x € B

If xeB theng(x)eB and x¢ A4 = f(x) =x
Now (feog)(x)=f(g(x))=g(x) as g(x)e B andf do nothing to
elements oB . and (g ° f)(x) = g(f(x)) =g(x)

Thus in each case we havg 0 g)(x) = (g ° f)(x)
Thereforefeg=g-of

Definition: Let x € {1,2,...,n} ando € S,,. The orbit ofx undera, written
orb (x), isorb (x) = {c™(x):m € Z}

It should be seen that o(lp) is a finite set because it is a subseflof.., n}.

Proposition 1: Letx € {1,...,n} ando € S,,. Then there is a whole number
r > 0 such thate” (x) = x.

Proof. The elements™(x) for m = 0,1,2,... can't all be different, so there
must exist i < j such that‘(x) = ¢’/ (x). Thensloi(x) = 0~'0/(x), SO
x = 0/t (x) and we can take = j — i.

Theorem 4.02: Let o be a permutation of. If k is the smallest strictly
positive integer such thato®(x) = x, then the elements of
S ={x,0(x),0%(x),...,a% 1(x)} are all distinct. Furthermore ,c™(x) = x
for any multiplem of k and o™ (x) € S for any integern .

Proof : Supposes”(x) = o°(x), where0 <r <s<k. Applycs™ to both
sides to get

x = 0°"(x). But0 <s—r <k, sobythe the assumption bn
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we haves —r =0 or s =r. This proves the first part
Thate™(x) = x for any multiplem of k is obvious.

To show thate™(x) € S , we taken = kq +r where0 <r <k
Thereforec™(x) = ¢"t*(x) = o" (qu (x)) =o"(x) €S

Theorem 4.03:Every permutation on a finite set can be writtem &ycle or as
a product of disjoint cycles and the cycles thatesp in any such expression of
a given permutation are the same, up to order.

Proof: Let ¢ be a permutation and I&t be the set of elements permutes by
o . We assume tha§ hasn elements.

Choose any element of S.

After it, write o (x;). After that, writeo(o(x;)) = a2(x;), and continue until
o (x)) = x;.

The last element written 8~ (x;). Write the result as &-cycle:
o =0; 0(x) 0%(x1) e a®1(xy))

After this, choose an element, € S that is not in

Si={x1, o(x), 0%2(x1), . a®1(x,)} and repeat.

Write the corresponding cycles, = (x, a(x;) 02(xy) ... ... aP1(x,))
after the one previously written.

We now show tha#; ando, are disjoint.

e S ={x1, o(x), 0%(x1), e ... ak¥1(x;)and S, =
{x,, o(x), 02(x3) ,eeeenene P 1(x,)} are disjoint .
We already have x, € S; .......o.veees (1)

We first show thak, € S, .

If x, €S, Thenx; =ct(x,) :1<t<p
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Now x, = aP(x;) = a? % (0%(x,)) = 0P %(x;) € S;  using the previous
theorem.

This contradicts that, ¢ S,
Hence x; € S, .oovvvnnnnn.. (2)
We now show thaf; andS, have no common elements.

Any element ofS; is of the formoi(x;) and any element ¢, is of the form
0’ (x3) .

If 6'(xy) =0a/(xy) ........ (2)

Then (i) i =j = x; = x, which contradicts both (1) and (2)
(ili<j= x; =0/7%(x,) €S, whichcontradicts (2)
(ii)i >j = x, = 6"/ (x;) € S; which contradicts (1)

Henceo'(x;) # o/ (x3)

l.e S; and S, are disjoint.

We Continue choosing previously unused elemendsvarting out the cycles
they traverse until every element $f has been taken to get a series of cycles

We note that eact; in the R.H.S are disjoint and that eacle S have been
taken in the above process . Also singe are defined interms of , this
established that

To prove thauniqueness of such decomposition

Suppose g,0, 05 ... ... Om = T1Tg wee e e Tpe wvnvninannnns (3)
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We shall show that, is equal to one and only onés .

It is clear that there exist : 1 <t <p andog; andrt, are not disjoint .
We leto; = (x4,%5 .....) Wherex, =a(x,) ...

Sinceany element of a cycle can be moved up to thealrpwosition if need be
and o; andt, are not disjoint .

Then there existg, where 7, = (y;,y, ... ... ) andx; = y;.

Buty, = a(y1) =a(x1) = x,

Continuing this way we can deduce thgt= 7, .

and since each, are disjoint , can only have ohe wheres; = ;.

We can proceed in the same way to establishdivespondence between

the remainings,, with the remainingz’s .

Theorem 4.04:The order of a permutation of a finite set writteras a product
of disjoint cycless the least common multiple of the lengths ofdiieles

Proof. Let o be a permutation and let= 7,7, ...t; be the decomposition of
o into disjoint cycles of lengths of length,, k, ..., k;.

Let the order o& be k .
As 14, T,, ..., T; are disjoint, it follows that

But the RHS is equal to the identity, if and oirfly each individual term is
equal to the identity.

k

It follows that 7 =e and aso(t;) = k;

We have k; dividesk. Thus the least common multiptey, of k,, k,, ..., k;
dividesk.

But o™ =1"t7't{*...1/" =e and o(o) =k , Thusk dividesm and so
k =m.

Eg:(a) If o= (1 2 ) then order ofcis 2
(b) If y=(12)(3 45) then Order offy , o(P) =LCM(2,3) =6
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Theorem 4.05:Every permutation iS,,n > 1, is a product of 2-cycles.

Proaf: First, note that the identity can be expresse@lay(12), and so itis a
product of 2-cycles. We know that every permutatean be written in the
form

O =TTy e Tf «rrn. (1)
Supposert, =(a,a,as a,)

It is easy to verify thatt,. = (a; a,.)(a; ay_1) .......(a; ay)

Proceeding this to eaehin (1) completes the proof for the first part .

Theorem 4.06: A cycle of lengthk can be written as a product @t — 1)
transpositions.

l.e a cycle of even length is odd and a cycleduf length is even .
Proof. Supposert, = (a; a,as; a,)
It is easy to verify thatt,. = (a; a,.)(a; ay_1) .......(a; ay)

Theorem 4.07: If o = 7,7, ...T, Wheret, are transposition, therr! =
TpeTr=1 ----TaTq .

The proof follows by direct computation sincenBposition is inverse to itself.
Definition: Even and Odd Permutations

A permutation that can be expressed as a produt een number of 2-cycles
Is called an even permutation. A permutation tlaat loe expressed as a product
of an odd number of 2-cycles is called an odd péatian.

Lemma: The identity permutation is even and not odd.

The proof of this is beyond the scope of this baB&nsult advanced algebra
books.

Theorem 4.08: Every permutation i, (n > 1) is either even or odd, but
not both.

Proof : Leto be a permutation ifi,.
Leto = 0,05 .....0, = T1Ty ..... T,
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whereo,. , 1, are transposition .

Suppose one ofn or k is even and the other is odd .

By the previous theorem , we have! = o0,,0,,,_ ..... 0,0,
=>I=0"10=0,0,_1....0,0, T;T5 .....T;, an odd permutation.
This is not possible using the above Lemma.

Hence bothm andk must be even or odd.
Theorem 4.09:Leto,7 € S,, . Then

() ot isevenif o andt are both even or both odd.
(i) ot isodd if one ofc andt is even and the other is odd .

Proof. Leto =o0y0,....0, and t =17, ....7;

where o is expressded as the product ek transpositions andt is
expressded as the productioftranspositions .

Thenot = 0,0, .....0, 7175 ..... T, IS the product of(m + k) transpositions
which is even if m and k are both even or odd. an@n + k) is odd if one
of m and k is even and the other is odd

Theorem 4.10:The inverse of an even permutation is an even y@tron.

Proof : If P be an even permutation aRd! be its inverse, theRP™1 = I,
the identity permutation.

But P and | are even Bo' is also even.

Theorem 4.11:The inverse of an odd permutation is an odd peatiaut.
Proof-: If P be an odd permutation aRd! be its inverse, theRP~! = |, the
identity permutation.

But P is odd and | is even.

soP~1is also odd.

The Alternating group- A4,: The set of even permutations #}, is a group ,
called theéAlternating group of degrea and is denoted by,,.

Proof: If o,7 € A,, theno,t are even permutations.
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= t~1 is also an even permutation.

= o711 is an even permutation ( product of even peatiaris is even )
01 €A,

HenceA,, is a group.

Example: TheAlternating group of degre8, A, .

We know that an identity element and a cycleodfl length is even .

ThusA; ={e, y=(123), w=(1 3 2)}

Introduction to symmetries

Symmetry in mathematics refers to a situation wlaeskape or object remains
invariant under certain transformations, such aatian, reflection, translation,
or scaling.

We state below three types of symmetries that tirgerest in pages to follow.
Reflective Symmetry (Mirror Symmetry): Reflective symmetry occurs when
an object can be divided into two parts that aneam images of each other.

The dividing line or plane is called the line dae of symmetry.

For example in a circle , any diameter will divide theale into two halves,
one of which is the mirror image of the other.

Another example a square has four lines of symmetry namely the tw
diagonals and the two lines bisecting the oppasites.

Rotational Symmetry: An object has rotational symmetry if it can beatet
(less than 360 degrees) around a central poinsthtbok the same.

Example: A regular pentagon has rotational symmetry of p&gjes it looks the
same after rotations @2°, 144°, 216°, and288°.

Translational Symmetry: An object has translational symmetry if it can be
shifted (translated) by a certain distance inréagedirection and still look the
same.

Footprints are a great example of translational symmetry lmxahey are
asymmetrical figures that repeat in different lomad. The symmetry occurs
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because one footstep is identical to another wiokgtioned at different spots
from the previous ones. Remember that symmetrg doé have to be on the
figure or object itself.

Symmetries of the square

The symmetries of a square Rotation and refledtiansformation. Consider
the square ADCD and the 8 transformations givedowa:

Rotations

1. Identity rotation (0°): This leaves the square unchanged.

2. 90° rotation: Rotates the square 90 degrees counter - clockwise
3. 180° rotation: Rotates the square 180 degrees counter - clockwise
4. 270° rotation: Rotates the square 270 degrees counter - clockwise

Reflections

5. Reflection over a vertical line: This line goes through the midpoints of the
left and right sides of the square.

6. Reflection over a horizontal line: This line goes through the midpoints of
the top and bottom sides of the square.

7. Reflection over the main diagonal:This diagonal goes from the top-left
corner to the bottom-right corner.

Reflection over the second diagonalThis diagonal goes from the top-right
corner to the bottom-left corner.

We shall denoted the above transformations asvisltio

(1) Identity rotation- |

(2) 90° rotation R,

(3) 180° rotation -R,

(4) 270° rotation R

(5) Reflection over a vertical linel~

(6) Reflection over a horizontal ling+-

(7) Reflection over the main diagony-

(8) Reflection over the second diagonA),-
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The effect of these transformations on a squage/en below.

A D A D A D D C
1) I 2) R,
B C B C B C A B
A D C B A D B A
3) R, 4) R,
C D c C D
A D D A D B C
5) v 6) H
B cC c B B C A D
A D A B A D C D
7 D 8 D,
) L ) z,
B C D C B C B A

We can view these 8 motions as functions onotientations of the square
region to itself .

We now show a few examples that the combinaifotwo of these actions is
equivalent to one of the 8 actions .

We shall (in a natural way of functions compositiop view an actiorg
followed by an actiorf as (fog).

(i) If we “rotate the square anti-clockwise ®§° “and follow by reflection
over the main diagonal” we are actually applying tompositiorn(D, o R,)

on the square . We show below the final effecthefcombination of these
two actions:

A D D C D A
Ry D,
— —

B C A B C B

We can see that these two actions combine, résiiame ask; which is the

rotation of 270° . We leave to the readers to verify that any starhbinations
results to one of the 8 mentioned actions.
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We also note that if we rotate the squ@apé and then rotate agaitv0° and
vice versa (both anti-clockwise ) , the squaré melin the original position.

i.e (R;oR;) =(R;°oR3)=1 This shows thaR,andR; are inverse to each
other.

We leave to the readers to verify that each ofaheve functions possesses
inverses.

Also since (fog) is the result whehg acts first" and "f second" ,
the associative property for the above functisrdearly satisfy .

With all the above discussion then we can nowckamle that the set
D,={I,R,,R,,R;,V,H,D;,D,} formsa group under composition of
functions . This group is called tizehedral group of order 8 and is denoted
byD, .

It is tobe noted that the notatio®,’ is abbreviated to “ the dihedral group
originated from the square which has 4 equal sides

Dihedral group: With the above discussion about the the symetof a
square we can generalize to the symmetries of any regualasgon like
equilateral triangles, regular pentagon , regukxagon and so on . The
symmetries on these figures wiibrm a group under composition of functions .
For symmetries of a regular n-gowe shall call the group, “ The Dihedral
groupD,,"of order2n .

Exercise:

: 1 3 4 (1 2 3 4.
1. Write the .permutatlom—(s 4 1 2) and r—(z 1 2 3) in
cycle notation.

2. Write the following cycles as the product of disjocycles.
(124350M456) (i)(13256)(23)(46512)

3. Verify that composition of permutations is assaeatby showing(ot)p =
o(tp) for some permutations, t, andp.

4. Find the inverse of the permutation= (135)(24).
Verify thato - 071 = id.

sleto=(3 5 5 5 1) =G 15 23
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(i) Computeot, 10,071,771
(i) Expressr,t as cycles or product of didsjoint cycles.

6. Let c=(1325764). Findo™!. Expressr andog~! as the product
of transpositions.

7. Find the order of the following cycles.
M (12)(134)(152) (i) (124)(357869) (i) (a;a,a; a,)

8. Determine whether the following permutations areresr odd .
: . .. (1 2 3 4 5
() (1243)(3521) (i) (13256 4) (i (3 PP 1)

9. Construct the group table for
(a) The Dihedral group; . (b) The Dihedral group,.

Also find all subgroups of both the groups.
10.1Prove or disprove the statements below.

(@) The Dihedral group; is abelian.
(b) The Dihedral group, is abelian
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Chapter- 5

Subgroups and Cosets

Introduction

In mathematics, particularly in group theory, agralip is a subset of a group
that is itself a group under the same operatiosiraply saying , “ a subgroup is
a group within a group. To qualify as a subgroagubset must satisfy the
group axioms (closure, associativity, identity, andertibility). We shall start
the chapter with the formal definition of a subgvou

Definition: A subsetHd of a groupG which is itself a group under the operation
of G, is called a subgroup &f . If H is a subgroup off we shall denote as
H<G.

Example: Consider the group of integers under addition and Bt be the
set of even integers ( which is obviously a sulaset ).

In 2Z , the closure property undés-'is satisfied as the sum of even integers
IS even.

The associative property inherits from the wholeZse
An element0’ being even ,isidZ .

Fininally , that the negative of any even integean even integer , proves the
existence of inverse.

These lines above shows t2at is a group by itself which is of course abelian.
As 27 is a subset of , it is called a subgroup &f.

Instead of verifying all the group axioms, it woultk better if a fewer
conditions is verified if those conditions areosty enough tobe equivalent to

all the four group axioms.

We shall state below the theorem that would allewaiquickly determine if a
subset is or is not a subgroup.
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Theorem 5.01: (Subgroup Test } A subsetd of a groupG is a subgroup of
G if and only if

a,b € H= ab™! € H .(in additive notation we write a,b € H = (a —b) €
H )

Proof: Let H be a subgroup of; . By existence of inverse..
If a,b eH then b~ ! €H
= ab™! eH Dby closure property

Conversely,
Supposea,b e H = ab™  ----------- (1)

Let a € H.

Thenaa™' e H by assumption.

= e €eH ie the identity element exists # ...... (2)
Let aeH,Now e, a eH=ealeH = aleH

Therefore each element af has inverse inH . ...... (3)
Associative property holds itH asH € G.

Finally, for a,b eH we haveb™® € H by (3)

and a,b! eH = a(™)"! eH by assumption (1)
= ab eH sothat H is closed.

Hence H is agroup, a subgroup df. This completes the proof.

The next theorem is called the two step subgrosipigesquivalent to the above
theorem.

Theorem 5.03: ( two step subgroup test : A subsetH of a groupG is a

subgroup of G if andonlyif (i)a,b€ H = ab € H ( closure property ).
and (i) ae H=>a1€H (existence ofinverse i)
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Proof. To prove this theorem , we shall show that &gsiivalent to the previous
theorem .

I.e one theorem implies the other .

We take "a,be H=ab 1€ H" as the first statemeRr{ and
() abeEH=ab€eH
(i) aeH=>ateH" asthe second statemem.

Now Leta,bEH=ab '€H .......... (1).
To prove that the conditions in this theorem atesfed ,

we takea ,b € H

=>a,a EH= aa !=e€H byassumption (1)

Now e,a € H=>ea '=a"' € H . this proves condition (ii) of the second
statement .

AlsobeH=> bleH

and a,bteH=>a(b ™)' =ab€eH . This proves condition (i) of the
second statement .

ThuspP, = P,

We now assume that (j,b € H=>ab€eH . (i) aeH=>al€H.
Leta,b € H

Then b™1 € H by (ii)

anda,b™! € H=>ab™ ' € H by (i)

i.e a,beH=ab 'eH.

This proves thab, = P,

Hence the two theorems are equivalent.

One can also prove this theorem without showingeifgiivalence to the

previous theorem.
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Finite Subgroup Test

Let H be a nonempty finite subset of a group GHIlis closed under the
operation of G, theH is a subgroup of G.

Proof: We already haver ,b e H = ab €H .

As H is not empty , we take any elemen€ H .
If a=e thena ! =e € H .

If a+e

Consider the setS = { a,a?, a3 ... ... a..}.

By the closure of H , we haveS C H .

Hence , elements of cannot all be different .
Leta’ = a/ (assume wlogi >i )

a7 =e .

Asa+e ,i—j>1 (i—j—-1)=1

ande = a'~! = aa'~/ 1

salt=a"71, Aso(i—-j—1)=>1> a"/'eH
iealeH .

HenceH is a subgroup of; .

Proposition: If me Z then mZ the set of multiples ofm is always a
subgroup ofZ under'+' .

Proof. If x,y e mZ thenx =mp ,y =mq for some integep,q .
Now (x —y) = (mp —mq) = m(p —q) E mZ

ThusmZ is a subgroup df.

Theorem 5.04:Any subgroup of(Z, + ) is of the formmZ wherem e Z .

Proof: LetH be a subgroup of .
Let m be the least positive integer H.

