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ABSTRACT
In this chapter, a novel approach named Gauss Elimination Technique (GET) is proposed to find the optimal solution of game theoretical problems. It is based upon the concept of bounds. To do so, we formulate two Linear Programming Problems (LPP) for both players by the given game problem. By applying the Gauss Elimination Technique separately to both the linear programming problems, one can get the optimal solution of both the LPP’s and as well game problem. The proposed technique is very simple to understand the calculation as compared to earlier Simplex Method for LPP.
Keywords:  Optimal solution, Linear programming problem, Gauss Elimination Technique.
1. INTRODUCTION
In operation research, mathematical modeling is very easy way to describe any phenomenon or problem. Game theory is a theoretical framework for conceiving social scenarios among competing players. It is the science of strategy. The intension of game theory is to layout various situations and predict their most likely outcomes in variety of fields.  Game theory explains the strategic action of two or more than two competitors in a given situation. The main focus of game theory is the game, in which one player’s payoff is contingent on the strategy implemented by the other player. There are some important real-world situations which are competitive in nature such as labour-management negotiations, elections and voting, agricultural crop selection, stock market, military conflicts, bidding at auctions etc. Game theoretical model has great potential to analyze above mentioned situations. This mathematical modeling provides perception, guidance and solution of a problem, which is very efficient and accurate in nature.
In numerical analysis, Elimination is very important method to find out numerical solution of different type of problems. Basically, elimination techniques are used in engineering streams and applied sciences.  Elimination technique is a new algorithm for solve game theoretical problem.
2. Gauss Elimination Technique for Game Problem
Gauss elimination technique is basically use in numerical analysis for finding the solution of a system of linear equations with ‘n’ variables and ‘n’ equations. Elimination method eliminates decision variables or unknowns of system of linear equations one by one. Therefore, the matrix of coefficients of the system of equations transforms to an upper triangular matrix. At last, there remains only one equality which has one variable. After that, we calculate value of other variables by back substitution process. By solving equations, we get a single solution or value but when inequalities have solved then we find out more than one possibility for solution in bounded form. From these bounded values we have to select minimum value or maximum value according to the objective function of given problem. 
In this chapter, Gauss elimination technique has been applied for a game problem, for this we formulate LPP of game problem. Now for apply Gauss elimination technique on this LPP of game problem, we have to convert this LPP into standard form. To do so, the objective function will be treated as constraint and the sign of all inequalities will be same. “i.e., sign of objective function, constraints and non-negative restrictions” will be same. After combination of inequalities, variables eliminate one by one. i.e., in every iteration one variable and one inequality decrease. So, at final we get some inequalities with single variable, from which we obtain value of that single variable in bounded form according to the object for a player of game problem.
3. Problem Formulation for Gauss Elimination Technique
The general form of game problem can be written as: 
                       [image: ]
This general form delineated a m×n payoff matrix for any two-person game problem. Here, player A has m strategies (A1,A2,……,Am) and player B has n strategies (B1,B2,……,Bn). p1,p2,……,pm are probabilities to choose strategies A1,A2,……,Am respectively for player A and q1,q2,……,qn  are probabilities to choose strategies B1,B2,……,Bn respectively for player B. Each entry of payoff matrix shows payoff corresponding to chosen strategy by player A and player B. For example,  shows payoff corresponding to strategy A1 and strategy B1 chosen by player A and player B respectively.
Now, we formulate the game problem for Gauss elimination technique. Let V be the value of game or well said expected gain or loss. Here, we consider that Player B’s objective is to minimize the expected loss, which can be achieved by minimizing V. The expected losses for player B can written in the form of linear combination with the help of payoff matrix given for any game problem.
So, the expected losses for player B will be as follows:
                                               
                                               
                                                 
                                                 
                                              
Dividing the above constraints by V, we get
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For simplification, take       = ; j= 1, 2…...n.                                                            
In order to minimize V, player B can maximize .
Since 
Divide above equation by V. We get,
 +  +  +  =  
Let   = So,  =  = .
LPP form of game problem for player B:
                         Max.  =  = 
                         Subject to 
                                          
                                             
                                             
                                        
                         and          ≥ 0; j = 1, 2…...n.
                         where     =  ; j= 1, 2…...n.
LPP form of game problem for player A:
                     Min. =  = 
                     Subject to  
                                       
                                            
                                            
                                       
                     and           ; i = 1, 2……m.
                     where        =  ; i = 1, 2……m.
Now for solution of game problem by Gauss elimination technique, we have to convert the LPP form of game problem into a standard form. The standard form for Gauss elimination technique contains either equations or inequalities with same sign. So, we convert objective function into inequality. Also, ensure that sign of inequalities is same for converted objective function, constraints and restricted variables. 
Standard form of game problem for Gauss elimination technique:
For player B
Max. 
                                  
