
Database Management Systems

Nilanjan Chatterjee 1, Monu Sharma 2, Stuti Sood3,
Shubneet 4, Anushka Raj Yadav 5

1Advanced Micro Devices, Austin ,Texas, USA.
2 Valley Health, Winchester, Virginia, USA.

3,4,5Department of Computer Science, Chandigarh University, Gharuan,
Mohali, 140413, Punjab, India.

Contributing authors: nilanjan.9325@gmail.com; monufscm@gmail.com;
stutisood250@gmail.com; jeetshubneet27@gmail.com;

ay462744@gmail.com;

Abstract
This chapter provides a comprehensive overview of database management sys-
tems (DBMS), focusing on the relational model, SQL operations, normalization,
and modern database tools. We examine the structure and integrity of rela-
tional databases, including tables, primary/foreign keys, and ACID properties,
and demonstrate SQL for CRUD (Create, Read, Update, Delete) operations and
JOIN queries. Normalization is explained through practical examples, detail-
ing the transition from 1NF to 3NF to eliminate redundancies and ensure data
integrity. The chapter contrasts relational (MySQL) and NoSQL (MongoDB)
systems, highlighting their architectural differences, scalability, and suitability
for structured vs. unstructured data. For instance, MySQL excels in complex
joins and transactional consistency, while MongoDB offers schema flexibility and
horizontal scaling for real-time analytics. A case study on Amazon’s product
recommendation system illustrates DBMS design and optimization, showcas-
ing how hybrid architectures combine relational and NoSQL strengths for
personalized user experiences. This chapter synthesizes theoretical principles,
performance benchmarks, and real-world applications to guide the selection and
implementation of DBMS solutions in modern data-driven environments [1–4].

Keywords: Relational Model, SQL Operations, Normalization (1NF-3NF), MySQL
vs. MongoDB

1

https://orcid.org/0009-0000-7901-3434
https://orcid.org/0009-0001-2958-4404 
https://orcid.org/0009-0004-9748-380X
https://orcid.org/0009-0004-3943-0646


1 Introduction
A Database Management System (DBMS) is a software system that facilitates
the storage, retrieval, and manipulation of structured or unstructured data while
ensuring security, integrity, and efficient access. It serves as an intermediary between
users/applications and physical databases, abstracting complexities like data storage
locations and concurrency control. Modern data-driven applications rely on DBMS
for scalability, real-time analytics, and transactional consistency, enabling businesses
to manage large datasets and derive actionable insights [5].

Relational vs. NoSQL Models
Relational and NoSQL databases differ fundamentally in structure and use cases:

• Relational DBMS (e.g., MySQL):
– Data Model: Tabular schema with rows/columns, linked via primary/foreign

keys.
– ACID Compliance: Ensures atomicity, consistency, isolation, and durability.
– Use Cases: Financial systems, inventory management, applications requiring

complex joins.
• NoSQL (e.g., MongoDB):

– Data Model: Flexible schema (documents, key-value pairs, graphs).
– BASE Properties: Prioritizes availability and scalability over strict consis-

tency.
– Use Cases: Real-time analytics, IoT data streams, unstructured data (e.g.,

social media) [6].

SQL and Normalization
SQL (Structured Query Language) is the standard interface for relational databases,
supporting CRUD operations (Create, Read, Update, Delete) and complex queries
via joins. For example:

SELECT * FROM Orders
INNER JOIN Customers ON Orders.CustomerID = Customers.CustomerID;

Normalization minimizes redundancy and anomalies by structuring data into
logical tables. Key steps include:

• 1NF: Eliminate repeating groups (e.g., splitting phone numbers into separate
rows).

• 2NF: Remove partial dependencies (e.g., separating customer and order data).
• 3NF: Eliminate transitive dependencies (e.g., isolating product details from

supplier info) [7].

2



Chapter Outline
• Relational Model and SQL: Tables, keys, query design.
• Normalization: 1NF to 3NF with schema examples.
• Database Tools: MySQL vs. MongoDB performance trade-offs.
• Applications: Case study on recommendation systems.
• Security/Transactions: ACID properties, encryption, access control.
• Exercises: Query optimization, schema design.