Let x be any element off.
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By division algorithm we haver = mqg +r where0 <r <m

Nowx meH=x,mq € H=>(mq—x)€EH

>reHf.

By the condition form andr , we must haver = 0 so thatx = mgq .

As 'x' is an arbitrary element &f , we conclude that every elementbfis
a multiple of 'm’ .

l.e H=mZ .

Theorem 5.05:If H and K are subgroups of a groug then HNK is a
subgroup of7 .

Proof : Leta,b e HN K

=>a,b€eH anda,b €K

=>bleH andb"l €K

=>ab™l€eH andab ' €K

>ab'eHNK

ThereforeH N K is a subgroup of; .

Example: The union of two subgroups may not be a subgrdug groupG .
Consider the groug under +

Then 2Z ,3Z are subgroup of .

Now 2 € 27,3€3Z= 2,3 €2ZU3Z

But (2+3)=5¢2ZU3Z as 5 is neither a multiple & nor 3 .

Thus2Z U 3Z is not closed undet+ ' and hence not a subgroup .
Theoremb5.06:Every subgroup of a cyclic group is cyclic.

Proof: Ans: Let G = (a) be a cyclic group generated By’
Let H be a subgroup of

Let m be the smallest positive integer such thdt ¢ H

e a™ e H anda" ¢ H for 0<r<m .............. (1)

Let b =a™
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We shall show thath" generatesH

Let x ¢ H be any element.

>x€e G

= x =a" for some positive integen

As xe H

we haven >m

>n=mq+r where 0 <r<m

Now a" = a™i*" = qM4q? = (a™)? a”
=>a" = aq*(a™)!

As a™ e H=> a™ e¢ H=> (@) 'e H
Also a™ e H

Therefore a” = a™ (a™¥) 1= €H

As 0 <r<m using (1)

we must have =0

So that n = mq Thereforex = a™ = a™? = (a™)? = b1
Showing thatx is a power ofb

As x is any element off

Therefore H is generated byb

l.e H is cyclic.

Theorem 5.07: LetG be a group anth € G . Then the sea) ={a™ :n €
Z }is a subgroup of7 . (This is a cyclic subgroup generated by’ )

Proof : If x,y € (a) thenx =a™ ,y = a™ for somem,n € Z .
xy—l — am(an)—l =qm " e (a>
Thus (a) is a subgroup ofG .

Example: Let ¢ = Z, . We shall examine the subgroupsZgf generated by
each non identity element under addition mod 6.
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We have 1x1=1,2Xx1=2,3x1=3,4X1=4,5Xx1=5,6%X1=
6=0

= (1) ={0,1,2,3,4,5} = Z,

1xXx2=2,2%X2=4,3%x2=6=0

Thus (2) ={0,2,4}

1x3=3 ,2X3=6=0

= (3)=1{0,3)
1x4=4,2x4=8=2,3x4=12=0
= (4) = {0,2,4)

1x5=5, 2x5=10=4, 3x5=15=3,4%x5=20=2
5x5=25=1 ,6x5=30=0

= (5) ={0,1,2,3,4,5} = Z .

Example: Consider the groupUg = { 1,3,5,7 } under multiplication mod 8 .
We have3? =9 =1mod 8

52 =25 = 1mod 8

72 =49 =1mod 8

So that each elements are their own inverse .

Also (3)={1,3}, (5)={1,5},(8)={1,8}

Definition: LetG be a group. The center, Z(G), 6fis the subset of elements
in G that commute with every element of G.

e Z(G) = {a€G ax=xa V xinG}.
Theorem: The center of a group G is a subgroup of G.
Proof: LetZ(G) be the center ot .

Let a,b € Z(G)
We haveby =yb V y €G
>ybl=blyvyec

> b1 €Z(6)
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Now , (ab™1)x = a(b™x) = a(xb™) = (ax)b™! = (xa)b™! = x(ab™?)
=.(ab™1) € Z(6G)

HenceZ(G) is a subgroup of; .

Definition: Centralizer of an element in G.

Let G be a group and € G. The centralizer af in G is the se€(a) of all

elements irGthat commute witha' .
e C(a)={x€G : ax=xa }

Theorem 5.08:The centralizer of an element of a gro@ps a subgroup of G .

Proof: Leta € G .

We haveC(a) = {xe G :xa = ax} .
Let x,y € C(a)

Therefore xa = ax and ya = ay

Also ay = ya = ayy™ ! = yay™!

= a=7yay !

=y la=yyay™!

>y la=ay?

Now (xy Da =x(y~'a) =x(ay™) = (xa)y™" = (ax)y ™' = a(xy™")
This shows thatxy™ e C(a)
HenceC(a) is a subgroup ofG
Cauchy’s Theorem for Abelian Groups

Let G be a finite Abelian group and Iptbe a prime that divides the order@f
ThenG has an element of ordpr
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Cosets
Introduction

Cosets are fundamental constructs in group théway dllow us to partition a
group into distinct subsets based on the subgrtuptsre. Let's delve into the
details:

Coset of a Subgrop: Let G be a group and a subgroup of.

For any elemeng € G, theleft cosetof H containingg is defined as:
gH = {gh: h € H} ( in additive notation is writtely + H ={g+h: h€
H})

This set consists of all elements obtained by piying/adding g on the left by
elements of.

Similarly, theright cosetof H containingg is:

Hg ={hg | h € H} ( in additive notation is writteltd + g ={h+g:h €
H } which consists of all elements obtained by mujtigd/adding g on the
right by elements ofi.

Note: He = H for an identity elemente’ .

Note: Ase e H ,foranyge G, g=ge e gH andg=eg € Hg.

Example: Consider the groug, under addition mod 4 and its subgroup
H =(2) ={0,2}.

For an elemenB € Z,, theleft and right cosets Hf containing3 are
3+(2)={3+0,34+2}={3,5}
and (2)+3={0+3,2+3}={3,5}

Example: Consider the subgroupZ of even integers . For an element Z,
the left and right cosets dfZ containing’1l’ are

1+2Z={1+2m:meZ }
and2Z+1={2m+1:meZ} whichisthe set of odd integers .

Example: Consider the group/g = {1,3,5,7} and a subgroupH = (7) =
{17}

79



Chapter 5: Subgroups and Cosets

For a=3 , Ha={1x3,7x3}={3,5} (here * is multiplication
modulo 8)

Fora=5 ,Ha={1+5,7«*5}={5,3}

Fora=7 ,since7 €eH ,Ha=H

This can be verified also as

Ha={1x7,7x7}={7,1}=H

We shall later show that cosets partition theugr&@ and that any two cosets
have the same number of elements finite or i&ini

Definition: Let H be a subgroup of;. The number of distinct left ( or
right) cosetsof H in G is called tihedex of Hin G written as|G: H|.

Theorem5.09:Let¢G be a group andi be a finite subgroup off . Then any
two right (or left ) cosets o in G have the same number of elementdfas

Proof: Let H ={hy,hy, hs,..... h,}  where eacty; are distinct for
1<i<nand gecG .

Then Hg = {h,g ,h,g , h3g ,...... h,g}
These elements ofig are distinct, otherwise h;g = h;g with i #

Jj by cancellation law we shall have h; = h; which is not true as each;
are distinct.
It is now clear thatHg and H have the same number of elements.

Theorem 5.10:Let G be a group anH a subgroup of . Fora,b € G
Ha=Hb&eab leq .

Proof: If Ha = Hb

then a € Ha = Hb = a € Hb

SO a = hb for somé € H .

>ab'=h €H.

Conversely:If ab™' € H
Let x€ Ha, thenx = haforsomeh € H .

Now x = ha = hab™'h = h;b € Hb whereh; = hab™!
~ Ha € Hb
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Alsoab '€ H=> (ab )" =ba '€ H asH is asubgroup .
Lety € Hb, theny = hb for someh € H

Nowy = hb = hba 'a = h,a € Ha whereh, = bba™?!

~ Hb € Ha

HenceHa = Hb .

Theorem 5.11:Let G be a group anH a subgroup of. Then any two right
( or left) cosets are either identical or disjoint

Proof: LetHa,Hb be two right cosets.

If Ha n Hb = ¢ the empty set , then the proof completed.

SupposeHa N Hb # ¢

Letx € Han Hb

Thenx € Ha = x = ha and x € Hb = hyb whereh,h; € H .

Nowx =ha=hb=>ab'=h"th €H

By previous theoremHa = Hb .

Theorem 5.12:Let G be a group andd a subgroup ofG . Then any element

x € G isin one and only one right ( or left ) cosetofin G . Also G =U Hg
whereHg runs over all distinct right cosetsiéf in G.

Proof: Letx € G . Thenx = ex € Hx

Supposex € Ha for some right coséia , thenHa N Hx # ¢
= Ha = Hx

Hencex is and only is irHx .

For the second part, that Hg € G is obvious.
AlsoxeG=>x=ex € Hx,> x € UHg

ThereforeG = U Hg .

Corollary: If G is afinite group andd a subgroup off then
o(G) =|G:H| X o(H)
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Lagrange’s Theorem on Finite groups: Let G be a finite group andd a
subgroup of G. Then the order of is divisible by the order ofH . or
o(H)|o(G) .

Proof: Let the indexof H inG ber ,0(G)=n, o(H)=m

Let Hg,,Hg,,Hg;, .......Hg, be the collection of all distinct right cosefs
H .

Since any element € G is in one and only one coset g;

We have G =Uj_, Hg;

As eachH g; are distinct , they are disjoint .

Also Each cosets have the same number of elemgrfis.a

Hence n = 0(G) = o(Ui_; Hg;) = Xi-10(Hg;) = mr

= m|n
Some of the applications of Lagrange’s Theorem argiven below:
Determining Possible Subgroup Orders

Lagrange’s Theorem helps in identifying possibldens of subgroups of a
given finite group.

For example, if a group is of order 12, then its subgroups must haversrde
that are divisors of 12, i.e.,1, 2, 3,4, 6, or 12

Proving Non-existence of Certain Subgroups

Lagrange’s Theorem can be used to show that cestdogroups do not exist.
For instance, a group of order 12 cannot have greup of order 5, since 5 is
not a divisor of 12.

Cosets and Index of Subgroups

The theorem is used to understand cosets anddbg of subgroups. The index
of a subgroupH in G is given by'%'| This is always an integer due to

Lagrange's Theorem.
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Understanding Cyclic Groups

Lagrange's Theorem helps in analyzing the struatti®yclic groups. IfG is a
cyclic group of ordem, then for any divisod of n, there exists a unique
subgroup of; of orderd.

Example: Consider the symmetric grouf;, which is the group of all
permutations of three elements; is of order 6. The possible orders of
subgroups of;, according to Lagrange’s Theorem, are the divisdr® which
are 1, 2, 3, and 6.

* The trivial subgroup has order 1.
» The subgroups of order 2 are generated by singhspositions namely
(12), (13), (23) whichare
Hy={e, (2 3)}, Ho={e ,(13)} Hy={e,(12)}
* The subgroups of order 3 are cyclic subgroups géeety a 3-cycle
(12 3)or (132)
e H={e, (123),(132)}
The whole grou; itself is the subgroup of order 6.
» By Lagrange’s Theorens; cannot have subgroups of any other orders.
e Using Lagrange’s Theorem , we can determine thexiradf each of the

above subgroups Index éf in S; = OO((;)) =3 , Index ofH, in S; =
1

3, Indexof H; in S5 = 3 Index ofH in §; = 2

Exercise
1. Find all cyclic subgroups d&f;, Z,, Z-
2. Find all cyclic subgroups oD, .

3. Find the cosets of each  of the  subgroups

{e,(12)},{e,(13)},{e,(23)} of S;.

4. Prove that ifa is the only element of order 2 in a group, théiesin
the center of the group.

5. Let’a’ be an element of a group and? = e . Find all possible orders of

I 7

a .

6. Let'a’ be a group element and ordefdafis infinite . prove that
a"=a"en=m .

83



Chapter 5: Subgroups and Cosets

7. Let U(14) be a group of units integers modulo 14. Shioat &/ (14) is
cyclic and find all its generator.

8. Letabe a group element of orderand suppose thdtis a positive
divisor ofn. Prove thatad| = g.

9. Examine whether the following subsets are subgfug ( the complex
numbers .

(i)S={a+ib: a,b €ER ,ab>0}
(i) S={a+ib: a,b €ER ,ab<0}

10.Prove that the set of Guassian inte@ers-ib : a,b € Z } is a group under
usual addition of complex number . Is it a gromper multiplication ?
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Normal Subgroups and Direct Products

In group theory, a normal subgroup (or invariariiggoup) is a subgroup that is
invariant under conjugation by members of the grddefore defining normal
subgroups, we first introduce the definition ohgmate elements of a group.
Conjugate elements of a group

Two elementst andb in a groupG are said to beonjugate if there exists an
elementg in G such that b= gag~!. In other wordsp is the result of
conjugatinga by g.

Conjugacy Class

The set of all elements ifi that are conjugate to a given elemerforms the
conjugacy clasof a. The conjugacy class afin G is denoted by'l(a)

Clla)={x€G : x= gag~! for somegin G}

Definition: A subgroupN of a groups is called anormal subgroup if
gng €N VneN , VgeceG

If N iIs normalinG wewrite NG or N<G.

Example: Consider the groug ={+1,+i } and a subgroupV = {+1}
under usual multiplication.

It is easy to verify thagng™! € N foreachn € N,g € G so that
N<G.

Example: Let ¢ be a group.The centZéG) of a groupG is a
normal subgroup of;.

Proof: Let a,b € Z(G)

Thereforeay =ya , by=yb V y€e G

Andby =yb=>yb !t =b"1y

Now (ab™H)y = a(b~'y) = a(yb™") = (ay)b™ = (ya)b~* = y(ab™")
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Thus ab™! commutes with any elemente G

ie.a ,b€Z(G)> ab t€Z(G) sothatZ(G) is a subgroup of.
let g€ G, a€ Z(G) .Thenag=ga ,ag =g ta

we have (gag ")y = (99 'a)y = ay =ya=y(gg~'a) = y(gag™)
= gag 1 €Z(G) for any a€ Z(G),g€G

proving that Z(G) is a normal subgroup of G
Theorem 6.01:Every subgroup of an abelian group is normal.

Proof: LetG be an abelian grougH, a subgroup of .

Foranyge G , he H we always have

ghgt=ggh=h €H

Theorem 6.02:A subgroup N of a group G is normal if and oifilyyNg~! =
NV ge G(heregNg~! = {gng~1:neN})

Proof: SupposegNg 1 =NV geG

we havegng e gNg™1 = N

Hencegng e N therefore N is normalin G

Conversely if Nis normal .

We havegng legNg~!

Also gng~'e N as N is normal

=>gNgtcN......~Q)

Now , Letne N

then n=g(g ng)g ™ = gnigte gNg™* ..... (2) { wheren, =
g ng = g;ng;t e N as N is normal

From (1) and (2) we havgNg~1 =N

Theorem 6.03: A subgroup N is normal in G if and only if
every left coset of N in G is a right coset.

Proof . SupposeN is normal in G

LetgN be any left cosetof Nin G
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Since N is normal , we havgNg™! = N (using previous theorem)
= (gNg g =Ng or gN = Ng showing that the left coseyN is also
the right cosetNg

Conversely Supposevery left cosetof N in G is a right coset

Then for geG , gN being the left coset must also be the rigbset .
(which right coset ?)
Now g=geegN and g=-egeNg deN
ThusgN and Ng have a common element , hence must be anti
ThereforegN = Ng
= gNgl1=Nggt=N
HenceN is normal. (using previous theorem )
Theorem 6.04:A subgroup N of G is normal inG if and only if the
product of two right cosets ( or left cosets pgain a right coset (or left
coset )
Proof: Let N be normal inG
Let Na, Nb be two right cosets oV
Now ,NaNb = N(aN)b = N(Na)b {Na =aN as N is normal

HANNab = Nab

Conversely: suppose that the product of any two right coset¥ & again a
right coset ofVv.

Then NaNb is a right coset oN. ( note here we cannot claim yet that
NaNb = Nab )

Also ab = (ea)(eb) e NaNa andab = e(ab)eNab
ThusNaNb and Nab are two right cosets having common elements
Therefore NaNb = Nab

Now LetgeG and neN
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Thengng™! = (eg)(ng™!) eNgNg™' = Ngg ™ =Ne=N
i.egng~leN , therefore N is normal

Example: Recall the symmetric group; of degree . We present again below
its table

° e b1 | &2 | P3 X | ©
e e b1 b2 | &3 X |W

e X w P b3
b2 P w e X b3 2
b3 b3 X w e 2 P
X X ¢3 b1 P w e
w w ) b3 b1 e X

Consider the subgroufl ={e,y,w}
We shall calculateghg™! for each g€ S; , he H
For g=e,y,w itis clear that ghg ' € H for anyh € H ase,y,w

are elements ofH

Forg = ¢1, ¢z, ¢3

We have sxds ™" = ($s1)hs = 13 = w
ps0p3"" = (p30)h3 = a3 = X

baxdz " = (92002 = P32 = w

br0py " = (prw)py = P12 = x

Pp1xp1 " = (P10)b1 = P21 = @

prwp; " = (p10)p1 = p3py = x

Thus we have seen thghg ' € H forany g€ S; , he H

Therefore H={e , y , w } is a Normal subgroup of S5

We state and prove below another useful theoretrctrasometimes determine
whether a subgroup is normal .
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Theorem 6.05:If G is a group andl a subgroup of index 2 i, prove that H
Is a normal subgroup of G.

Proof: SinceH is of index 2, there are only two st left cosets
and only two distinct right cosets.

Let H and Ha be the right cosets H andaH be the left cosets
Then G =HuUaH and HnaH =0

=>aH=G6G—H - (1)
Similarly , Hao = G — H --------- (2)
ThereforeaH = Ha showing that H is normal.

Example: Prove that if K is a subgroup of a groug such thatg? ¢ K,
Vgea,

thenK is normal inG.

Solution: Let geG
>g1leG

= (g% = g% e K using given condition .

Let k eK
>k leK
>k 1g7? €K

Also (gk) e G=> (gk)? eK V g €G

Now (gk)? (k™tg™2) € K
= (gkgkk g ) eK
= gkg ! €K

Hence K is normal inG
Using this theorem in the previous example Hot {e, y,w } ,

we haveo(H) = 3 ,0(53) =6
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ThereforeH is of indexg =2 inS; and as suchH is normal.

Theorem 6.06:The intersection of any two normal subgroups gfaup G is a
normal subgroup of G.