                    
                    
                       
                       
                  
                                        ; j = 1, 2……, n.
                              where, =  ; j= 1, 2…...n.
For player A
Min. 
                                                                                                                                                  
                   
                     
                     
                  
                                           ; i = 1, 2……m.
where,  =  ; i = 1, 2……m.
Now, we combine all inequalities in such a way that the inequalities and variables must reduce one by one in each iteration. We apply GET on both LPPs’ one by one.
4. Numerical Illustration
1. Solve the following game problem:          Player B
                                                       Player A         
Solution: Let us assume that p1 & p2 are probabilities for player A and q1 & q2 are probabilities       for player B to choose strategies for maximum gain of player A and minimum loss of player B.
Formulation of LPP for player B:
Let V be the maximum gain of player A. Then for minimum loss of player B we have to minimize V. So, objective function and constraints for player B are 
                    Min. V
                                  Subject to      q1 + 7q2  V
                                                      6q1 + 2q2 V
                                            q1 + q2 = 1
Divide above inequalities and equation by V. Then,
                                       
                                                  
                                                        
Let y1 =   and  y2 =  .
Also, min. V = max.  = max. zq
So,
                                 Max.                 zq = y1 + y2
                                                 Subject to          y1 + 7y2 ≤ 1
                                                         6y1 + 2y2 ≤ 1
                                 and                        y1, y2 ≥ 0
Making standard form by treating objective function as constraint and all inequalities of same sign for Gauss elimination technique, we have
                   Max. zq
                                                              zq - y1 - y2 ≤ 0                                    … (4.1)                                                                                  
                                            y1 + 7y2 ≤ 1                                    … (4.2)                                                         
                                          6y1 + 2y2 ≤ 1                                    … (4.3)                                                     
                                                                             - y1 ≤ 0                                    … (4.4)                                                            
                                                   - y2 ≤ 0                                                      … (4.5)       
In the first stage of Gauss elimination technique with the help of (4.1), we obtain
                    Max. zq
                                                                  zq + 6y2 ≤ 1                                   … (4.6)                                          
                                           6zq - 4y2 ≤ 1                                   … (4.7)                                                                                 
                                               zq - y2 ≤ 0                                                    … (4.8)                                                                                                                                               
                                                                - y2 ≤ 0                                    … (4.9)                                                
In the second stage of Gauss elimination technique with the help of (4.6), we have  
                                  Max. zq
                                                     zq ≤                                    … (4.10)                                                   
                                                     zq ≤                                    … (4.11)                                          
                                                     zq ≤ 1                                   … (4.12)     
Here, our object is to maximize zq, so select maximum value of zq from the bounded values of zq. Values of zq from inequality (4.10), (4.11) and (4.12) are {}.
Hence, max. zq = max. {} = 1.
But zq = 1 does not satisfy inequalities (4.6) to (4.9) altogether. i.e., zq = 1 gives y2 ≤ 0                                                                     Hence, we select next maximum value of zq which is less than 1, we have zq =  . Now, putting zq =  in inequalities (4.6) to (4.9), we get different bounded values for variable y2 out of this y2 =  is the only value that satisfies all inequalities (4.6) to (4.9) altogether. Hence y2 =  .
[bookmark: _Hlk194105096]Now, putting zq =  and y2 =  in the inequalities (4.1) to (4.5), we get different bounded values for variable y1 out of this y1 =  is the only value that satisfies all the inequalities (4.1) to (4.5) altogether. Hence y1 =  .
So, zq =  implies that  =  and V = 4.
Also, y1 =  implies that q1 =  
and y2 =  implies that q2 =  .
Hence, strategies for players B (, )  
and value of game = 4.
Formulation of LPP for player A:
LPP for player A is dual of LPP of player B. So, we have
                                 Min.                     zp = x1 + x2
                             Subject to            x1 + 6x2 ≥ 1
                                              7x1 + 2x2 ≥ 1
                                  and                         x1, x2 ≥ 0
where x1 =  and x2 =  .
Again, we make standard form for apply Gauss elimination technique on above LPP. We have
                                 Min. zp
                                                                                    zp - x1 - x2 ≥ 0                                   … (4.13)                                                         
                                                           x1 + 6x2 ≥ 1                                   … (4.14)                                                      
                                                         7x1 + 2x2 ≥ 1                                   … (4.15)                                                   
                                                                    x1 ≥ 0                                   … (4.16)                                                  
                                                                    x2 ≥ 0                                                     … (4.17)       