2 Database Management Fundamentals
This section explores relational database components, SQL operations, and integrity
constraints through practical examples.

2.1 Relational Model Components
A relational database organizes data into tables comprising:

• Columns (Attributes): Define data types (e.g., INT, VARCHAR).
• Rows (Tuples): Represent individual records.
• Primary Key: Uniquely identifies rows (e.g., CustomerID in Customers) [8].
• Foreign Key: Links tables (e.g., Orders.CustomerID references
Customers.CustomerID) [9].

-- Schema Examples
CREATE TABLE Customers (

CustomerID INT PRIMARY KEY,
Name VARCHAR(50) NOT NULL,
Email VARCHAR(100) UNIQUE

);

CREATE TABLE Orders (
OrderID INT PRIMARY KEY,
OrderDate DATE,
CustomerID INT FOREIGN KEY REFERENCES Customers(CustomerID)

);

2.2 SQL Operations

Data Definition Language (DDL)

Manages database structure:

• CREATE TABLE: Defines new tables.
• ALTER TABLE: Adds/modifies columns (e.g., ALTER TABLE Customers ADD
Phone VARCHAR(15)).

• DROP TABLE: Deletes tables [10].

3



Data Manipulation Language (DML)

Manipulates data:

• INSERT: Adds records (e.g., INSERT INTO Customers VALUES (1, ’Alice’,
’alice@email.com’)).

• SELECT: Retrieves data (e.g., SELECT * FROM Customers WHERE CustomerID =
1).

• UPDATE: Modifies records (e.g., UPDATE Customers SET Email =
’new@email.com’ WHERE CustomerID = 1).

• DELETE: Removes records [11].

Data Control Language (DCL)

Manages access:

• GRANT: Allows privileges (e.g., GRANT SELECT ON Customers TO User1).
• REVOKE: Removes privileges [12].

Transaction Control Language (TCL)

Manages transactions:

• COMMIT: Saves changes permanently.
• ROLLBACK: Reverts to last commit [13].

2.3 CRUD and JOIN Queries
CRUD Operations:

-- Create
INSERT INTO Orders VALUES (101, ’2023-10-05’, 1);

-- Read
SELECT Name, OrderDate FROM Customers
JOIN Orders ON Customers.CustomerID = Orders.CustomerID;

-- Update
UPDATE Orders SET OrderDate = ’2023-10-06’ WHERE OrderID = 101;

-- Delete
DELETE FROM Orders WHERE OrderID = 101;

JOIN Example:

SELECT Customers.Name, Orders.OrderID
FROM Customers

4



INNER JOIN Orders ON Customers.CustomerID = Orders.CustomerID;

2.4 Constraints and Referential Integrity
• Primary Key: Ensures unique, non-null rows.
• Foreign Key: Maintains valid cross-table references.
• NOT NULL: Prevents null values.
• UNIQUE: Enforces column uniqueness.

Referential integrity ensures foreign keys always point to valid primary keys. For
example, deleting a customer with existing orders is blocked unless cascaded [8, 9].

3 Database Normalization
Normalization is the process of structuring relational databases to minimize redun-
dancy and eliminate data anomalies. It ensures data integrity by organizing attributes
into well-structured tables linked through relationships.

3.1 Goals of Normalization
• Minimize Redundancy: Store each data element once (e.g., department names

in one table).
• Eliminate Anomalies: Prevent inconsistencies during updates, insertions, or

deletions.
• Simplify Queries: Reduce complex joins through logical table divisions [7].