Proof: Let G be a group
Let H , K be two normal subgroups of G

Leta,b eHNK

=>abeH anda,bekK

As H and K are subgroups we have
ab™leH and ab™?! €K

>ableHNK

ThereforeH N K is a subgroup of G

Let ge G ,ne HNK

=>ne H and nekK

As H and K are normal in G we have
gng e H and gng™! € K

=>gng e HNK.ThusHNK is normal in G

Normalizer : LetG be a group and a subgroup ofG . The normalizer off
denoted by (H) istheset N(H)={g€G | gHg ' =H }.

Proposition: The normalizer of a subgroup @f is a subgroup ofG .

Proof. LetH be a subgroup @ .

We have N(H) ={g€G | gHg ' =H }

Letx,y € N(H)

ThenxHx ' =H , yHy '=H= y'Hy=H

Now (xy DH(xy D™ = (xy DH@yx™") =x(y'Hy)x ' =xHx™' =H
= xy~ 1 € N(H)

HenceN(H) is a subgroup af .
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Note From the definition of the normalizer , it is atethatH is always a
normal subgroup ofN(H).

Also If H isnormal inG thenN(H) =G .
Multiplication/Addition of cosets of normal subgroups

Let G be a group ant¥ a normal subgroup ofi . For two coset&a, Nb of
N we define the multiplication d&a)(Nb) = Nab

We first show that this multiplication of cosets N is well- defined
namely — ifNa = Nx and Nb = Ny then NaNb = NxNy
To prove this ,

We have Na = Nx = ax e N > ax ! =neN = a = nyx
Similarly Nb = Ny = b = n,y for n,eN

Now NaNb = N(n;x)N(n,y) = (Nny)x(Nn,)y = NxNy as n,,n, € N
We can translate the above definition to additisn a
(N+a)+(N+b)=N+(a+b)

with these definitions , we an proceed to the hexic .

Factor Group/Quotient Group

Definition: LetG be a group andN be a normal subgroup 6f. Let %

be the collection of all distinct right (dreft) cosets of Nin G.
l.e %= {Ng :geG } or % ={N + g : geG } for an additive group G

Then % IS a group under cosets multiplication . Thgsoup is called a
guotient group or Factor group of G by N.

Proof: *Let Na, Nb be two rights cosets of N. As N is normae have
NaNb = Nab is aslo a right coset of N.

l.e Na, Nb e% = NaNb = Nab € % . So the closure property holds .
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* If Na, Nb,Nc e% then(NaNb)Nc = NabNc = Nabc = (Na)(Nbc) =
(Na)(NbNc)

Therefore the associative property holds .

*We haveee G = Ne=N e%

and(N)(Na) = NeNa = Nea = Na = Nae = NaNe = (Na)(N)

ThereforeN = Ne is the identity element.

Lastly , if aeG then a™leG
thereforeNa e = Na~' e
N N
and NaNa™! = Naa ! = Ne =N = Na'a = Na !Na
showing thatNa~1 is the inverse ofNa in %
G .
Henceﬁ IS a group.

Theorem 6.07:If Gis a finite group and N is a normabgwup of G
then

()28

Proof: Letn be the order oy and m be the order of N.

Let p be the index ofNin G. ( index of N is the number of distinct
right cosets of N in G)then( )=p.

G

N
Also we know that ifNg; , Ng, , Ng3, --*Ng; ,~--Ng, are thep distinct
right cosets ofVin GthenG =Ng, UNg, UNgz U ---UNg; U--UNg,
so that n=0(G)=0(Ng,)+0(Ng,) +0o(Ng3)+ ---+0o(Ng;) + -+
o(Ng,) as eaclNg; are disjoint .

Sinceo(N) = m thereforeo(Ng) = m

from above we have=mp or p=_ ie o (G) _ o)

N) T~ o)
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Example: Examine the elements of a grouEZE where Z is the set of

integers and4Z is the set of all integers which are multipté 4. ( or
47 = {4x:xeZ }

Ans: We first note thatZ is a group unde#- .

Hence any element if-zr is of the form4Z + z where ze Z .

Nowz €eZ = z=4kor4k+1 or 4k+2 or 4k+3
Thus4Z +z=4Z+4k=4Z as 4ke4Z

or4Z +z=4Z+@k+1)=@AZ+4k)+1=4Z+1
ord4Z+z=4Z+ (4k+2)=4Z +2
ord4Z+z=4Z+ (4k+3)=4Z +3

Hencef—z has four elements i.4eZZ- ={4Z, 42+ 1, 42+ 2,42+ 3 }
As seen above we can generalize the stateamnt

If mis any positive integer, theﬁg hasm elements
namelymz, mzZ+1, mzZ+2,---- , mZ+(m-—1).

Product/Sum of Two Subgroups

LetH,K be two subgroups of . The product of H and K is a set define as
HK = {hk:heH ,ke K }

The Sum is defined a# + K = {h + k: heH ,ke K }
Note that HK is a subset ot

Result: Let H be a subgroup ofG . Then HH=H (orH+ H = H for
additive group )

Proof: heH = h = eheHH = H € HH And xeHH = x = h;h,eH
for h,,h, e H andH is closed.

Theorem 6.08:If H and K are two subgroups of G thHK is a subgroup of
G ifand onlyif HK =KH
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Proof: Supposé{K is a subgroup of G.
To show thatKH = HK
Let xe KH.

Thereforex = kh for some heH and keK
Now k = ek € HK and h = he € HK
SinceHK is closed being a subgroup

we havex = kh € HK.

Thus ,KH < HK.

Now let y e HK

As HK is a subgroup , we have leHK
Lety™* =hk :heH ,keK

Nowy = (y )t =(hk)"t =k th ! eKH
This shows thaHK < KH.

Hence ifHK is a subgroup of, then. HK = KH

Conversely supposédiK = KH. We will show thatHK is a subgroup of
G.

Let a,b € HK, saya = hjk; and b = h,k, where h;,h, € H and
ki, k, € K.

NOW ab_1 == (hlkl)( hzkz)_l = hlklkz_lhgl == h1k3h2_1 {Whel’e k3 ==
kik;'leK

Also k;h;'eKH = HK => kyh;'eHK

= k3h,! = hyk whereh;eH , keK

Thereforeab™ = h k3h,;! = hjhsk = hk eHK { h = hyh;eH
HenceHK is a subgroup of

Theorem 6.09: Let H be a normal subgroup of a grodp and K be any
subgroup ofG.

94



Chapter 6: Normal Subgroups and Direct Products

ThenHK = {hk |h € H,k € K} is a subgroup d&.

Proof: If x,y € HK thenx = hk,y = hjk; where h,h, €H , k,k; €K
Now xy~1 = (hk)(kithiY) = h(kk; YRt = h(k,h,) wherek, = kk;t €
Kandh, = h;i! € H

= h(kzhzkz_l)kz

= h3k, € HK

where k,h,k;* € H asH is normal andch; = h(k,h,k;1)

HenceHK is a subgroup of .

Internal Direct product: LetG be a groupH, K be normal subgroups af .
We say that; is the internal direct product ¢f andK if ¢ = HK and
HnNK = {e}.

If G is the internal direct product df and K we shall writeG = HQK

Example: Consider the Klein's 4- groupG ={e,a,b,c} and the two
subgroupsH ={e,a}, K={e,b} . Being an abelian group , both these
subgroups are normal atfin K = {e} Also we have ¢ =ee, a =ae,b =
eb, c=ab

i.eG = HK

External Direct Product

Let G4, G,, ..., G, be afinite collection of groups. Tlexternal direct produadf
G1,G,...,G, denoted byG, X G, ........X G, , is the seDf all n-tuples for
which the i*® component is an element @f; and the operation is
componentwise.

In symbols,G; X Gy ... ... X G, = { (X1 ,X3 ,X3, .. Xp) * X; € G; }

Theorem 6.10:Let G4, G5, ..., G, be a finite collection of groups. The external
direct product G; X G, ........X G,, is a group under the operation of e&gh
componentwise with(e, ,e,,....e,) as identity element ( where is the
identity element inG;) and (a;!,a;?!,....a;!) as the inverse of
(aq,ay, ... a,,) As the proof is straight forward , we leave thisaasexercise

Proposition: Let G = G; X G, ........X G,, be the external direct product af
finite groups. The order @ is the product of the orders of eagh
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Le |G| = |G4]|Gy]| ... |Gyl

The proof is not required as it is a direct countri elements in the product of
sets.

Example: The setR xR ={(x,y):x,y} €R } is the direct product at
with itself .

We can easily verify that this is a group under ponentwise addition.

Example: The setR’' xR’ = {(x,y) | x,y € R} whereR’ is the set of non
zero real numbers |, is a group under componentwiggplication.

Example: The setG = Z, x Z; = {(0,0),(0,1),(0,2), (1,0),(1,1),(1,2) }
under the componentwise operation ( addition n2odor the first coordinates
and addition mod 3 for the second ) is a groupe Rave (0,0) as the identity
element(0,1) x (0,2) = (0,0) etc ..

Example: The groups Z, X Zg , Z, X Z,, Z,c are each or ordet6 .
Order of an Element in a Direct Product

Let G = G; X G, ........X G, be the external direct product of a finite numbter
finite groups . Ifg = (91,92, .-9n) € G then the order ofg’ is the least
common multiple of the orders of the components.

i.elgl =lem (|g4l, 1921, - 1gnl)

Proof: Lete; be the identity element 6f so thate = (eq,e,,...e,) IS the
identity element ofG .

Foreach =1,2..n. Letm; be the order ofg; and

let m = lem {m,; ,my,,....m,}

As m is a multiple of eachn,; , itis clear that

9" = (91,92 - 9)" = (91", 97 - gn') = (en,ez,..en) =e
Next we need to show thgt #e for0 <m, <m
Supposeg™e =e and0 <my <m

Then g/* =¢; foreachi =1.2....n
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Sincem is thelem of theg;s and0 < my, <m , therefore . there is atleast
one’i’ where
m, IS not divisible bym; .

sothat my =mig+r with0o<r <m;

m;q+r
i

_ miq r __ r o
=€ =9, 9 =€ = g =¢

Now g;;* =e; = g
This is a contradiction ag; is of oderm; and0 <r <m;
Henceg{' +# e foranymy, € Z where0 <my <m
Therefore|g| = m = lem of the orders ofg;s

Example: Let G =Z, X Zg X Zg

Let g = (2,4,6)

We have2 € Z, and|2|=2 since2x 2 =4 =0mod 4
Similarly4 e Z, , |4|=3 and 6 €Zg, |6| =4

lem {2,3,4} = 12

Thereforelg| = 12

Example:Let G =V xZ, XS;  wheré/ is the Klein’'s 4-group .
Letg = (a,2,w) wherew = (1 3 2)

We havelal =2, 12|=2 ,|w| =3

Thereforelg| = lem {2,2,3} =6

Example: LetG = Z, X Z,

Then G ={(0,0), (0,1),(0,2),(0,3),(1,0),(1,1),(1,2), (1,3)}

It is easy to see that

(0,0 =1, [(OLD]=4, [(0,2)|=2,[(03)] =4

(Lol =2, [ALDI=4, |(1,2)|=2,[13)] =4

SinceG is of order 8 and non of its elements arerder 8, thereforé is
not cyclic. We demonstrate below a similar exantpiecyclic.

Example: Let ¢ =75 X Z,
Then
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G ={(0,0),(0,1),(0,2),(0,3),(1,0),(1,1),(1,2),(13),(2,0),(2,1),(2,2),(2,3)}
We have(0,0)] =1, [(0,1)]| =4, |(0,2)|]=2,](0,3)]| =4

(LO) =3, (LDl =12, [(1,2)] =6 ,(1,3)] = 12
20) =3, (2Dl =12, [22)|=6,1(23)] = 12

SinceG is of order 12 and there are many ( at least)oelements of order
12 .Henceg; is cyclic.

We present below a theorem that state the conditnmier which the external
direct product of two groups is cyclic , the gwot for any finite number of
groups can then just be generalized by induction.

Theorem 6.11:Let H andK be finite cyclic groups. TheH X K is cyclic if and
only if |[H| and|K| are relatively prime.

Proof: Let |H| =m, |[K|=n and letH = (h), K = (k)
l.,eh and k are generators off andK respectively .

and|lh| =m,|k|=n

Assume thatH X K is cyclic .

It is clear tha(h, k) generatedH X K .

Since |H X K| = mn , we must havg(h, k)| = mn

mn
Also |(h, k)| = lem{m,n} = gcd{m,n}
Thus we havenn = ——
gcd{m,n}

= gcd{m,n} =1 i.e m andn are relatively prime .
Conversely , assume than andn are relatively prime.
Then |(h, k)| = Ilem{m,n}=mn

Since|lH X K| = mn

We conclude thatH X K is cyclic .

We continue below from the previous example aboweetify that
if H=<(h), K =(k) then(h, k) isageneratoro XK .

Example: Let G =75 X Z,

98



Chapter 6: Normal Subgroups and Direct Products

={(0,0),(0,1),(0,2),(0,3),(1,0),(1,1),(1,2),(1,3),(2,0),(2,1),(2,2),(2,3)}
Here Z; = (1), Z, = (1)

To verify that(1,1) is indeed the generator, you can check its ordgg ix Z, :
(1D =(11)

(1,1)* = (2,2)
(1,1)° = (0,3)
(1L,1)* = (1,0)
(1L1)° = (21)
(1,1)°=(0,2)
(1,1)" = (1,3)
(1,1)% = (2,0)
(1,1)° =(0,1)

(1LY =(1,2)
(LD =(23)
(1,1 = (0,0)
Which clearly show that all elements df; x Z, are generated by1,1)

Exercises

1. Verify that the subgroupH,, H, , H; of order 2 are not normal subgroups
of the symmetric groug; .

2. Determine all normal subgroups of the cyclic gr?ju;) :

3. LetH = {(? 2) : a,c,d ER ,ad #0 } Show thatd is a subgroup of
GL(2,R) .
Is H normal . Conclude the result fkir= {(

0 }.

4. LetH be a subgroup of a gro@. Show that the normaliz&(H) ofH is
the largest subgroup af whereH is normal.

a b

3 d) . abd €R ad #

5. Show that the commutator subgroup of a gr@éups normal inG.
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6. For two subgroupf andK of an abelian groug , show that
HK ={hk|h € H ,k € K} is asubgroup af .

7. Give an example of a grodp and two subgroupd andK where
HK is not a subgroup .

|H||K]
[HNK]|

. If G is afinite group an#l ,K are subgroups @, then |HK| =

. Let G4,G,,...,G, be a finite collection of groups. Prove that t heenal
direct product

G, XGy.......X G, IS a group under the operation of ea6h
componentwise .

10.Suppose H is the only subgroup of ordéH) in the finite group G.
Prove thatl is a normal subgroup @f.
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Chapter- 7

Group Homomorphism

Introduction

In this chapter, we shall be discussing about stype of functions from a
group to another, that satisfy certain conditiomd preserve some of the group
features. We assume that readers are aware iofdesiition and features of
functions.

Definition: A mapping¢ from a group (G,*) into a group (G',*') called a
homomorphism if for alt ,b € G we haveg(a * b) = ¢p(a) * '¢p(b)

We shall omit the notation fer and+ ' and write ¢p(ab) = ¢p(a)p(b) but
it must be understood that product,b € G so the operation between and
b is the operation offwhile the operation betweenp(a) and ¢(b) is the
operation inG’ .

Definition: Two groups ¢ and G’ are said tobe homomorphic if there
exists a homomorphism between them.

Definition: LetG,G' betwogroupsx € G,y € G' ,H<G ,K <G' .Then

(i) The image of'’x’ underf is anelement = f(x) € G'.

(i) The image off under f isthe sef(H)={y€G'| y= f(x) for some
xX€EH}.

(iii) The inverse image dfy’ under f is the set
1) ={x€G |f(x) =y}

(iv) The inverse image &f underf is the set

frE)={x€G | f(x) EK }

Note: Let A, B,C be three groups andf:A—-B ,g:B—-C be
homomorphisms.

Then the compositioig o f):A - C is a homomorphism

Proof: Let x,y€ A

(o Ny =g9(fxy) =g(f)f ) =9(f®) 9(fB»))
=@°flx) (g H)
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Chapter 7: Group Homomorphism

Therefore(f o g) is a homomorphism.

Eg 1: Let ¢ and G' be two groups with identity elementsand e’
respectively.

The two functions f: G - G’ where f(x) =e’' VxeGandI:G —» G given
by I(x) = x Vxe G are homomorphisms called trivial homonmism

Proof: For a,beG we havef(a) =¢', f(b) =¢' ,f(ab) =¢'
Thereforef(ab) = e’ =e'-e' = f(a) - f(b)

Eg 2: let G be a group of all real numbers under #@mitand let G' be
a group of non zero real numbers under multipbca. Show that the map
¢:G - G' defined by ¢(x) =2*is a homomorphism .

Proof: We have ¢(a + b) = 24t = 2920 = ¢(a) - ¢(b)

Eg 3: Let G be the group of integers under addition. A funcifed — G given
by f(x) = 2x is a homomorphism.

Proof: We havef(a+ b) =2(a+b) =2a+2b=f(a)+ f(b)

Eg 3:Let G be a group of all2x 2 invertible real matrices(ccl Z)
under matrix multiplication and?’ a group of all non-zero real numbers

under multiplication . A mapf:G — G’ define byf(ccl Z) = |(Ccl Z)| IS

a homomorphism .
Proof : For A,B € G

f(AB) = |AB| = |A||B| = f(A)f(B)

Lemma: Let G be agroup and N a normal subgrobtis .