In the first stage of gauss elimination with the help of (4.13), we have
                   Min. zp
                                                zp + 5x2 ≥ 1                                 … (4.18)                                               
                                              7zp – 5x2 ≥ 1                                 … (4.19)                                             
                                                  zp - x2 ≥ 0                                  … (4.20)                                           
                                                        x2 ≥ 0                                  … (4.21)                                           
In the second stage of Gauss elimination with the help of (4.18), we have
                   Min. zp 
                                                        zp ≥                                   … (4.22)                                      
                                                        zp ≥                                   … (4.23)                                      
                                                        zp ≥ 1                                  … (4.24)     
Here, our object is to minimize zp, so select minimum value of zp from the bounded values of zp.
Hence, min. zp = min {, , 1} =  .
Now putting zp =  in inequalities (4.18) to (4.21). But these inequalities are not satisfied by zp=  i.e.,   zp =  gives different bounded values of x2 and none of them is satisfy inequalities (4.18) to (4.21) simultaneously. So, we select next minimum value of zp that is greater than , so zp =  . 
Again, putting zp =  in inequalities (4.18) to (4.21), we get different bounded values for variable x2 out of this x2 =  is the only value that satisfies all the inequalities (4.18) to (4.21) altogether, hence x2 = 
Now putting zp =  and x2 =  in inequalities (4.13) to (4.17), we get different bounded values for variable x1, out of this x1 =    is the only value that satisfies all the inequalities (4.13) to (4.17) altogether. Hence x1 =  .
Hence zp =  implies that  =  and V = 4.
Also, x1 =  implies that p1 =   and x2 =  implies that p2 =
So, strategies for player A ( , )
and value of game = 4.
Hence the optimal solution of game problem by Gauss elimination technique is: -
value of game = 4.
strategies for player A ( , ).
strategies for player B (, ).
2. Solve the following game problem: 
                                                         Player B
                                     Player A          
Solution: Let us assume that p1, p2, p3 & p4 are probabilities for player A and q1 & q2 are probabilities for player B to choose strategies for maximum gain of player A and minimum loss of player B.
Formulation of LPP for player B:
Let V be the maximum gain of player A. Then for minimum loss of player B we have to minimize V. So, objective function and constraints for player B are 
               Min. V
               Subject to                               -2q1  V
                                                         3q1 - q2 V
                                                    -3q1 + 2q2 V
                                                       5q1 - 4q2 V
                                                          q1 + q2 = 1                     
Divide above inequalities and equation by V. Then, 
                                                                         -
                                                                  
                                                               
                                                                 