3.2 Normalization Steps with Examples
Initial Schema (Unnormalized):

Employees (EmpID, Name, Dept, DeptLocation, Phone)

1NF (First Normal Form):

• Remove repeating groups (e.g., split multiple phone numbers into rows).
• Schema:

Employees (EmpID, Name, Dept, DeptLocation)
EmployeePhones (EmpID, Phone)

2NF (Second Normal Form):

• Remove partial dependencies (e.g., separate department details).
• Schema:

Employees (EmpID, Name, DeptID)

5



Departments (DeptID, DeptName, DeptLocation)

3NF (Third Normal Form):

• Eliminate transitive dependencies (e.g., isolate non-key attributes).
• Schema:

Employees (EmpID, Name, DeptID)
Departments (DeptID, DeptName, LocationID)
Locations (LocationID, City, Country)

3.3 Data Anomalies and Solutions
• Update Anomaly: Changing a department name requires updates across

multiple rows. - Fix: Store departments in a separate table (2NF).
• Insertion Anomaly: Cannot add a department without employees. - Fix: Allow

standalone department entries (2NF).
• Deletion Anomaly: Deleting an employee may unintentionally remove depart-

ment data. - Fix: Decouple employee-department relationships (3NF) [14].

3.4 Denormalization
Denormalization reintroduces controlled redundancy to optimize read-heavy queries
(e.g., reporting). For example, adding a TotalSales column to an orders table avoids
recalculating sums. Use cases:

• Frequent complex joins in analytics.
• NoSQL databases prioritizing read speed over write consistency [5].

4 MySQL vs MongoDB: A Comparative Analysis
This section contrasts relational (MySQL) and document-oriented (MongoDB)
databases, focusing on their architectures, performance, and optimal use cases.

4.1 Data Models
• MySQL:

– Relational model with structured tables, rows, and columns.
– Requires predefined schema (DDL) for tables.
– Supports ACID transactions and foreign key constraints [15].

• MongoDB:
– Document-oriented model using JSON-like BSON documents.
– Schema-flexible; fields can vary per document.
– Ideal for unstructured or semi-structured data [16].

6



4.2 Query Languages
• MySQL (SQL):

– Supports complex joins, subqueries, and transactions.
– Example:
SELECT Customers.Name, Orders.Total
FROM Customers
INNER JOIN Orders ON Customers.ID = Orders.CustomerID;

• MongoDB (MQL):
– JSON-like queries for CRUD operations.
– No native joins; uses $lookup for limited joins.
– Example:
db.orders.aggregate([

{ \$lookup: { from: "customers", localField: "customerId",
foreignField: "_id", as: "customer" } }

]);

4.3 Indexing
• Commonality: Both use B-tree indexes for fast lookups.
• MySQL:

– Secondary indexes on columns; clustered indexes for primary keys.
– Optimized for structured data queries [17].

• MongoDB:
– Supports geospatial, text, and compound indexes.
– Dynamic indexing but requires manual tuning for unstructured data [18].

4.4 Strengths and Weaknesses

Table 1: MySQL vs MongoDB Comparison

Criteria MySQL MongoDB

Schema Rigid Flexible
Joins Native support Limited via $lookup
Scalability Vertical Horizontal (sharding)
Write Throughput Moderate High (10k+ ops/sec)
ACID Compliance Full Multi-document only

4.5 Use Case Scenarios
• MySQL:

– Financial systems (e.g., banking transactions).

7



– E-commerce platforms (e.g., Magento, WooCommerce) [19].
• MongoDB:

– Real-time analytics (e.g., IoT sensor data).
– Content management (e.g., product catalogs) [20].

Recent research demonstrates that integrating machine learning with NoSQL
databases like MongoDB enables real-time optimization in smart home energy
management, improving sustainability and efficiency in IoT deployments[21].

4.6 Cloud Deployment
• MySQL: Amazon RDS offers managed instances with automated backups,

Multi-AZ replication, and HIPAA compliance [22].
• MongoDB: Amazon DocumentDB provides MongoDB-compatible API, auto-

scaling, and vector search for AI/ML integration [23].

5 Application: Amazon’s Product Recommendation
System

Amazon’s recommendation system leverages both relational and NoSQL databases
to balance structured transactional data with unstructured behavioral insights. This
section analyzes schema design, optimization strategies, and scalability considerations.