A mapf:G —>% given byf(x) =Nx is a homomorphism of G or;%o
Proof: If Xe% thenX = Nx wherexeG

l.e x = f(x) sothatf is onto.
Also If a,be G we havef(ab) = Nab = NaNb = f(a)f(b)

Therefore fis a homomorphism of G onl%o
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Theorem?7.01(Identity Preservation) : Le¢p be a homomorphism of into G'.
Then ¢p(e) = e’ where e, e’ are the identity elements off and G’
respectively

Proof: We haveg(e)p(e) = ¢p(ee) = ¢p(e) = ¢p(e)e’

By left cancellation law we haveg(e) = e’
Theorem 7.02:(Inverse Preservation) : Lep be a homomorphism of; into

G'. Theng(a™?) = (qb(a))_l for anyaeG

Proof: Forae G
We havep(a)p(a™) = ¢p(aa™) = ¢p(e) =€’
Multiplying by (¢(a))”" from the left we have

dpa™) = (p(@)

Theorem 7.03:Let ¢ be a homomorphism of into ¢’ and letg € G .
If g is of finite order then the order ¢{g) divides the prder of .

i.e o(¢(9))lo(g)

Proof: Leto(g) =n
Now (¢(9))" = (g™ = p(e) = e
= o(¢(g))In

Definition: If ¢ is a homomorphism of: into G, thekernel of ¢ is

defined by Ker(¢) ={xeG: ¢(x) =e'} wheree' is the identity element
of G'. (Note : the kernel is never empty as the identity elenig in the
kernel)

Example: For a mapf:G — G’ define byf (a b) = |(a b)| whereG is

c d c d
the set of invertibl@ x 2 real matrices an@’ the set of non zero real numbers,

the kernelisgivenbif{ ={A€ G : |A|=1}

Theorem 7.04:Let ¢ be a homomorphism of into G’ with kernel K.
Then K is a normal subgroup 6f

Proof: Let a,b €G
Then ¢p(a) = ¢p(b) =€’
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> ¢ = (o)) =et=¢

Now ¢p(ab™1) = p(a)p(b™!) =e'e’ =€

>ab lek

ThereforeK is a subgroup of G

Let keK andgeG

Then ¢(gkg™) = p(9)p(I$(g™) = p(gle'd(g™) = $(9)(¢(9) =

e

Thereforegkg™! e K
Hence K is normal in G

Theorem 7.05: Let¢p: G - G' be an onto homomorphism with kernel K
andy € G' . The set of all inverse image of in G is given by Kx, =
{kx,: ke K} where x, is any particular inverse imagewf i.e ¢(x,) =

y.

Proof

Let aep 1(y) thengp(a) =y

Now a = (axy;1)x,

and ¢(axy?) = p(@)dp(xp ") = p(@)(Pp(x) ™D =yy ' =¢
=S axg! €K

Hencea = (axy)x, € Kx,

Therefore¢p~1(y) € Kx,

Conversely, let be Kx, then b=kx, : ke K

Now ¢(b) = ¢p(kxo) = p(K)p(xg) = e’y =y as
ke K,p(k) =¢'
=>bedp " (y)

= Kxy, S¢'(¥)
henceKx, = ¢ 1(y)
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Isomorphism

Definition: A homomorphismp : G — G is called an isomorphism ¢f is
one-one and onto .

Definition: Two groups ¢ and G’ are said tobe isomorphic if there exists
an isomorphism between them .d4f andG’ are isomorphic , we write
G=G' .

Theorem 7.06: An onto homomorphism¢ : G - G' with kernel K is an

isomorphism if and only ifK = {e}.

Alternatively, a homomorphism¢ : G - G’ with kernel K is one-one if and
only if K = {e}

Proof: Let ¢ be an isomorphism . Therefore is 1-1 .

Let x e K . Then ¢p(x) =¢e'. Also ¢(e) =e’

As ¢pis 1-1 we haver =ei.e K ={e}.

Conversely , Let K = {e}

Let x;, , x, ¢ G such thatg(x;) = ¢p(x,)

now ¢(x1) = ¢ (xz) = p(x)(P(xz)™") =€’ = d(x)Pp(xz; ") = €’
= p(x; D) =e' 2 xx;0 € K= {e}

Sxx,l=e>x =x,

Hence ¢ is one-one.

Cayley’s Theorem:Every group is isomorphic to a group of permutagion

Proof . LetG be a group .

Forg € G , letT,:G —» G be amap defined by,(x) =gx Vx€G

If T,(x1) = Ty(xy) forx; ,x, €G

Thengx; = gx, = x; = x, , Sol, is one-one.

Foranyx e G ,wehavey =g™'x € G andT,;(y) =gy = g(g™'x) =x

showing thaff, is onto and so a permutation®n.
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Also T,,(x) = (ab)x and (T,°Ty)(x) = Ta(Tb (x)) =T,(bx) = a(bx) =
(ab)x
=T =TgTy oo, (1)
Now letG' ={T, : g €G }
Define f:G - G" by f(g) =T,
We have ,f(a)=f(b)=>T,=T,>T,(e) =Ty,(e) >a=>b
So,f isone-one.
f isclearlyonto sincg, e¢'>yeG=> f(y)=T,
Finally ,for a,b € G we have f(ab) =Ty, = T,T, = f(a)f(b)
This completes the proof thAt is an isomorphism .

SoG is isomorphic toG’ .

** let A, B,C be three groups and f:A-B ,g:B—-C be
Isomorphisms.

Then the composition(geo f):A - € is a isomorphism.

Proof: The composition of two homomorphisms is anbmorphism
therefore (fog) is a homomorphism. Also the composition ofediive
functions is a bijective functions, There&fdif - g) is 1-1 and onto
Hence (f o g) is an isomorphism

Theorem 7.06:Letf:G - G' be an isomorphism. Thefi~l:G' > G is
also an isomorphism.

proof: Let y,z€e G’

Since f is an isomorphism so onto , therefore dhexist a,b € G

such that
fl@=y,f(b) =z
Now

1oz = (f@f 1) = f(f(ab)) = ab = f(f(@) f(fB)) =
7O (@
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Therefore f~1 is a homomorphism
Also we know that the inverse of a bijeetifunction is bijective ,

thereforef~1 is an isomorphism .

Theorem 7.07:If ¢:G — G' be an isomorphism , then

() ¢(e) =e’'. (Isomorphism preserves identity ).

(i) ¢(a™) = (p(a)"

(iii) If a € G is of finite order ther(a) = o(¢p(a))

Proof (i) and (i) :¢ is a homomorphism and sg(e) =e’, ¢ (a™) =

(p@)".
Proof (iii) : Leto(a) =m , o(gb(a)) =n
Thene' = (¢(a))" = ¢(a™) = p(e)

As¢ is 1-1 wehaveq™ =e .Sincea(a) =m

Thereforem|n

Also (¢(a))" = ¢(a™) = p(e) = €
Since o(¢(a)) =n we have n|m

Hencem =n .

Theorem 7.08:1f ¢ : G » G' is an isomorphism thenG = (a) © G' =
(¢(a))

To prove G = {(a) = G' = (¢(a))
Let y e G'. Theny = ¢(a) : x €G .

But x = a™ for somem .

=y = ¢(a™) = (p(@)"
= G’ = (p(@))

Conversely to proves’ = (¢p(a)) = G = (a)
XEG>p(x)EG = ¢px)= (cj)(a))n for some n .
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= ¢(x)=¢(a?) >x=a" as ¢ isone-one.
= G =(a)

Theorem 7.09: Let ¢ : G - G' be an isomorphism g € G . For a fixed
integerm , if the equationx™ = a has a solution inG then the equation
x™ = ¢(a) has the same number of solutionsdh asx™ =a .

Proof: If x, € G is a solution ofx™ = a then(¢>(x0))m = p(xM™) = ¢p(a)
Thereforep(x,) is a solution ofx™ = ¢(a) .

Theorem7.10: ( Isomorphism preserves commutativity ).
If G andG’ are isomorphic thert is abelian if and only ifG’ is abelian .

Proof: ¢: G —» G' be an isomorphism .

LetG be abelian .

Lety,ze G' .As ¢ isontoy = ¢(a) ,z=¢(b) ,a,bEG
xy = ¢p(a)p(b) = ¢p(ab) = ¢p(ba) = p(b)p(a) = yx

= (' is abelian .

Conversely ,letG' be abelian .

We havep(ab) = ¢p(a)p(b) = ¢p(b)¢p(a) = ¢(ba)
As ¢ is one-one we haveb = ba

HenceG is abelian .
Theorem 7.11:( isomorphism preserves cyclicity ) .
If G andG’ are isomorphic ther& is cyclic if and only if G’ is cyclic .

Proof : ¢: G — G’ be an isomorphism .

Let G = (a) be cyclic generated By’

Lety e G' .Byontoofp ,y=¢(x): x€G.
Butx = a™ for some integen .

Therefore y = ¢p(x) = p(a™) = (gb(a))n
ThusG' is cyclic generated hg(a) .
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Conversely, letG' = (b) be cyclic generated b’ .
Sinceb € G' , byontoofp , b =¢(a) foraeq.
Let g€ G .Thengp(g) €G' = ¢(g) =b™
= (¢(a))" = ¢p(a™) for some integern
As¢pis1—1 we haveg = a™ showing thatG is cyclic generated bia' .
This theorem can also be stated as

Theorem7.12: (isomorphism preserves subgroups) .
If ¢:G — G beanisomorphism and< G, B< G’ then
¢(4A) is a subgroup aof’ and¢p~1(B) is a subgroup aof .

Proof: We shall prove the first part only namely tiigid) is a subgroup .
The second follows by consideriggg® being an isomorphism frof/ - G .

Let y,z € ¢p(A)

=>y=¢(), z=¢b) : a,b €A

=z =(p(b) =™

Nowyz ! = ¢p(a)p(b™1) =¢p(ab™ ) € ¢p(4A) asab t€A.
This proves thap(A) is a subgroup of;’ .

Theorem 7.13: ( isomorphism preserves the center) .
If ¢:G— G' be anisomorphism and(G),Z(G') be the centers o and
G' respectively . thep(Z(G)) = Z(G') .

Proof. letz € (j)(Z(G)) >z=¢x): x € Z(G)

Let yeG' =y=¢(a):a€G since¢p isonto.

Now ,yz = ¢p(a)¢p(x) = ¢p(ax) = ¢p(xa) = ¢p(x)¢(a) = zy
=z €Z(G"

Therefore¢(Z(G)) € Z(G")

Conversely , Ley € Z(G"
> vy=¢(a): a€el
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Letx € G

Theng(xa) = p(x)¢p(a) = p(a)p(x) as ¢p(a) =y € Z(G")
= ¢(ax)

As ¢ is one-one, we haverqg = ax

= a € Z(G)

=y =¢(a) € (Z(6))
= Z(G") < ¢(Z2(&))
Therefore p(Z(G)) = Z(G")

Classification of groups of order 3

Let G be a group of order 3G is cyclic as 3is aprime,

HenceG = (a) ={e,a,a?}

Consider amagf : ¢ - Z; whereZ; = {0,1,2} is a group of integers mod 3 .
defined by f(a") =7 (note f(e) = f(a®) =0

We have so defing tobe an isomorphism ( verify) .

HenceG is isomorphic toZ; .

As thisG is the only form of group of order 3, we card# that

" Every group of order 3 isisomorphic &3 "

In other words , there is only one group ( uptarisgohism ) of order 3.

Classification of groups of order 4

Let G be a group of order 4. Then G is abelian .
Foranyx € G ,x # e, we shall always have(x)| 4
Therefore p(x) =2 or o(x) =4

Case l: If o(x) =4 thenG is cyclic.
LetG =(a)={e,a,a? a’}
As above, Defineamgp: G - Z, by f(a") =r

This is an isomorphism , so that cyclic groupsoodler 4 are isomorphic td,.
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Casell: Ifo(x) =2 Vx€EG ,x#e

In this case ¢ will be of the form

G ={e,ab,c} whichis the Klein's 4 group .

We definef ;G - Z, X Z, by

fle)=(0,0), f(a) =(1,0) ,f(B) = (0,1), f(c) =(1,1)

By computation, we have f,(ab) = f(c) = (1,1) = (1,0) + (0,1) = f(a) +
f(b) and etc...sothagt isahomomorphism. Itis clear thatis 1-1

and onto.

HenceG is isomorphic td, X Z,
In other words , there are two groups ( upto isgmism ) of order 4

namely Z, andZ, X Z, .

** Automorphism is an isomorphism from a grouponto itself
Theorem/definition 7.14: Let G be a group andg € G be a fixed
element A mapl,:G - G defined by T,(x)=gxg™" is an
Isomorphism called annner automorphism.

Proof: Let a,b €G

We have T, (ab) = g(ab)g~" = (ga)(bg™) = (gag~'g)(bg™)

= (gag=")(gbg™") = T,(a)T,(b) therefore T, is a homomorphism

T,(x) =T,(y) = gxg~' = gyg™* = x =y by cancellation law

Therefore T, is one-one .
Llet yEG , sinceg € G we have g lyg €G
and T,(g"'yg) = g(g'yg)g~" =y showing thatT, is onto

Hence T, is an isomorphism
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The group of automorphisms on G :A(G)

Let G be a group. LedA(G) be the collection of all automorphisms
on G.

e A(G)={f | f:G—-G is an isomorphism }
Then A(G) is a group under composition of fummcs

Proof :

The composition of automorphisms is an aut@mem (closure property)
The identity function I:G—-G , I(x)=xVx€G is an identity
function we know that composition of functioss associative. Also the
inverse of an automorphism is an automorphis

~A(G) is a group.

7.15: Fundamental Homomorphism theorem( First Isommphism theorem)

Let¢: G — G' be an onto group homomorphism with keitiel

Then <is isomorphic td:’. (55 G’) :
K K

Proof: As¢:G —» G' is onto, every element &' has pre-image .
i.eevery element ofG' are of the formp(x): xeG

We define a functionp:% -G asyP(Kx) = ¢p(x)

We first have to show thaty is well-defined
We have Kx; = Kx, € %

= x.x; e K

= ¢p(xx;N) =e’

= ¢x)px;') = e’

= p()(p(x) = ¢
= ¢(x1) = p(x3)

= P(Kx1) = P(Kx,)
Hencey is well-defined

To Show that ¥ is ahomomorphism

We havep(Kx;Kx,) = Y(Kx;x,) as K is normal
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= p(x1x,) = p(x1)P(x,) as ¢ is a homomorphism
= P(Kx)P(kxy)
Hencey is a homomorphism .

To Show that ¥ is one-one

Let Kx, , Kx, e% such Thaty(Kx;) = ¥ (Kx,)
Now ¥ (Kx;) = Y(Kxz) = ¢(x1) = ¢p(x2)
= () (p0)  =¢'

= p(x)p(; ) =e' = p(xx;1) =€’ as¢ is a homomorphism .
> xx,t e K
= Kx;, = Kx, so thaty is one-one

Hencey is an isomorphism.
. G
e —=G'

K

For an alternative statement :
We know that if¢:G —» G' is a function, then¢: G - ¢(G) is always
onto . ReplacingG’ by ¢(G) above , we have the full proof .

7.16: Second Isomorphism theorem

Let N be a normal subgroup of G and K aeubgroup of G . Then
(i). KN=NK<G (here< stands for subgroup )
(ii). N < KN
(iii)). (NNK) <K

) K _NK
(iv). e =

Proof : (i)

Letx e KN

Thenx =kn: keK, neN

Now x = kn = (kn)e = (kn)(k™1k) = (knk~ 1)k
As K € G therefore

keK= ke G
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Henceknk™'e N as N is normal

l.e knk™*=n"eN

Thereforex = (knk™ )k = n'k e NK
Hence KN € NK

Ina similar way we can show thAtK < KN
SothatNK = KN

Now let a,b € KN

TherefOI‘ea == klnl , b == kznz : kl’ kz eK , N4, Ny € N

(ab™") = (kyny) (kony) ™ = (kyny)(nz k) = ky(nyny k;*

= kynsk;'  ( wheren; =nn;'eN )

= (kyk3 V) (konzk; )

=kn € KN (wherek = k;k;' e K , n=k,nzk;'e N as N is
normal )

i.e ab ! € KN for any a, b e KN

Hence KN is a subgroup of
Proof of (ii)

To show thatN is normal inKN we only have to show thal is a
subset ofKN

We haveneN=> n=en: eeK,h6neN

= ne KN

ThereforeN € KN

Proof of (iii)

We haveNNK < K always

Also , intersection of subgroupsis subgroup .
Let k e K andae NNK

>keG ,aeN and aekK

Now kak™le N as N is normal
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Also kak™ €K as bothk, a €K
Hencekak™ e NnK

ThereforeNN K is normal in K.

Proof of (iv)

Any element oijV—K are of the formNy : ye NK

Now ye NK = y=nk : neN , kekK
ThereforeNy = N(nk) = (Nn)k = Nk

We now define a mapgp: K —>'\;V—K

as ¢(k) = Nk
We first have to show that¢ is well defined
ky =k, eK = kkz' =e' e N= Nk, = Nk, = ¢(ky) = dp(ky)
Therefore¢ is well defined
We next show that¢p is a homomorphism
Let ky , k, €K
Theng(k,k,) = Nkik, = (Nk))(Nky) = ¢ (k) d(ky)
Therefore¢ is a homomorphism .
Again if Ny € % where y € NK
Then Ny = N(nk) = (Nn)k = Nk where neN , ke K
= ¢(k)

Therefore ¢ is onto.

To find the kernel of ¢ . ( note that identity element of

NK .
— IS N therefore

Kernel of¢p ={ke K : p(k) =N} )
Now k € Ker(¢)

s ¢p(k)=N

< Nk=N
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< keN
SkeNNK as kekK
henceKer(¢) = NNK

Using The first isomorphism theorem,

K KN
we have— = —
N NK N

KN

(Note: Statement (iv) can be written af XV
N NnK N

Notice thatKN = NK and so any element éj? is of the form

Ny: ye KN
Now ye KN = ye NK =y =nk as before )

7.17: Third Isomorphism theorem

Let N and K be normal subgroups of and N be normalinK .

—
2lQ
N~

IR

K . . G
Then; IS normal mE and

R

—~
2Ix
N

Proof: we havek € G > — C

= | =

[

N

Let a = Nky,b = Nk, e ~ wherek, , k, €K
N

Then ab™! = (Nky)(Nk31) = N(k k31 e%

Therefore% IS a subgroup of%

We now define a functiord):%e% by

d(Ng) = Kg

We first show thatp is well defined .
Let Ngl = Ngz

= 0,95 € N
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=>g,9,' € K asNCcK

= Kg, =Kg, = ¢(Ng,) = p(Ng>)

Therefore¢ is well defined

we shall show thap is a homomorphism .

We have¢p(NaNb) = ¢p(Nab) = Kab = KaKb = ¢p(Na)¢p(Nb)

Thereforepp is a homomorphism .

Again every elementol% iIs of the formKg : geG
and Kg = ¢(Ng) : Ng e~ so that¢ is onto
We proceed to find the Kernel ¢f

We haveKer(¢) = { Nx e%: ¢(Nx) = K} K is the identity element in
G

K

Now Nx ¢ Ker(¢)
< ¢(Nx) =K @KX=K(=)xeK(=)Nx6§
Thus Ker(¢) :%

Using The first isomorphism theorem ,

)

Ker(¢)

T
zlo
N

IR

=19

we have

G
=~ or
K

Y
2|x
N

Exercise
1. Let G be a group of all positive real numhamder multiplication andz’

a group of all real numbers under additidime mapf:G —» G’ given
by f(x) =log,,xis a homomorphism .
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. Show that The mag:R - R’ given by f(x)=e* is a
homomorphism wherg’ is the set of positive real numbers excludibig

. Show that I(G) the set of allinner automorphism on & inormal
subgroups ofA(G)

. Let R" be the group of positive real numbers under midagon.
Show that the mappinf(x) = vx is an automorphism &¥.