Let y1 =  and y2 = . Also, min. V = max.  = max. zq. So,
                                       Max.                      zq = y1 + y2 
                                      Subject to                     -2y1 ≤ 1
                                                          3y1 - y2 ≤ 1
                                                      -3y1 + 2y2 ≤ 1
                                                        5y1 - 4y2 ≤ 1
                         and                              y1, y2 ≥ 0
Make the standard form by treating objective function as constraint and all inequalities of same sign for Gauss elimination technique, we have
                        Max. zq
                                                                               zq - y1 - y2 ≤ 0                                 … (4.25)                                                                                  
                                                             -2y1 ≤ 1                                 … (4.26)                                                        
                                                        3y1 - y2 ≤ 1                                 … (4.27)
                                                    -3y1 + 2y2 ≤ 1                                … (4.28)
                                                      5y1 - 4y2 ≤ 1                                 … (4.29)                                                     
                                                                                            - y1 ≤ 0                                 … (4.30)                                                            
                                                             - y2 ≤ 0                                                  … (4.31) 
In the first stage of Gauss elimination technique with the help of (4.25), we obtain
                          Max. zq
                                                                            -2zq + 2y2 ≤ 1                               … (4.32)                                          
                                                     3zq - 4y2 ≤ 1                               … (4.33)                                                                                 
                                                   -3zq + 5y2 ≤ 1                                              … (4.34)
                                                     5zq - 9y2 ≤ 1                                … (4.35)
                                                      -zq + y2 ≤ 0                                              … (4.36)
                                                                           - y2 ≤ 0                               … (4.37) 
In the second stage of Gauss elimination technique with the help of (4.32), we have
                          Max. zq
                                                             zq ≥ -3                                … (4.38)
                                                             zq   ≤ 3                                … (4.39)
                                                                          zq   ≥                               … (4.40)
                                                                          zq   ≥ -1                               … (4.41)
                                                                          zq   ≥                                 … (4.42)
Here, we get five bounded values of zq. i.e., {--5, }.
Since problem is maximization linear programming problem so, we will take zq   = 3. Also, zq   = 3 satisfies inequalities (4.38) to (4.42) altogether and by back substitution it gives y2 = 2 from inequalities (4.32) to (4.37). Now, putting zq = 3 and y2 = 2 in inequalities (4.25) to (4.31), we get different bounded values for variable y1 out of them y1 = 1 is the only value that satisfies all inequalities (4.25) to (4.31) altogether. Hence y1 = 1.
So, zq = 3 implies that  = 3 and V =  .
Also, y1 =  implies that q1 =  and    y2 =  implies that q2 = .
Hence, strategies for player B () and value of game = .
Formulation of LPP for player A:
LPP for player A is the dual of LPP of player B. So, we have
                      Min.                          zp = x1 + x2 + x3 + x4
                      Subject to            -2x1 + 3x2 - 3x3 + 5x4 ≥ 1
                                                              -x2 + 2x3 - 4x4 ≥ 1
                      and                                     xi ≥ 0; i=1,2,3,4
where xi =  ;i=1,2,3,4 and zp =   .
Again, we make standard form for apply Gauss elimination technique on above LPP. We have
                     Min. zp
                                                                       zp - x1 - x2 - x3 - x4 ≥ 0                         … (4.43)
                                          -2x1 + 3x2 - 3x3 + 5x4 ≥ 1                         … (4.44)                                                      
                                                      -x2 + 2x3 - 4x4 ≥ 1                         … (4.45) 
                                                                        x1 ≥ 0                         … (4.46)              
                                                                        x2 ≥ 0                         … (4.47)  
                                                                        x3 ≥ 0                         … (4.48)                                                  
                                                                        x4 ≥ 0                                      … (4.49)  
In the first stage of Gauss elimination with the help of (4.43), we have
                     Min. zp
[bookmark: _Hlk184855905]                                           -2zp + 5x2 - x3 + 7x4 ≥ 1                          … (4.50)
                                                     -x2 + 2x3 - 4x4 ≥ 1                          … (4.51) 
[bookmark: _Hlk184856949]                                                                               zp - x2 - x3 - x4 ≥ 0                          … (4.52)
                                                                       x2 ≥ 0                          … (4.53)  
                                                                       x3 ≥ 0                          … (4.54)                                                  
                                                                       x4 ≥ 0                                        … (4.55)                                                     
In the second stage of Gauss elimination with the help of (4.50), we 
                     Min. zp
                                                -2zp + 9x3 - 13x4 ≥ 6                           … (4.56)
                                                        zp - 3x3 + 3x4 ≥ -1                           … (4.57)
                                                             2x3 - 4x4 ≥ 1                           … (4.58)
                                                                       x3 ≥ 0                           … (4.59) 
                                                                       x4 ≥ 0                                         … (4.60)  
In the third stage of Gauss elimination with the help of (4.56), we have
                    Min. zp
                                                               zp - 4x4 ≥ 3                            … (4.61)
                                                                   2zp - 6x4 ≥ 1                            … (4.62)
                                                            zp + 3x4 ≥ -1                            … (4.63)
                                                                      x4 ≥ 0                                           … (4.64)  
In the fourth stage of Gauss elimination with the help of (4.61), we have
                    Min. zp 
                                                                    zp ≥ -7                            … (4.65)                                      
                                                                     zp ≥                              … (4.66)                                      
                                                                     zp ≥ 3                            … (4.67)
Here, we get three bounded values of zp, i.e., {-7, , 3}.
From which only zp = 3 is satisfies inequalities (4.65) to (4.67) and by back substitution it gives x4 = 0 from inequalities (4.61) to (4.64).
Now, putting zp = 3 and x4 = 0 in inequalities (4.56) to (4.60), we get different bounded values for variable x3 out of this x3 =  is the only value that satisfies all the inequalities (4.56) to (4.60) altogether.
From inequalities (4.50) to (4.55) we find x2 =  and finally by putting values of zp, x4, x3, x2 in inequalities (4.43) to (4.49). we get x1 = 0.
So, zp = 3 implies that  = 3 and V = .
Also, x1 =  implies that p1 = 0,
x2 =  implies that p2 = ,
x3 =  implies that p3 = 
and x4 =  implies that p4 = 0.
So, strategies for player A (0,, ,0) and value of game = .
Hence, the optimal solution of game problem by Gauss elimination technique is: -
Value of game = .
Strategies for player A (0,, ,0).
Strategies for player B ().
[bookmark: _Hlk112804189]5. Conclusion and Future Scope :
The proposed Gauss elimination technique (GET) is quite easy to apply on game theoretical problem. Elimination technique is a different approach for finding solution of the game problem. Gauss elimination technique is least time-consuming technique and it has very easy calculation because GET is based upon the solution of inequalities. With the help of numerical illustration, we have proved that this technique is applicable for all those types of game problem which contains m×n type payoff matrix. The calculation is very complicated in simplex method as compared to GET. In this chapter, we have applied Gauss elimination technique on game problems which contains a particular payoff matrix of defined game. In future, new researchers can extend this elimination techniques on different type of game problems. 									
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