. If a groupg is isomorphic tdd, prove thatdut(G) is isomorphic tAut(H).

. Let U(16) be the group of units modulo 16. Show that
¢:U(16) » U(16) , ¢p(x) = x3 is an automorphism .

. Let¢p andy be two isomorphism from a cyclic groGp= (a) to another
cyclic groupG’ . If ¢(a) =y(a) , showthatp(x) =yY(x) V x €G
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Chapter-~ 8
Rings

In this chapter, we will introduce another algebmystem different from group
which is a two-operational system called ring.

8.1Definition: LetR be a non — empty set on which two operations dehloy
+ and are defined, satisfying the following projest

) a+b€R Vab€R

i) a+b=>b+a V ab€ER

i (a+b)+c=a+(b+c)V abc €R

Iv) Thereis an elemefdtin R suchthat + 0 = 0+ a = a Va € R

V) Va € R,thereexist—a € Rsuchthat + (—a) = 0 = (—a) + a
vi) a.b € R,Va,b € R

vil) a.(b.c) = (a.b).c V a,b,c € R

viii) a.(b +¢) = a.b + a. and (a + b).c = a.c + b.c V a,b,c € R

[Left and right distributive laws of multiplicatioover addition]
Then,(R; +,.) is called arassociative ring.

Aring (R; +,.) such thata.b =b.a V a,b €Ris called aCommutative
ring.

Aring (R; +,.) where there existt € R such thata.1 = 1.a = a, Va €
R is called aing with unity.

8.1.1 Examples of rings

1. R = (Z; +,.), the set of integers is a commutative ring wathunit
element.

2. R = (2Z; +,.), the set of even integers is a commutative rinthout
unity.

3. R = (Q; +,.), the set of rational nhumbers is a commutative nvith
unity.

with unit element.
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8.1.2 Types of rings

Definition: LetR be aringa € R, a #0 is said to be aero divisorif there
existb € R,b #0 such thatt.b = 0.

N Zs.

Definition: A commutative ringr is said to be amtegral domainif R has no
zero divisors.

1. (Z; +,.) is an integral domain.
2. (Zy, ; +m ,-m) is not an integral domain whem is composite.

Definition: If the non — zero elements of a riRgform a multiplicative group,
thenR is said to be division ring.

Definition: A commutative division ring is calledfeeld.
Definition: A non — commutative division ring is calleglkew — field.
8.1.3 Examples

1. (Z; +,.) is not a division ring.
2. (R; +,.) is afield.
3. (Q +,.) isafield.
4. (C; +,.) is afield.
5. (Z,; +,,.,),p aprime, is a field. This is an example ofraté field.
6. Considerthesét =RXR={(«a,f); a,f € R}
We define,

(a,p) = (y,0)ifandonlyifa = y andg = ¢
and 0 ,B)+(y,d)=(a+y,B+d)as addition irC .

Then (0,0) is the identity element and for
(a,p) € C,(—a,— ) € Cistheinverse.

Thus, with respect to addition defined abaves an abelian group.
Now, define a multiplication ‘. as follows:

(a,p). (7,0) = (ay— pd,ad+ fy)
The elemen(1, 0) is the unit element.
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If (a,B) =(0,0), thena? + B% = o0 and the elemer(taza il ) is the

+ '32 ’ aZ + '32
multiplicative inverse of «, ).

ThusC - (0,0) is a commutative group with respect to multiplicat
Hence,(C, +,.) is a field calledhe field of complex numbers.

The real quaternions

PutQ = {(a,b,c,d) | a,b,c,d € R}

InQ,(a,b,c,d) = (e, f,g,h)iff a =e,b =f,c=g,d =h.

Define an addition by,

(a,b,c,d)+ (e,f,g,h) =(a+e,b+ f,c+g,d+h)

Then(0,0,0,0) € Q is the identity.

For(a,b, c,d) € Q,(—a,—b,—c,—d) € Q is the additive inverse.
Thus, with respect to this additiof,is an abolian group.

Define a multiplication as follows:

Consider the elements @f as symbols of the form + ib + jc + kd =
(a,b,c,d) wherei,j,k are such that? =j2=k*= 1 and ij =k, jk =
i, ki=jij=—ji jk=—kjki=—ik.

This multiplication is not commutative.
This unit element i$1,0,0,0).

If (a,b,c,d)=(0,0,0,0),thena? + b? + c? + d? #0 and its inverse is

( a -b —-c -d )
az+b2+c2+d2’a2+b2+c2+d2’a2+b2+c2+d2 a2 +b2+c2+d?)’

ThereforeQ - (0,0,0,0) is a multiplicative non — commutative group andd¢e
(Q,+,.) is a skew — field called th&eal quaternions&

Lemma 8.1.4If R is aring, then foralh,b € R,
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If R has a unit element, then

v) (=1).a = —a
v) (-1).(-1)=1

Proof:i) If € R,a.0 = a.(0+0) = a.0 +a.0
SinceR is a group under addition, we ged = 0.
i) Weseethat (a.b + (-a).b) = (a + (—a)).b
=0.bh L,
=(—-a).b = — (a.h)
Similarly,a.(=b) = - (a.b)
) (-a).(=b) = —(a.(=b)) (by(i}))
= —(=(a.b)) (byiD)
= a.b
i) a+(-D.a=1l.a+ (-D.a=(1+(-1))a=0.a=0
=(-1).a = —a.
iy Puta = — 1in (iv) we get,
(-1).(-1) = —(-1) = 1.
Lemma 8.1.5A finite integral domain is a field

Proof: Let D = {x;,x5,........,x, } be a finite integral domain and let
X1,X5, .. ...., Xpo€ all its distinct elements.

Leta € D,a # 0.

Consider the sdtax; ,ax,, ... ....,ax, }.
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We claim that all these elements are distinct.
For if ax; = ax;
=>ax; —ax; =0
= a(xi — xj) =0
Buta =0, andD is an integral domain,
So,x; — x; = 0 giving x; = x;.
Hence the elements dtix, ,ax,, .......,ax, } are all distinct and so,
D={ax;,ax,,.....,ax, }
l.e, every element db can be expressed as; for somex; € D.
In particular,a = ax;,

We now claim thak,, is the unit element db.

Lety € D. Theny = ax; for somei,
~ yxio = (ax;)xqo
= (x;a)x;o

= x;(ax;o)

= Xxia

= ax;

=Yy
Hencex;, is the unit element.
Let us denotex;, = 1.

We can writel = ax; for somej
= x; is the universe af , sincea =0 was an arbitrary element @

Therefore, every non — zero element has an inverse.

Hence,D is a field.

Corollary: Z,, p a prime, is a field.

Proof. SinceZ, is finite, by the above lemma it is enough to jgrtvatz,, is an
integral domain.
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Leta,b € Z, such that
a.b=0anda 20
= p|ab

= plaorpl|b

Sincea # 0, p t a, and hencep|b
=b=0

Thus,Z, is an integral domain and hence a field.
Problems
1. Prove that any field is an integral domain.
Proof: LetF be afield. Letr, b € F be such that =0 anda.b = 0.

Now, a=0 anda € F implies thata™! exist sinceF is a field. So,
a.b = 0

=a (a.h) =0
=(a la)b =0
= b =0

= F is an integral domain.

2. The set M of X2 matrices over the field of real numbers is a nmth
respect to matrix addition and multiplication. Ddéss ring possess zero
divisors? Justify your answer.

0 O

0 0] Is the zero element of this ring.

Solution: The null matrix0 = [

_[1 0] p_[0 O ] .
NowA—[0 0],B—[1 0] are two non-zero elements of this ring.
l.e.,A# 0,B # 0. We have

1 0770 01_10 O07_

AB_[O 0]1 0_[0 0]_0'

Thus the product of two non-zero elements of thg 1$ equal to the zero
element of the ring. Therefore M is a ring withaéivisors.

3. Define integral domain. Prove thd, = {0,1,2,...,(n — 1)} w.r.t addition
and multiplication modulo n is not an integral demi&n is not a prime.
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Solution:  Taking n=4, we havg, = {0,1,2,3}.
We see that 2.2=0 bui#Q. HencéZ, is not an integral domain.

4. Show that the séf[i] of Gaussian integers (i.e. the set of complex rermb
a+ib, where a and b are integers) forms a ring unddinary addition and
multiplication of complex numbers. Is it an integdmmain? Is it a field?
Justify your answer in each case.

Solution: LetZ [i] = {a + ib | a, be Z, i* = -1} — the set of complex
numbers a + ib where a and b are integers.

(a)Let atib, c+id be two elements iA [i].

Then (a + ib)+(c+id)= (a+c)+i(b+d)
and (a + ib) (c+id) = (ac - bd) + i(ad + bc) , wiiare again members
of Z [i].

Thus, Z [i] is closed with respect to addition and muittakion of complex

numbers.

Further, in complex numbers both addition and mpliitation are associative as
well as commutative compositions. Also multiplicatidistributes with respect
to addition.

The Gaussian integer 0+i0 is the additive identity.
The additive inverse of a+ib is (-a)+i(-b).
The Gaussian integer 1+i0 is the multiplicativeniils.

T_herefore the_s_et of Gaussian integers is a contiveitang with unity for the
given composition.
(b)Z [i] is an integral domain
Letx,yeZ]Ji],x,y#0,x=a+ib,y=c+id
Letxy =0
= (a+ib) (c+id) =0
=(ac-bd)+(ad+bc)i=0
= ac—bd=0 and ad+bc=0
= ac=bd and ad=-bc
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= adc = -bé
= b = -b&
= o’ = -&

= d =0 = ¢ and consequently a=0,b=0
which is a contradiction since x and-\.
=~ the product of two non-zero memberZzofi] cannot be zero.

Hence/Z [i]is an I.D.

(c)Z [i] is not a field since 2=2+0i does not possasmaerse.
For if 2(a+ib)=1, this implies that 2a=1 and a=MMAjch is not an integer.

8.2 Subring

Definition: Let {R,+,.} be a ring. A non — empty subsetof R is called a
subringof R if {S,+,.}is aring.

If R is any ring, the{0} andR are always subrings &. These are known as
improper subringsof R.

Other subrings, if any, at are callecoroper subringsof R.

Theorem 8.2.1: The necessary and sufficient conditions for a normpty
subsefS of a ringR to be a subring ok are

)] ,b € S=a—-b €S
5 )

a
a,b € S=ab € S

Proof: The condition is necessary:

Let(S,+,.) be a subring ofR , +,.)

Sinces is a group with respect to addition, therefbre S = —b € S.
Leta,b € S. Thena,—b € Sandsaa+ (—b) € S

l.e a— b € S, sinceS is closed undet.

Also, S is closed with respect to multiplication.

So,a,b € S=ab € S.
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The condition is sufficient:
Suppose is a hon — empty subset Bfsuch that i) and ii) are satisfied.
Fromi)a,a € S= a—a€ S

e, 0 € S.
Now, since0 € S,a € S,

=0—a€e S

=>-a€ S
l.e , each element Sfpossesses additive inverse .
Againae S,be S=>a€S,—be S
Soa—(—b)e S (by(i))
e a+ beE S
[1 S is closed with respect to addition.
Let ,b,c € S.Thenab € S (by (ii))
Clearly, a(bc) = (ab)c

a(b+c) = ab + ac
(b +c)a = ba +ca

are true sincé cR.

Hences is a ring and s6 is a subring oR.
Theorem8.2.2: The intersection of two subrings of a riRgs a subring oR.

Proof. LetA andB be two subrings of a ring.

Clearly, An B is non — empty, sinc@ € A N B.

Leta,b € ANB.

Thena,b € A anda,b € B.

SinceA andB are subrings oR, a—b € A,ab € A anda—b € B,ab €
B.

So,a—b € ANB andab € ANB.

Hence,A N B is a subring oR.
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Remark: The union of two subrings &fneed not be a subring B8f

Definition: Let R be a ring. Thecentre of a ringR, denoted byZ (R), is
defined aZ (R) = {a eR: xa=ax forallx € R}

Theorem8.2.3: The centre of a ring is a subring oR.
Proof: Since0x = x0 V x € R, therefored € Z (R) is non — empty.

Leta,b € Z (R). Then
xa=ax andxb = bxV x €R

Now,(a —b)x = ax- bx = xa—xb = x(a—D>b)

Thus(a —b) x = x (a— b) V¥ x € R implying thata — b € Z(R)
Also, (ab)x = a(bx) = a(xb) = (ax)b = (xa)b = x(ab)
Hence,(ab)x = x(ab)V x € R implying thatab € Z(R).
HenceZ(R) is a subring oR.

Definition: Let S be a subset of a ring. Then the smallest subring &f
containings is called thesubring generatedysS.

Definition: An integral domainD is said to be otharacteristic Oif ma =
0,a #0 € D,m s an integer, them = 0.

Definition: An integral domairD is said to be ofinite characteristicif there
exist a positive integen such thaina =0V a € D.

The least suchm is said to be theharacteristicof D.
Lemma8.2.4: The characteristic of a finite field is finite.
Proof: Let F be a finite field.

Leto(F)=m, m>0

Then, a+a+--+a=0Va€eF

m—times

=ma = 0

— F is of finite characteristic.
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Lemma 8.2.5: If an integral domain is of finite characteristichen its
characteristic is prime

Proof: Let D be an integral domain of finite characterigtic

Suppose is not prime. Then

p = p1 P2, Wherep, # 1, p, # 0 andp, <p, p, <p.
Leta #0,a € D.

SinceD is an integral domaim?=0 and sincep is the characteristic dd we
have

0 = pa® = p; p,a®

=p, (az +a®+-+ a2>
p, times

= (p1a) (a+a+---+a>

p, times

= (p1a)(p2a)

As D is an integral domain, eithpfa = 0 orp,a = 0, which is not possible as
p1 <p, P2 <Pp.

Hencep is a prime.

Lemmag8.2.6: In an integral domain, the left and right cancelbat laws hold
good

Proof: Let D be an integral domain
Supposeca = xb, x#0

= xa-xb =0
=x(a—b) =0
=a—b =0
—a =b

Hence, left and right cancellation laws hold good.
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Definition: An elementa’ in a ringR is calleddempotentif a? = a.

Definition: An elementa’ in a ringR is callednilpotent if a™ = 0 for some
positive integen.

Remark: If R is a ring with unityl, then0 and1 are idempotent elements Rf
Further 0 is always nilpotent.

The elemen(g (1)) In a2 X 2 matrix ring is nilpotent.

Problems

1. If Ris aring such that? = x V¥ x € R, prove that
) x+x=0Vx €Ri.e. eachelementofR isits own inverse.
) x+y=0=>x=y
lii) R IS a commutative ring.

Proof:
1) Letx € R, then

(—x) (%) = (—%)* =—x
ant—x)(—x) = x? =x
= xXx=—X ..(*)
Hencex +x =0V x € R.
i) From i) we havec +x =0
Thereforex +y=0=>x+y=x+x
= y = x, by left cancellation law for addition i&.

lii) Leta,b € R. Then
(a+b)? =a+b

and (a+b)?> = (a+b)(a+b)
= a® +ab + ba + b?

= a+b=a+ab +ba+b
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=ab +ba=0
—=ab = —ba = ba (by (*))
Hence,R is commutative.

Definition: A ring R is called aBoolean Ringif all of its elements are
idempotent i.e., if

x> =xVx €ER.

2. Prove that the only idempotent elements in an mledgpmainR with unity
are 0 and 1. What happenrRifis not an integral domain?

Solution: LetD be an integral domain.

Letx € D be idempotent.
e, x>=x

=x°—x=0
=>x(x—1)=0

=>x=0o0rx=1

Hence, the only idempotent elements in an integpatainR with unity are O
and 1.

Let R = Z,,, thenR is not an integral domain and we see th&t 6 are
idempotent elements.

3. If R is an integral domain, then prove tlRatdoes not possess any non —
zero nilpotent elements.

Solution: Leta #0 € R. Then
a"=0 =aa"1=0=a"1=0
Continuing in this manner we get = 0 which is a contradiction.

Thus,R does not possess any non — zero nilpotent elsment
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8.3 ldeals
Definition: A non- empty subset of a ringR is called deft idealof R if

) a,b € Simpliesa—b €S
i) a € S andr € R impliesra € §

Definition: A non — empty subsétof a ringR is called aight ideal of R if

) a,b € Simpliesa—b €S
i) a € S andr € R impliesar € §

Definition: A non — empty subsétof a ringR is called andeal or atwo-sided
idealof R if

)] a,b € Simpliesa—b €S
i) a € S andr € R impliesra € S andar € S.

Remarks
1) In a commutative ring, every left ideal or righeal is a two —sided ideal.
2) Since each ideab of a ring R is a subgroup of the additive group

(R,+),0€S.

Example If R = Z be aring of integers andbe any integer, thetm) =
{nx : x €Z}is an ideal of.

Proof: Let,b € (n).Thena = nx, b = ny for some integers andy.
Nowa—bh =nx—ny = n(x—y) € (n)
Letr € R =Z. Thenra =r(nx) =rnx = n(rx)
O ra=ar € (n)

Hence(n) is an ideal ofZ.
Theorem8.3.1:Every ideal of a ringr is a subring oR.

Note The converse of this theorem is not true.
ExampleR = Q,S =Z

Theorem8.3.2: The intersection of two ideals of a riRgis an ideal oR.
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Remark: The union of two ideals of a rirRyneed not be an ideal &t
Theorem8.3.3:1f A andB are two ideals of a ring, then,
A+B = {a+b:a€Ab €B}isanideal ofk.

Proof. Leta, + b;, a, +b, € A+ B.
Then,a,,a, € A andb,, b, € B.
SinceA andB are ideals oR, therefore they are subgroups(&f +)
Thereforea,,a, € A = a;, —a, € A
andb,;,b, € B = b; — b, €EB
Consequently(a, + b;) — (a, +b,) = (a; —a;) + (b — by) € A+ B

Hence A + B is a subgroup ofR, +).

Now letr e Randa+b € A+ B

Thena € A, b € B andwe have(a+ b) =ra+rb € A+ B.
ThusA + B is an ideal oR.

Lemma8.3.41etR be a commutative ring with unity, whose only ideak(0)
andR itself. TherR is a field.
Proof: Letx € R, x # 0.
Consider the sétx = {rx|r € R}
Clearly,0 = 0x € Rx. SORx IS hon — empty.
Letr,x,mx € Rx. Then
rx — r,x = (ry — r,)x € Rx.
Also, if rx € Rx and s € R, then
s(rx) = (sr)x € Rx
And
(rx)s =r(xs) =r(sx) = (rs)x € Rx
HenceRx is an ideal oR.

Since the only ideals ok are (0) andR, we must havekx = (0) or
Rx = R.

ButRx = (0) is not possible sincke R andx=0,1.x = x=0 € Rx.
Thus, we must havex = R.

133



Chapter 8: Rings

l.e, every element @t can be written asx for somer € R.
In particular,1 € R, can be writtemyx = 1.
l.e, 1y IS the multiplicative inverse of.

Sincex =0 was arbitrary, this means that every non — zezmenht ofR
has a multiplicative inverse.

ThereforeR is a field.
Problems

1. If R is a commutative ring and € R, then prove that the sdta =
{ra:r € R}is an ideal of R.
Solution: Letr,a,,a € Ra. Then
rna—nra=(r, —1r,)a € Ra
Also ifr € R, thenr(r,a) = (rr;)a € Ra
And(ria)r = r;(ar) = r,(ra) = (r;r)a € Ra

ThusRais an ideal of R.

2. Let R be a commutative rings € R,a # 0. Let I= {x € R| xa = 0}. Prove
that | is an ideal oR. Give an example @t anda € R such that# {0}.

Solution:
(@)l is a subgroup
Letx,y€l,a € R,a# 0.

Now,

(x—y)a=xa—ya
=0-0=0
>x—y€El

(b)I is a ideal
Let r € R,x € I. Then
(rx)a=r(xa) =r.0=0

=>rx €l
Thusl is an ideal of R.
TakeR = Zg,a = 2,1 = {0, 3}.
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8.4 Ring Homomorphism
Definition: Let R and R’ be rings. A mapd:R — R’ is said to be aing
homomorphismif

@(a+b) = 0(a) + 0(b); Va,b €ER

@(ab) = @(a)?d(b); Va,b € R

8.4.1 Examples of ring homomorphism

) ?:R >R
@(x) = x is aring homomorphism.

i) @:R—->R
@(x) = 0is aring homomorphism.

i)  @0:Z>Z
@(x) = 2x is not a ring homomorphism.

Lemma8.4.2:Let@: R — R’ be a ring homomorphism. Then,

)  90)=0
i) 0(—a)=—0(a)Va€ER.

Proof: Leta € R. Then

) d(a) =0 (a+0)=0(a) +0(0)
Thus,®(0) is the zero oR'.

i) @(a) + 0(—a) =0(a+ (—a)) =0(0)=0
= @(—a) = —0(a).

Definition: Let @:R - R’ be a ring homomorphism. Then the dete
R|@(x) = 0} is called thekernel of @ and is denoted biyer® or @~1(0).

Lemma8.4.31f @ is a homomorphism & into R’ with kernelker®, then

1. ker® is a subgroup oR under +.
2. If x € ker® and r /R, then bothxr andrx are inker@.

Proof: 1. Ifa,b € ker®, then@(a) =0,0(b) =0
Thus,@(a —b) =@(a) —0(b) =0
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= a—>bE€kerd
Also @(—a) = —0(a) = 0= — a € ker®.
2. Letx € ker® andr € R. Then

B(xr) = O(x).D(r)
= 0.0(r)
=0
= xr € ker@.
Similarly, rx € ker@.

Definition: A homomorphism oR into R’ is said to be arsomorphismif it is
a one-to-one mapping.

Definition: Two rings are said to isomorphicif there is an isomorphism of
one onto the other.

Lemma 8.4.4: The homomorphisn® of R into R’ is an isomorphism iff
ker® = (0).

Proof: Let@: R — R’ be a homomorphism.
Let 0,0’ be the zero elements BfandR’ respectively.
We know thaker® = {x € R: ®(x) = 0’} is an ideal oR.
Supposé is an isomorphism at intoR’. Then® is one-one.
Leta € ker®. Then@(a) = 0'.
= @(a) = 0(0)
= a=0
Sincea was arbitrary, hendeer® = (0).

Conversely, supposeer® = (0).

Leta, b € R such thatd(a) = @(b)

= @(a) —@B(b) =0’
= @(a—b) =0
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=a—>b € kerd
=a—b =0

=a=5»>
Hence @ is one-one and therefogeis an isomorphism ak intoR’.
Problems

1. If f is a homomorphism of a ring R into a rikjwith Kernel S, then prove
that S is an ideal of R.

Solution: Givenf: R-> R’ is a homomorphism witKer f=S,
To prove: Sis an ideal oR.
Let a,b € S. Thenf(a)=0, f(b)=0.

Now  fla—b)=f(a+(=b))=f(a)+f(=b)=f(a)—f(b)=0-
0=0
Thusa—b € S.
Alsoifr € R,a € S,then f(ra) = f(r)f(a) = f(r).0 = 0,implying ra €
S andf(ar) = f(a)f(r) =0.f(r) = 0,implying ar € S ThusSis an
ideal of R.

2. Provethat any non-zero ring homomorphism fr@no Z is identity.

Solution: Let f:Z — Zbe a non-zero ring homomorphism. Since a ring
homomorphism takes 0 to 0 and 1 to 1, we have @@ f(1)=1.

Let me Z.

Case I:m is positive. Then
f(m) =f(1+1+...+1)

=f(1)+f(1)+...+f(1) (m-times)
=1+1+...+1 (m-times)

=m
Case Il: m is negative. Then m=-n, where n is positive.

Now, f(m) =f(-n)

= -f(n) , since fis a ring homomorphism
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=-n

=m
Therefore any non-zero ring homomorphism fidmo Z is identity.

8.5 Quotient Ring
Let R be a ring and an ideal ofR.

Let R/I denote the set of all distinct cosetd @f R.
i.e.,§= {a + I:a eR}
Forry+1, r, +1 € R/I, we define
) additionby(ry + D+ +1) = +1,) +1
and ii) multiplication by(r; + D(r, + 1) =y, + 1.

Theorem8.5.1 With respect to these operations defined ab&yé,is a ring
called thequotient ring of R by.

Proof. a) The operations are well defined.

LetX,Y e R/I. LetX = a, +1 = a, + I, be two representations ¥f
— a1 - a2 E I

Puta; —a, =uy > a4 = a, + uy.
LetY = b, +1 = b, + I, be two representations bf
= b; — b, €1.
Puth, — b, = u, = b; = b, + u,.

Addition: X+Y=(a,+D)+ (b +1)
=(a; +by) +1
=(a,+u)+ by +uy)+1
=(a,+by)+ (u +uy)+1
=(a,+by) +1
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Thus addition iR /I is well defined.

Multiplication :

=a.b; +1
=(a,+u)(by+uy,)+1

= (ayb, + ayu, + u;b, +ujuy,) +1
=a,b, +1

=(a,+D(b, +1)

Hence multiplication iR /I is also well defined.

b) Closure property: By the definition of operasom R/I, it is closed w.r.t
both addition and multiplication.

c) Associativity inR/I: We have
(a+D+[b+D+(c+D]=@+D+[(b+c)+1]
=la+b+c)]+I1=[(a+b)+c]+]1
=[(a+b)+Il+(c+D=[a+D+B+D]+(c+]D).
d) Commutativity inR/I: We have
(a+D+b+Dh)=@+b)+I=bBb+a)+I=0B+D+(a+]).

e) Existence of additive identity: We have=0+ I € R/l and ifa +1 € R/I,
then

O+D+(@a+D=0+a)+=a+1
Therefore]/ is the additive identity.

f) Existence of additive inverse: Let + I € R/I, then its additive inverse is
-a + I.

g) Associativity of multiplication: We have
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(@+ Db+ D(c+D] = (a+D[(be) + 1] = a(bc) + I = (ab)c + I
= [(ab) + 1(c + 1) = [(a + (b + D](c + D).
h) Distributive Law: We have
@+D[b+D+(c+D]l=@+D[B+c)+1=ab+c)+]1
—(ab+ac)+I=(ab+D+(ac+D=(@+DB+D+@+D(c+1)
Similarly, [(b+ 1) + (c + DI(@+D = b+ D@+ + (c+ D(a+1)
HenceR/I is a ring with respect to two compositions.

Proposition8.5.2: The map¢: R - R/I given by ¢ (r) = r+1 is a ring
homomorphism withker¢ = 1.

This mappingp is called thgrojection mapping

Proof. Letr;,, € R. Then
Oy tr)=0+1) +1
=+ 1)+ (@ +1)
=@ (1) + (1)

And @(ry 1y) =rr,+1
=@ +1) (r, +1)
=@ (r1) @ (r2)

ker@ ={x eR: ¢ (x) = 0+ I}
={xeR:x +1 =1}
={x eR:x €l}
=1

Theorem 8.5.3: Fundamental theorem of ring homomorphism

If R — R’ is an onto homomorphism of rings, with kerhehenR/I = R’.
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Proof. Define?:R/I > R ' by¥ (r + 1) = ¢(r)Vr €R

a) This map is well defined.
Letr; + 1,7, + 1 € R/I be such that

ntl=mr+I
=>rn—1r€el
=>¢(n—1r) =0

= ¢() — ¢() =0

= ¢(r) = ¢(rp)
>+ =¥+

~ ¥ is well defined.
b) ¥ is a homomorphism:

P[(n+D+ (n+D] = Y[ +1ry) + 1]
= ¢(n+ 1)
= ¢(r) + ¢(r2)
=¥Yn+D+¥(,+1)
And

Y[(rn+D0+ D] = P[nr, + 1]
= ¢(r112)
= ¢ ()¢ (r2)
=¥Y(r+D¥ (rp,+1)

c) Yisonto: Forany’' € R', r eR suchthapp(r) =r'.

>¥Yr+D)=9¢@) =1

d) ¥ is one-one for if
lI"(T1+I) =‘IJ(T‘2+I)

= ¢ (r) = $(12)
=¢(r) —¢(2) =0
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= ¢ —12) =0
:>T‘1—T‘2 E I
:>T‘1+I=T‘2+I

~ ¥ is an isomorphism
HenceR/I = R'.

Proposition8.5.4: (Relation between ideals of R and ideals of R/I

Let] be an ideal in a ringk and let
@.R >R/I

be the projection mapping.
e, ¢@) =r +1VreR.

Then any o1 is anideal inR if and only if@(J) = J/I is anideal inR/I.

Proof: Let/ o1 be anideal iR and@(J) = J/I.
Clearlyj/I is a subgroup ak/I.

Now leta + I € J/I witha e J and+I0 R/I.
Then,(x+1)(a+1) = xa+1e]/lasxae].
Similarly,(a+ 1) (x+1) = ax +1e]J/laxe ].
Thus,//I is an ideal ilR/I.
Conversely, assume thig! = {a + I /a € J}is anideal ilR/I. Then,
J = ¢ "1(J/D is an abelian subgroup Bf
Also, for anyx e R,a €/,

x+D(a+1) =xa+1e]/I [~ (a +1) €]/l and]/I is an ideal of
R/1]

Showing thata < J.

Similarly, ax € J.
Hence/J is an ideal oR.
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8.6 Prime and Maximal Ideals
Throughout this sectio® is a Commutative ring with 1.

Definition: An idealP in a ringR is said to be grime idealif whenever
ab € P, then either e Por b € P,P # R.

8.6.1 Examples
1. LetR = Z andP = pZ wherep is a prime.
Then,P is a prime ideal becausedb € P then,

ab = pk for somek € Z.

=p|ab

=plaorp|b (- p is a prime)
=a € pZ or be pZ

HenceP = pZ is a prime ideal.

2. Let R be an integral domain. Theh= {0} is a prime ideal inR for if
ab € P = {0}, thenab = 0.
This implies that =0 orb =0

l.e.,ae Porb eP.

HenceP is a prime ideal.

Proposition 8.6.2: An ideal P inR is a prime ideal if and only if R/P is an
integral domain.

Proof. Suppose P is a prime ideal ®f

leta =a + P, b =b + PE€R/Pbesuchthai b =0
i.e.,(a + P)(b+ P)=0+P

—=ab + P =P

=ab €P

—a€PorbeP (- P is a prime ideal)

=a+ P=P orb+ P=P
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ie.a=0o0orb=0

HenceR/P is an integral domain.
Conversely, leR/P be an integral domain and et € P. Then,
ab

+ P
= (a + P)(b + P
l.e., ab

=P

=P
= 0.
Since,R/P is an integral domain we must have

a=0orb=0
l.e,a+P=P or b+P=P
l.e.,a € P orb € P, showing thaP is a prime ideal.

Definition: An ideal M in a ringR is said to benaximal if M # R, and if for
any ideal | ofR such that M | [0 R, we have
|=Morl=R.

8.6.3 Examples

1. LetR = Z andM = pZ wherep is a prime. Theny/ is a maximal ideal of
R.

Let/ = mZ be any ideal containiny.
lL.e,pZ=MclIcR
Now,peM=pel = mZ
= p = mk for somek € Z
= m|p
—>m=1lorm=p (~plisaprime)
If m = 1,then] = R
Ifm = p,thenl = M

Showing thaM is a maximal ideal aoR.

2. If R is afield, thenM = {0} is a maximal ideal iR because the only ideals
in R are{0} andR.
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Hence, no ideal ak exceptr properly contain$0}.

Proposition8.6.4: Let R be commutative ring with 1. An ideMl is a maximal
ideal if and only if R/M is a field.
Proof. Let M be a maximal ideal.
To show:R/M is a field.
Let//M be any ideal okR/M, where/ is an ideal oR containingM.
l.e.,M cJ cR.
SinceM is a maximal ideal, = M or] = R.
i.e..J/M = {0} or J/M = R/M
Hence,R/M is a field.
Conversely, leR/M be a field.
To show thaM is a maximal ideal.
Since,R/M is a field, the only ideals &&/M are{o} andR/M itself.
Let M — ] be any ideal.
Then,J/M is an ideaR /M.
—=J/M = R/M or J/M = {5}
l.e.,] =R or ] =M.
Hence M is a maximal ideal.

Corollary: If R is a commutative ring with 1, every maximal idealR is a
prime ideal.

Proof: LetM be a maximal ideal IR.
ThenR/M is a field. Proposition8.6.4)
= R/M is an integral domain
= M is a prime ideal.Rroposition8.6.2

Note: The converse is not true:
Forexample iR =7, I = {0} is a prime ideal which is not a maximal ideal.

Corollary: If R is a finite commutative ring, then every primeatef R is a
maximal ideal.
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Proof. If P is a prime ideal oR, then

R/P is an integral domain which is finite
= R/Pis afield (sinceR is finite, so isk/P)
= P is a maximal ideal.

Problems

1.

Consider the ring of integei In this ring5Z = {5k: k € Z} is an ideal of
Z. How many distinct cosets are there in the quotiery Z/5Z7? Is this
guotient ring a field? Justify your answer.

Solution: We have
0+5Z=5Z={..,—15,-10,-5,0,5,10,15, ...}
145Z=1{.,—14,-9,—4,1,6,11,16, ...}
2+5Z=1{..,—13,-8,-3,2,7,12,17, ...}
345Z=1{.,—12,-7,-2,3,8,13,18, ...}
4+5Z={..,-11,-6,-1,4,9,14,19, ...}
Also, 5+45Z={..,—10,-5,0,5,10,15,20, ...} = 5Z
6+5Z=1+5Z
7+ 57Z =2+ 5Z
and so on. Thus the quotient ridg5Z has five distinct cosets.
i.e., Z/5Z = {0+ 5Z = 57,1 + 5Z,2 + 5Z,3 + 57,4 + 57}
l.e.,Z/57 = Zs

SinceZs is a field, the quotient ring/5Z is also a field.

Define maximal ideal of a ring R. Is {0} in the gnf integersZ a maximal
ideal?Justify your answer.

Solution: {0} is not a maximal ideain the ring of integerZ since
{0} c{......,—4,—-2,0,2,4, ... ... }cZ

Let R be a ring with a unit element such that= q, for all a € R. Prove
that every prime ideal of R is maximal.

Solution: Let | be a prime ideal of a ring R with unit elemé. ThenIIE IS an
integral domain.
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We need to show that | is a maximal ideal.
I.e., we need to show th%tis a field.

Leta = a + I be a nonzero element éf,where a€ER.
In the ring Ra? = a, for alla € R.
sa’=(a+D@+D=a*+1=a+1=a.
=a’—a=0.

s>al@a-1) =0.
Buta = a + I is a nonzero element G};fand ? Is an integral domain. Thus
a—-1=0
>a=1

Therefore}; is an integral domain with two elemerisynd 1.

Since a finite integral domain is a field we obtm'at? Is a field.
Hencel is a maximal ideal.

8.7 Divisibility (in an integral domains with 1)

Definition: LetD be an integral domain with identity element 1. Aengenta

# 0, a € D is calledregular element (or a unit)n D if there exists an element
b € D such thatb=1.

8.7.1 Examples

1. If D = Z, then the only units arel.

2. If F is afield, then every non-zero element isd.un particular, the units of

Q =Q—{0}
4. Letus considerthe sbt=7Z[Vv-5] = {a + Vv-5b: a,b € Z},
Define a norm ofZ [V—5] by N[a + v=5b] = a? + 5b%. Then,
) Nla+V-5b=0<a=0andb =0.
i) Forx,y € Z[v—5], N (xy) = N(x).N(y)

i) Z [v—5] is an integral domain.
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iv) All the units ofZ [V —5] are those ofx € Z [vV—5] such thatV(x) = 1
l.e., the units are¢ 1.

Proof:
1) Trivially true.
i) Supposer = a ++v—-5b andy = ¢ +V-5d € Z[V-5]. Then,

xy = (a++v-5b) (c+V-5d)
= (ac — 5bd) + (ad + bc)V—=5

Thus,N (xy) = (ac — 5bd)? + 5(ad + bc)?
= (a?c? — 10abcd + 25b?%d?) + 5[a®d? + 2abcd + b?c?]
= a®c? + 25b%*d? + 5a*d? + 5b?c?

= (a? + 5b?)(c? + 5d?)

= N(x).N(y)
iii) Letx, y € Z[v/—5] be such thaty = 0
V)

=>N(xy)=0

=>N@N((y) =0
= EitherN (x) =0orN(y) =0

= Eitherx =0ory = 0.
Hence,Z [V—-5] is an integral domain.

V) Let x = a +v—=5b be a unit. Then there exist= ¢ + V—5d € Z[V-5]
such that
xy=yx=1

= N (xy) = N(1)
=> N ()N (y) =1

This means thaV (x) divides 1.
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But, N(x) = a? + 5b? will divide 1 only if N(x) = 1 which is possible only

if b =0anda = +1.

l.e., the units arg-1.
Definition: Let D be an integral domain with unit element.df= 0 andb are
in D thena is said todivide b if there existsc € D such thatb = ac. If this
happen we say thatand c are factors ob.

We shall use the symbat/b to represent the fact thatdividesb anda t b to
mean that does not dividd.

Remarks

I. Ifa/bandb/cthena/ c.

ii. Ifa/banda/cthena/ (b+ c).

ii. If a / b thena / bxfor all xe D.

iv. If a/banda/ cthena /(ab *+ fc); a, B € D.
8.7.2 Examples
1. In=7Z, the ring of integers, 3 divides 15.

2.INR=Z+iZ={a+ib|a b € Z},(1+ 3i) divides 10 because
10 = (1 + 39)(1 — 3i).

Definition: Let D be an integral domain with unit element. Two eletsen
a,b € D;a+ 0,b # 0, are said to bassociatesf b = uafor some uniuin D.

8.7.3 Examples
1. In=Z , associates ofi arem and-m.

2In R=Z+iZ={a+iblab €Z}a=1+iv2Zand b=+v2—-i are
associates because= (—i)a and —i is a unit in R.

Definition: An elementa € D is called anrreducible elementf (i) a is not a
unit, and (ii) the only divisors & are units and associatesaof

For example, 1 — iis an irreducible elemenZ ¢i.
Solution:  Clearly 1 —iis a non-zero and non-@hment ofZ [i].

Letl—i=(a+ib) (c+di) ---- () wherelp, c, de Z
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Taking conjugate on both sides, we get
1+i=(a-ib)(c-id)----- (I
Multiplying (1) and (Il) we get
2=(E+ 1) (+d
Casel:&@+b=1andé+d =2
= (a+ib)(a-ib)=1
= a+ibis a unit
Casell: &+ =2¢+d=1
= (c+id)(c-id)=1
= C +idis a unit.
Hence 1 - i is an irreducible elementZofi].
Definition: Let D be an integral domain with unit element andhlet 0,a € D.
Thenalis said to be arime elemenbf D if whenevera = ub, whereu, bare in

D, then one ofior bis a unit inD.

Theorem8.7.4: Let R be an integral domain with unity. Show that every
prime element ok is irreducible. However, the converse need ndrie.

Proof: Letp be a prime element &.
Thenp # 0,p is not a unit.

To show: p is irreducible.
Letp = ab, wherea,b € R.

We shall prove that eitheror b is a unit.
Now,p = 1.p = ab

= p|ab

= Either p|a or p|b ( since p is prime)

If pJa= a = pr for some € R
So, p=ab

150



Chapter 8: Rings

= p=(pnb

= p(l-rb)=0

= 1-rb=0,as$0
= rb=1

= b|1l

l.e., b is a unit.

Similarly, if p|b, then we can show that a is a.uni

Hence, p is irreducible.

However, the converse need not be true. i.e., raalucible element in an
integral domain may not be prime.

Example:3 is an irreducible elementZfv—5], but not a prime element of

Z [V—5].
Problems

1. Prove that 3 is not a prime elemenfZjn/—5].

Solution: We know that[v—5]is an integral domain with unity.
Now, (2 + v/5i)(2 — V5i) = 9.

So, 3 divideq2 + V5i)(2 — V5i).

But 3 does not dividg2 + v5i) and (2 —V5i) for if 3 divides (2 +
V5i), then(2 + V5i) = 3(a + bv/5i) for somea, b € Z.

=> 3a = 2,a € Z, which is not possible.

Similarly, 3 does not dividé2 — v/5i).

Hence, 3 is not a prime elementzfy—5].

2. Find an associate of a non-zero elemei#. in
Solution:We know that 1 and -1 are the only units in theo$@ttegers.
Now, ifa € Z,a # 0. Then,

a=alanda = (—a).(—1)
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Hence, associates afarea and- a.

3. Define the term ‘associates’ in a Euclidean dom#mnZ., are 2 and 3
associates?

Solution: LetE be a Euclidean domain. Two elememt® € E ;a+ 0,b #
0, are said to bassociatesf b = uafor some uniu in E.

Addition modulo 5 Multiplication modulo
5

0[1|2 |3 |4 0|1]2| 3| 4
0/0]1]2]|3 ]| 4 O [0/]0]0]0]O
1111234 1]0 1 |0]1]2 3| 4
21213401 2 |0]2])4| 1] 3
3/13/4/0]1] 2 3 [0]3]1]4] 2
4141011 ]2]| 3 4 1041321

From the above table we see that unitZ4r= {0, 1, 2, 3,4} arel, 2,3, 4.
Now, 2=4.3and 3=4.2.
Hence 2 and 3 are associates.

8.8 Euclidean Domain andPrincipal Ideal Domain

Definition: An integral domairD is said to be &uclidean ring/ domainif for
everya # 0 in D there is defined a nonnegative intedé) such that

1. For alla, b € R, both nonzerod(a) < d(ab).

2. For anya, b€ R, both nonzero, there existr € R such thata =tb + r where
eitherr = 0 or d(r) <d(b).

For exampleD = Z, the ring of integers is a Euclidean domain éf(a) = |a|.
Definition: Let R be a ring. An ideali of R is said to be @rincipal ideal if
there exista, € R such that= {xa,/x € R} . Thena, is said to be the

generator ol and we writeA = (a,).

Example: In R = Z, the ring of integers, every ideal ofZ is of the formmZ
which are principal ideals generatedryor - m.
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Definition: An integral domairD with unit element is said to bemincipal
ideal domain (PID)f every idealA in D is a principal ideal. ie., if every ideAl
in D is of the formA = (a) for somea € R.

Theorem 8.8.1: Every Euclidean domain is a PID.

Proof: We have to show that
() Everyideal of a Euclidean domain is a principaad

(i) 1 €E,i.e., E possess a unit element.

() Let E be a Euclidean domain and let A be any idé&l.
If A =(0), then A is a principal ideal.
Let A+ (0). Let a € A, & # 0 be such that dfais minimal in A. This
Is possible because d(a) is non negative.
Now, let 0# a be another element of A. By the division aldwomtin
E,
a=tat+trwherer=0ord(r)<dfp
Now, r = a- tg € A, since A is an ideal.
Hence d (rx d (&) because d (ais minimal in A.
This show thatr=0, a=ta
Therefore every element of A is a multiple of @ad so A is a
principal ideal.

(i)  Since every ideal of E is a P.I, E g)(¥or some € E.
Now, X € E=> Xg = CX for some &= E
Let x € E, then x = yxfor some ye E
» XC = (Y%)C =Y (C%) =YX = X
Showing that c is the unit element in E.
Hence, every Euclidean domain is a PID.

Lemma 8.8.2:Let E be a Euclidean Domain and A an ideal of B.Af0, ae A
be such that d (a) is minimal in A, then A = (a).

Proof: Letx € A be arbitrary. Then by division algorithmin,3t, r €eE
such that

x =ta+r wherer=0 ord (r) <d (a).
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Now, r=x—taeA, asAis an ideal.
~d (r) < d(a)asd (a)is minimal inA.
Thus,r=0, implying thatx=ta.
Hence, A=(a.

Theorem 8.8.3In a Euclidean domain E, a g. c. d of any two el@ima and b
exists and it is of the foria + ub for somel, u € E.

Proof: Considerthe set = {ra + sb|r,s € E}

Claim1l: Ais anideal of.
Let na+sb,na+sbeA Then
(ma+sb) —(Ra+sb)=(ri+r)a+(s-s)beA
Hence A is a sub group of E.
Now, let xe E, then
X (rra+sb)=xna +xsbe A
~ Ais an ideal of E.
We know that a Euclidean Domain is a PID. Thusewdal of E is a principal
ideal.
Hence 3 d € A such that A = (d)
Clam2: disag.c.dofaandb
Since le Eanda=1.a+068A
b=0.a+1EA
l.e.,abe A
Henced x € E such that a = xe&b d|a
And 3ye Esuchthatb =ye> d|b
Thus, d|a and d|b.
Further de A= d=Xa +ud fori,ne E
Supposda some e E s.t  cla and c|b, then
cpa and glb = cpa +ub=c|d
~ disthe g.c.d of aand b.

154



Chapter 8: Rings

8.8.4 A particular Euclidean Ring Gaussian Integers

LetZ[i] ={a+ib:a,b €Z i* = —1} — the set of complex numbers a + ib
where a and b are integers.

(d)Defined(a + ib) = a® + b?

Note: ()Ifa + ib # 0,d(a + ib) > 0
l.e., ifx € Z[i],d(x) = 0ifx = 0.
(id(x) =0
(i) d(xy) = d(x).d(y)

Letx =a+ib andy = c + id € Z[i]. Then,
xy = (a+ib) (c +id)
= (ac — bd) + (ad + bc)i
Thus,d(xy) = (ac — bd)? + (ad + bc)?

= (a?c? — 2abcd + b?*d?)
+ [a2d? + 2abcd + b?c?]
= a?c? + b*d? + a*d? + b?c*?
= (a® + b*)(c* + d?)
= d(x).d(y)
(e)Z[i] is an integral domain.
Letx,y € Z[i] be such thaty = 0
= d(xy)=0
= d(x)d(y) =0
= Eitherd(x) = 0or d(y) =0
= Eitherx = 0ory = 0.
Hence ZJ[i]is an integral domain.
Note:i) The units ofZ[i] are1,—1,i,—i, i.e., they are precisely thosee

Z[i]such that
dix)=1

i) 5 is a prime irnZ but inZ[i],
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5=0+200-2)=2+DR2 -1
lii)Z[i] is a Euclidean Domain

Proof:

1) d(x) =0
2) d(x) <d(xy), x,y# 0
Ford(x) < d(x)d(y)

= dly)
3) The division algorithm:
Givenx,y € ZJ[i], there exist,r € Z[i], such that

y = tx + r where either = 0ord(r) < d(x)

Proof: We shall first of all prove this for the case wheis an integer.
Lety = a + ib wherea,b € Z.

Using the division algorithm in the Euclidean domaef integers to get
2
a = v;x + u; where either; = 0 ord(u,) < x?

2
Similarly, b= v,x + u, where either, = 0 ord(u,) < >-

Thus,y = a+ib = (vix +uy) +i(vyx +uy) = (v; +ivy)x + (uy +iuy)

where eitheti; + iu, = 0 ord(u; + iu,) = uy? + uy?

<x2+x2
2 2

2

X

= d(x)
Henced(u, + iu,) < d(x).

Now letx be any arbitrary element @fi] and letx be its complex conjugate.
Thenxx € Z, and applying what we have provedyto andxx , we get

yXx = txx + r where either = 0 ord(r) < d(xx)
e, d(yx —txx) < d(xx)
Le.d(y —tx)d(x) < d(x)d(x)
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l.ed(y —tx) < d(x)

Puttingy - tx = ry, we gety = tx + r where either; = 0 ord(ry) < d(x)

Hence/Z[i] is a Euclidean domain.

Definition: Let R be an integral domain with 1 and l@tb € R. Then an
elementd € R is said to be greatest common divisqgcd)of a andb if
l.d/aandd/b.

2. Whenevec /aandc / b for somec € R,thenc/ d.

We shall use the notatioth = (a, b) to denote that is a greatest common
divisor ofa andb.
Example:in R = Z, gcd ofa = 10 andb = —25is 5.

Lemma8.8.5: If a, be E such that a|b and bla, then a and b are assciat

Proof: alb= b =xa, for some ¥ E
bla> a = yb, for some ¢ E

Now, a=yb>a=yXaa(@l-yx)=0
= yx =1 ( a#0)
= X and y are units

Hence, a and b are associates.

Lemma8.8.6: Let d = (a,b) and let,doe an associate of d. Thenislalso a
g.cdofaandb.

Proof: d; ~ d= d = ud where u is a unit.

= d;|d and d|a> d|a.
Also, d|b= dy|b.
Now, let c|a, c|b> c|d and d|d. so cl|d
~dyisa.g.c.d.ofaandb.

Lemma8.8.7: A unit is an associate of 1.
Proof: Let x be a unit. TheB y (which is also a unit) such that
xy=1
o>x =yl
=>X~1
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Lemma8.8.8:Let a# 0, ae E , a Euclidean domain. If®E, b not a unit, then
d(a) < d(ab).

Proof: Let A = {ax | xe E}. Then by the first condition of a Euclidean daim
d(a)< d(ax) for any x E

Hence, d(a) is minimal in A.
If, d(a) = d(ab), then d(ab) is also minimal in Adaso A= (ab)
Also, ae A = a = aby for some g E

= a(l-by)=0

= by =1 (as Eisan |.D)

= b is a unit, which is a contradiction
~ d(a)# d(ab)

= d(a) < d(ab)

Lemma8.8.9: Let a# 0, ae E, a Euclidean domain. Then a is a unit if and
only if d(a) = d(2).

Proof: Let a be a unit, then"aexist and aa= 1
Now, d(1)<d(1.a) = d(a)
and d(ax d (a.d) = d(1)
d(a) =d (1)
ConverselyLet, d(a) = d(1)
If a is not a unit, then d(a) < d(1.a)

But, d(a)=d(1)
y ais a unit.

Definition: Let E be a Euclidean domain, tharandb are said to beelatively
primeif their greatest common divisor is a unittaf

Note: i) An associate of a g.c.d is again a g. c. d.
i)  Aunitis an associate of 1.

Lemma8.8.10: If albc and (a,b) = 1, then a|c.
Proof: (a,b) =1

= Aa+ub =1
= Aac +ubc =c
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Now, ajac and ajbc
=~ ajc.

Theorem8.8.11:In a P.I.D, an element is prime if and only ifsitrreducible.

Proof. LetR be a P.I.D. Sinc& is an integral domain, every prime element
of R is irreducible.

Conversely,let p be any irreducible element & Thenp # 0 andp is not a
unit.

To prove: p is a prime.

Letp|ab, wherea,b € R

Letp t a. Since(p) and(b) are ideals oR, so(p) + (b) is also an ideal ak.
ButR isaP.lD(p) + (b)) =(d) ceoeereeren.., (1)
or somed € R

From(1),(p) S (d)=>pe (@) =2p=dx  wvrvevnr.... (2)

for somex € R.
Sincep is irreducible, eithed orx is a unit.
Supposel is a unit, thend™* € Randdd ! =1 =1 € (d).
= 1€ (p)+ (b)=1=pr+ bsforsomer,s € R
>a=al=apr+abs (3)
Now, p|p = p|apr andp|ab = p|abs

Then,p|(apr + abs) and sop|a (by (3)), which is contrary to our assumption.
Sod cannot be a unit.

It follows thatx is a unit, i.e,x"1 € R .

From (2) we getl = px~1
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Leta € (d). Thena = dy for somey € R.

sa=@Px Dy=p~'y), x'yeR
=>a € (p)Va e (d)

= (d) € (p)
~ (d) = (p).
~ (1) gives(p) + (b) = (p)
= (b) € (p)
= b € (p)

= b = pt, for somet € R
= p|b

Hencep is a prime.

Theorem8.8.12: Let R be a Euclidean domain. Then every elemer iis
either a unit or can be written as the productinité number of prime elements
of R.

Proof. Let R be a Euclidean domain.

Leta € R. We will prove the theorem by induction da).

If d(a) = d(1), thena is a unit and so the theorem is true dowhend(a) =
d(1).

Now, we assume that the theorem is true fobalR such thatd(b) < d(a).
We shall prove the theorem far

If a is a prime element, we have nothing to prove.

Supposear is not a prime element. Then= b.c where neitheb norc is a unit.
Now,
d(b) < d(b.c),since c is not a unit
=d(a).
Also,
d(c) < d(b.c) =d(a) as b isnota unit

By induction hypothesis, the theorem is truelf@ndc.
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Hence,b = p;.p,.p;3 .... P, Wherep,, p,, 03, ..., p, @re prime elements andis
finite.

Similarly, c = p,".p,".p3' ....n,," Wherep,’,p,’, 035, ..., p,,” are prime elements
andm is finite.

Thereforea = b.c = (p1.p2-P3 .. ) (P - 02" 03" . D).
Hencea is expressible as a product of finite number ahprelements.

Lemma 8.8.13: Letmw € R, a Euclidean domain, be a prime element:./iib
thenm/a orm/b.

Proof: If mta = (m,a) = 1= n/b. (UsingLemmas8.8.1(Q

Theorem 8.8.14: (Unique Factorization Theorem)

LetR be a Euclidean domain ard+ 0, a non-unit element .

Suppose = p;.py.P3 ... Pm = q1-q2-q3 --- qn, Wherep;'s andg;’s are prime

elements oRk. Then,m =n and eachp;,1 <i <m is an associate of some
q;,1 <j <n and conversely eagjpis an associate of sornpe.

Proof: We havep,.p,.p3 «...Pm = q1-92-93 - - qp.-
NOW py | p1-P2-P3 -+ - Pm = P1191-92-G3 - @

= pylgj forsome 1 <j<n (byLemma8.8.13

= qj = x1p;, Wherex; is a unit.
Thus,
P1-D2-P3 - -Pm = X1P1-91-92 ---qj-1-qj+1 - qn

= P2:D3 - -Pm = X1-41-92 -+ qj-1-qj+1 - qn

We can proceed as above fgrand then withp; and so on till we finally have
1 on the LHS and a product of possibly sajya.

>m<n.

If we do these steps witf}'s we would similarly obtain that < m.
Thereforem = n.
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We also have shown that egeh1 < i <m, is an associate of songe, 1 <
j <n, and vice versa.

Problems
1. Prove that every field is a Euclidean ring.

Solution: Let F be a field.
We taked(a) = 1,Va # 0 € F.

Let a,b € F;a+ 0,b # 0.Thenab # 0, since every field is an integral
domain. Consequentlg,(a) = 1 andd(ab) = 1.

This implies thati(a) = d(ab).
Alsob#0eF>bleFandsm=(ab™)b+0=tb+r,

wheret = ab ' € Fandr =0 € F.

HenceF is a Euclidean domain.

8.9 Unique Factorization Domain (U.F.D)

Definition: An integral domainD with unit element is said to be wique
factorisation domain (U.F.Dif

1) Every non-zero element @f is either a unit or can be expressed as a product
of a finite number of prime elements.
i) This factorisation is unique up to order and asgesi
Examples: 1.R =Zisa U.F.D.
2. Every fieldF is a U.F.D.

Theorem8.9.1Every Euclidean domain is a unique factorisatiomam.
Proof: Follows from Theorent.8.12 & 8.8.14.

Theorem8.9.2: An idealA = (a,) of a Euclidean domain R is maximal if and
only ifa, is a prime element.

Proof: We shall prove that = (a,) is not maximal ifa, is not prime and
thatA = (ay) is maximal ifa, is prime.

Supposear, is not prime. Lett, = b. c, where neitheb norc is a unit.
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PutB = (b). Thena e B=AC<S B CR.

If B=A
= b€A=>Db=ayrforsomer €R

= b = bcr
=>b(l—cr)=0
>cr=1
= ¢ is a unit, which is a contradiction.
If B = R, then every element & is generated by.
Now 1 € R, therefore there existe R such thatl = bx.
= b is a unit, which is a contradiction.
Thus,A = (a,) is not maximal irR.
We now assume that, is prime.
Let U be an ideal oR such that
AC UCR.
Since a Euclidean domain is a PID= (u,) for someu, € U.
Soa, EAS U = ay, = uyx for some x € R.
Sinceaq, is prime, eithex is a unit oru, is a unit.
If uy is a unit, ther/ = R.

If x is a unit, then:~'exists and we have
apx ! =u,

> Uy €A
>UCA
A=U.

HenceA is maximal inR.
8.10 Polynomial Rings over commutative Rings
Definition: Let R be a commutative ring. Then the symbol

n

p(X) = a+ aXx+ax’+...+ax"; &, a&....aeR iscalled golynomialin x

over R.
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We denote the set of all such symbols by R [X].

Definition: INR[X],p(X)=a+ax+ ...+ax"andq(X)=b+ b, + bx + ...
+ bx™ are said to bequalif n=m and g= b for all i.

Definition: Addition in R [X]

Letp(x) =@+ ax + ... +ax ; q(x) =+ b +bx+ ... + bx" be elements in
R[x]. Then p(x) + q(X) = c(XE R[X], where ¢c[x] =g+ cx+ ... + gx' + ... and
ci=4a+ b foralli.

Definition: Multiplication in R[X]

Letp(X) =a+ax+...+ax and q(X) =+ b, + bx + ... + h.x" be elements
of R[x]. Then

P(X) g(X) = @ + &X + X+ ........ e R[]
Where,

C=ab+abi+ab,+..+3ab.

Theorem 8.10.1: With the addition and multiplication defined abofx] is a
commutative ring

Note: If, 1 € R, then R[X] also has the identity element.
R[x] is called theing of polynomialsin x over R.

Definition: Degree of a Polynomial
Let p(X) = a+ ax + ... + X" € R[x] such that a# 0.
Then n is said to be tldegreeof p(x) and we denote degree {p(x)} = n.
Note: i) We do not define the degree of the zero polynamial

i) A polynomial of the form p(x) = € R is called a&onstant
polynomialand deg (p(x)) =0
Hence, for any p(x§ R [x], deg (p(x)»> O.

Lemma8.10.2: Let R be an integral domain. The degree of the pcoof
two polynomials in R[x] is equal to the sum of tliegrees

Proof: Letp(X) =a+ax+ ... +ax",a#0
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And q(x) =+ bx + ... + bx", b, # 0 be elements of R[x].
Then, degree (p(x)) = n and degree (q(x)) = m
P(X) g(x) = G+ Cx + ... + CxX + ...
where G= ab;+ ab; + ... + aby
We see that G, = a,bn#0,sincega#z0,h,#70and Risan I.D
Ifj>m+n, G=Xk=j q; by ;thenl+k>m+n

= Eitherl>nork>m
Ifl>n,a=0andifk>m ,p=0

eachab,=0

= C=0ifj>m+n
Hence, deg (p(x) q(x)) = deg p(x) + deg q(x).
Lemma8.10.3: If p(x)# 0, q(x)# 0 € R[x], then deg (p(X)¥ deg (p(x).q(x)).

Lemma8.10.4: If Ris an I.D, then R[x] is also an I.D.

Proof: Let p(x) and q(xE R[X], p(x) # 0, q(x)# 0

Let deg (p(x)) = m, deg (q(x)) = n
Let p(x) =@+ ax + ... +ax" and q(x) = b+ bx + ... + hx";
an#0,h %0

SinceRisan|.D, &,#0
Then, p(x) g(X) = G+ Cx + CX° + ... + GueX™"
and Grn= anbn # 0
Hence p(X) q(x¥ 0
R[x] is an integral domain.
Corollary: If Fisafield, F[x] is an I.D.
Lemma8.10.5: Let F be a field. Then for any two non-zero polyiadsrp(x),

d(x) in F[x] there exist polynomials t(x), r(x) suthat
p(x) = t(x) q(x) + r(x)
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where either r(x) = 0 or deg (r(x)) < deg (q(x))

Proof: If deg (q(x)) > deg (p(x)), put t(x) = 0 and r(x)ptx) and the lemma is
proved. Suppose deg (q()eg (p(x))

We shall prove the lemma by induction on deg (p(x))
Let pX)=a+ax+..+ax"e€F(X),a#0€eF
q(x) =+ bx+ ... +bx"e F(x) ,h#0eF
Then deg (p(x)) = m, deg (q(x)) = n ancbm.
Ifm=0,thenn=0. ~p(X)=gandq(x)=5b
and we can write ga = a& (b'bg) = ab™bo
e, p(x)  =t(x)q(x) +r(x)
where S t(x) =g and r(x) =0
Thus the result is true for m = 0.

Suppose that the lemma is true for all non-zergmuohials in F(x) of degree
less than m.

Let  p() = P09 -2 X" q(x)

e, pxX) =(@+ax+..+ax™ —ab, X" (bo+ bix + ... + bx")
=(@+ax+ ...+ axX") — (@b, b X"+ ... + aXm)
It follow that deg (p(X)) <m —1 <m = deg (p(X))

Thus, by induction hypothesis, there exist polyradai(x) and r(x) in F(x) such
that

p2(x) = u(x)a(x) + r(x)

where either r(x) = 0 or deg (r(x)) < deg (q(x))

i.e., p(x) Z—: X" q(x) = &(ax) + r(x)
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i.e., p(x) =(°,1,—’: X" - (%)) A(x) + r(x)
= 1(x) a(x) + r(x)
where either r(x)=0 or deg (r(x)) < deg (q(x))
Theorem8.10.6: Let F be a field. Then F[x] is a Euclidean Domain.

Proof. Since every field is an integral domain, F is miegral domain and so
F[x] is an integral domain.

Further, for any two non-zero polynomials p(x), )¢ F[x], we have deg (p(x)
q(x)) = deg p(x) + deg q(* deg(p(x)).

Thus, deg (p(X)¥ deg (p(x).q(X))  .covvverernnnn. (1)
We define the Euclidean valuation d on F[x] asdaf:
d(p(x))=deg(p(x)), for all p(30 € F[x].  ...cvvrvenn.n. (2)

Then d is a non-negative integer.

Lemma 8.10.5 for any two non-zero polynomials p(x), q(x) inxFfhere exist
polynomials t(x), r(x) such that

p(x) = t(x) q(x) + r(x)
where either r(x) = 0 or deg (r(x)) < deg (q(x)).

Hence, F[x] is a Euclidean domain.
Theorem8.10.7: Let F be a field. Then F[x] is a principal ideal uhain
Proof. Since F is a field, F[x] is a Euclidean domain.
Further, every Euclidean domain is a PID.
Hence, F[x] is a PID.
8.10.8 Roots of a Polynomial

Let f(x) be a polynomial over any ring. An elementa € R, such that
f(a) =0, is called aoot of f(x) = 0.

Definition: A polynomial f(x) € F(x) is said to bearreducible if for every
factorization
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f(x) = g(x).h(x),either g(x) or h(x) is a unit in F(x).
Units in F(x) are all non-zero polynomials of degyt@’
l.e., all constant polynomials.

Note The field over which the polynomials are congiedglays a vital role in
irreducibility.

For example,f(x) =%+ 1€ R(x) is irreducible
f(x) = X + 1e C[X]
= (x-1) (x+i) is reducible
Remarks
1) F[x]isaP.I.D
l.e,. every ideal of F[x] is of the form <p(x)>
2) All the units in F[x] are non- zero elements of F.

3) Any two non- zero polynomials f(x) and g(&)F[x] have a g.c.d and it can
be written as. (x).f(x) + u(x).g(x) wherer (x), u(x) € F[x]

4) The ideal A = <p(x)> in F[x] is a maximal ideal @nd only if p(x) is an
irreducible element of F[X].

Proof:(a) we shall prove that A is not maximal if p(x)nist irreducible.
Let p(x) = f(x).g(x) where neither f(x) nor g(x) @sconstant.

Put B = <f(x)>. Then, p(xg B

= A € B C F[X]

If A =B, then f(x)e A
= f(X) = p(x) h(x) for some h(x§ F[x]
= f(x) = f(x) g(x) h(x)
= f(x) (1 —9(x) h(x))=0
= g(X) h(x) =1 (~ F[x]is an |.D)
= g(X) is a constant, which is not possible.
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If B = F[X], then 1€ B.
= 1 =f(x) q(x) for some q(x§ F[x]
= f(x) is a constant, which is not possible.

Hence A is not maximal.

b)  We shall prove that A is a maximal if p(x) isaducible.
If possible, let A< C < F[X]
Since F[x] is a P.1.D, there exists c&)C such that C = <c(x)>
Now, AC C = p(x)e C = p(x) = c(x) b(x) for some b(xg F[X]
But p(x) is irreducible.

= Either c(x) or b(x) is a constant.
If c(x) is a constant, then C = F[X]
If b(x) is a constant, then c(x) = p (X)(b(Xg A

= CCA
~A=C

l.e., A is not maximal.

8.10.9:Factorisation of Polynomials

(Eisenstein’s Criterion): Let R be a UFD and let f(x)=a,x"+
an,_1x"" 1 +--+a,x+a, be a polynomial inrR[x], n = 1. If there exist an
irreducible elementp € R such thatp/a,, p/ay,...,p/a,_1,0 t a,, p* t ay,

then f(x) is irreducible

For example: If f(x) = 25x°—9x*+ 3x%2—12, we haveas = 25,a, =
_9,a3 = 0,a2 = 3,a1 = 0,(10 =—12

Takingp = 3 we see that

p/ay, p/ai,p/asp/as,p/asp tas,p? t ap.

Hence by Eisenstein Theorem, f(x) is irreducible
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Remark A polynomial f(x)e F[X] is reducible iff f(x) has a zero in.F
For example, f(x) =%+ 1 has no root iiR but has a root if.
Problems
1. Prove that

(i) x*+x+ 1is irreducible ovef,

(i) x?+ 1is irreducible oveE. -

(iii) x3 — 9 is reducible ovet 1,

Solution:

(i) Left to the readers.

(i) Here,Z,={0,1,2,3,%4,5,6}

f(3)=3% +1=3,

f(3) =42 +1 =3,
f(5)=5% +1 =5,
F(6)=62+1=2

We see that>+ 1 has no zero ifi,. So it is irreducible irZ
(iii) We have f(x)=% — 9 = - 4) (x* + 4x + 5)
andf@)=43-9=64-9=559
. 4is azero of Xx— 9

i.e, (x -4) is a factor of X— 9.

[x]

2. Prove thaliﬁzﬂ) is a field.

Solution:  Sincex3 + x2 + 1 is irreducible inZ<[x], the ideakx3 + x2 + 1)

iIs maximal and henc?sx[—]) Is a field.

. Zs[x] .
3. How many elements are there(—m ? Justify.
Solution:We have—=%__ — {FO)+(x3+x2+1);f(x) € Zs[x]}.

(x34+x2+1)
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By Division algorithm inZg[x], there existst(x), r(x) € Zg[x] such that
f(x) =t(x)(x® +x% + 1) + r(x), where
r(x) = 0 or degr(x) < deg(x® + x? + 1) = 3.
We may take (x) = ax? + Bx + y € Zs[x].
Since t(x)(x3 + x%2 + 1) € (x3 + x% + 1), therefore
fFOO+E3+x2+1)y=r(x)+x3+x%2+1)
S+ E3+x2+1)=ax?+Px+y+(x3+x2+1).... (1)

In the above expression, S,y € Zs and order ofZ; = 5. Consequently, each
of a, 8,y can be selected in 5 ways. Hence by (1), the earobelements of

the field—"200 _js 53 = 125.
(x3+x?%2+1)

4. Show that < x+2 > is a maximal ideal @fx] and hence_--— is a field.

Solution: < x+2 > = {(x + 2) f(x): f{(x)e Q [X]}
Let x + 2 =f(x) g(x) ; f(x), 9(xk Q [X]
Then deg (f(x)) + deg (9(x)) = +Q [x] is an 1.D)
Case I:deg f(x) = 0 and deg g(x) = 1
Let f(X) = a, g(x) = b+ byx, so that f(x) g(x) = &b + abix
> aby = 1= a|1= f(X) = ais a unit.
So, x + 2 is irreducible.
Case II: deg (f(x)) = 1 and deg (g(x)) = 0, then g (x) israt.

Hence < x+2 > is maximal.

SinceQ [x] is a commutative ring with unityfjfr—xz]> Is a field.
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Unsolved Problems
1. Prove that any finite integral domain is a field.

2. If R is a ring such that? = q, for all a € R, prove thata + a = 0, for alll
a€R.

3. Define maximal ideal of a ring R. Is {0} in the gnf integersZ a maximal
ideal?Justify your answer.

4. Prove that a field has only two ideals 0 and itself

5. Show thatZ, = {0,1,2, ....,p — 1} modulop is a field if and only ifp is a
prime.

6. Determine all the ideals i#;.
7. Define units. Determine the number of units inting of integers.

8. Let F be an integral domain anél and F, be subrings of. Show that
F; N F,is an integral domain.

9. Let R be an integral domain angh eR. When do we say the following?

1) aandb are associates in R
i) ais an irreducible elementin R
lii) ais a prime element in R

10.Show that the polynomiak? + x + 4 is irreducible overF, the field of
integers modulo 11.

11Prove that 2+-5 is an irreducible element but not a prime eleniant

Z[V-5].

12 Let Rbe a commutative ring with unity. Prove that anald® of R is
maximal if and only if} is a field.

13.Show that a non-zero commutative ring with unityaidield if it has no
proper ideal.

B

141 et A andB be two ideals of a ring§, prove that%B =
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15.Show that a commutative ring is an integral domain if and only if for all
a,b,c e R,a#0,ab=ac>b =c.

16.Prove that in a principal ideal domain, every nemszprime ideal is
maximal.

17Let R be a commutative ring with unity. When are thensatsa,b € R
called associates? K be an integral domain with unity angb € R be non-
zero elements such thaltb andb|a, prove thatt andb are associates.

18.Show that every field is an integral domain. Is ttumverse true? Justify
your answer.

19.Define prime ideal and maximal ideal in a commuatingR. Prove that an
ideal P of R is a prime ideal if and onlyﬁ Is an integral domain.

20.Prove that every Euclidean domain is a principaildlomain.
21.Show that in a unique factorization domain
I. alc,b|lcand (a,b) =1 = ab|c
ii. (a,c) =(b,c)=1= (ab,c) =1
lii. Any two elements have a greatest common divisor.
22 Prove that every field is a Euclidean ring.
23What do you mean by a prime elemendf a commutative domaifR with
unity? Show that in a principal ideal domain, aangnt is prime if it is

irreducible.

24 Prove that in the ring of intege¥s if p is a prime number, then the ided
consisting all multiples gb is amaximal ideal.

25.Prove that the principal ideat) of a Euclidean ring is a maximal ideal of
R < the element, is a prime element .

26.Let F be a field. Prove that if f (x) and g(x) @ non-zero elements of F
[X], then

deg (f(x) g(x)) =deg (f(x)) +deg (g(x))
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Give an example of two non-zero polynomials u @l & (x) inZ,[x] such
that

deg (u (x) - v(x)}* deg (u(x)) +deg (v(x))

[Here deg (f (x)) denotes the degree of the polyabif(x) andZ, denotes
the ringof integers modulo 4]

27.Let R be an integral domain, a and b be non-zZerments of R. Prove that a
Is an associate of b <=> the principal ideals (&) @) are equal.

28.Show that any non-zero ring homomorphism from &ffe to a ring R is
one-one.

29.Show that the only field isomorphisin Q — Q (Q is the field of rational
numbers) is the identity mapping @n

30.Prove that if F is a field, then the ideal A=(p(39)a maximal ideal of F[x]
& p(x) is an irreducible polynomial over F.

31Letp be a prime number. Determine all the idealZpf the ring of integers
modulop.

32.Show that the only units ii[x] are 1 and -1.

33.Show that every ring R without identity element denembedded in some
ring with identity.

34.1f I be an ideal generated b$#x in R[x], show that

I. R[x]/I is a field;
ii. R[x]/I = C, the field of complex numbers.

35 Determine the irreducible elementszf
36.Show that %+1 is a prime element &®[x].

37lf f:R — S is a ring homomorphism aridis an ideal ofR, then is it
necessarily true thgt(l) is an ideal of? Answer with justification.

38Let f:Z — F be a ring homomorphism form the ring of integérento a

field F. Show thatF is a finite field and the number of elementsFins a
prime.
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391s x*+1 an irreducible element of[x]? Justify. Show thatp: Z[x] —
Z[i] suchthat ¢(f(x)) = f(i) is an onto ring homomorphism whose
kernel is the principal ideal generated By X (HereZ[i] = {a + ib|a,b €
Z} and i* = 1.

40.Consider the ring homomorphisg R[x] —» € such thatp(f (x)) = f ().
Show thad a prime elemenf(x) € R[x] such thatp(f(x)) is not a prime
element ofC.

41 Prove that iff: R —» R’ is an onto ring homomorphism, théninduces a ring
isomorphism betweeR / ker(f) andR’ .

42 If R is a finite commutative ring with unity elenteprove that every prime
ideal of R is a maximal ideal of R.

43 Show that the polynomiat? — 3 is irreducible over the field of rational
numbers.

44 Prove that every prime element in an integral donvath unit element is
irreducible.

45 Define integral domain. Prove thdf, = {0,1,2, ..., (n — 1)} w.r.t addition
and multiplication modulo n is not an integral demi&n is not a prime.

46 .Define an ideal of a ring. Prove ttat= 987 + 997Z.
47 What is a principal ideal domain (PID)?49x] a PID? Justify.

48 Prove that the polynomiaf® + x2 + 1 is irreducible inZs[x].
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