5.1 Schema Design
Relational (SQL) Approach:

-- Users Table
CREATE TABLE Users (

UserID INT PRIMARY KEY,
Name VARCHAR(50),
Email VARCHAR(100) UNIQUE

);

-- Products Table
CREATE TABLE Products (

ProductID INT PRIMARY KEY,
ProductName VARCHAR(100),
Category VARCHAR(50)

);

-- Ratings Table
CREATE TABLE Ratings (

RatingID INT PRIMARY KEY,
UserID INT FOREIGN KEY REFERENCES Users(UserID),
ProductID INT FOREIGN KEY REFERENCES Products(ProductID),

8



Rating INT CHECK (Rating BETWEEN 1 AND 5),
Timestamp DATETIME

);

NoSQL (MongoDB) Approach:

// User Document
{

"_id": ObjectId("..."),
"name": "Alice",
"email": "alice@example.com",
"ratings": [

{ "product_id": 101, "rating": 5, "timestamp": ISODate("2023-10-05") }
]

}

5.2 Normalization to 3NF
The relational schema adheres to third normal form (3NF):

• 1NF: Atomic values (e.g., separate rows for each rating).
• 2NF: No partial dependencies (e.g., ProductName depends solely on ProductID).
• 3NF: No transitive dependencies (e.g., Category isolated from Products via

lookup table).

Table 2: Normalized Schema for Recommendations

Table Columns Purpose

Users UserID, Name, Email User identity
Products ProductID, Name, CategoryID Product details
Categories CategoryID, CategoryName Isolate categories
Ratings UserID, ProductID, Rating User-product interactions

5.3 Indexing and Query Optimization
• SQL: Indexes on Ratings(UserID) and Ratings(ProductID) accelerate JOINs.
• MongoDB: Compound index on {user_id: 1, "ratings.timestamp": -1}

for time-based queries.
• Optimization: Materialized views in SQL cache frequent JOINs; MongoDB

aggregation pipelines precompute similarities [24].

9



5.4 Scalability
• SQL: Vertical scaling (e.g., Amazon RDS) for ACID transactions.
• NoSQL: Horizontal scaling via sharding in MongoDB to handle 10k+ writes/sec.

5.5 MongoDB for Unstructured Behavioral Data
MongoDB stores unstructured clickstream and session data:

{
"user_id": ObjectId("..."),
"view_history": [

{ "product_id": 201, "view_time": ISODate("2023-10-05T08:30:00") }
],
"search_terms": ["laptop", "gaming"]

}

This flexibility enables real-time updates to recommendation models without schema
migrations.

6 Database Security and Transactions
This section examines transaction management, concurrency control, and security
mechanisms critical for maintaining database integrity and safety.

6.1 ACID Transactions
ACID properties ensure reliable transaction processing:

• Atomicity: Transactions succeed completely or fail entirely (e.g., bank transfers
either deduct and credit fully or roll back).

• Consistency: Validates data against constraints (e.g., preventing negative
account balances).

• Isolation: Concurrent transactions don’t interfere (e.g., row-level locking pre-
vents dirty reads).

• Durability: Committed changes persist through system failures.

SQL Transaction Control:

BEGIN TRANSACTION;
UPDATE Accounts SET balance = balance - 100 WHERE user_id = 1;
SAVEPOINT SP1; -- Set recovery point
UPDATE Accounts SET balance = balance + 100 WHERE user_id = 2;
COMMIT; -- Finalize changes
-- ROLLBACK TO SP1; -- Revert to savepoint if errors

10



6.2 Concurrency Control
Databases manage concurrent access through:

• Locking:
– Row-level locks (granular control)
– Table-level locks (for bulk operations)

• Isolation Levels:
– Read Uncommitted (risks dirty reads)
– Repeatable Read (default in MySQL InnoDB)
– Serializable (strictest, prevents phantom reads)

• Deadlock Resolution:
– Timeout mechanisms (e.g., MySQL’s innodb_lock_wait_timeout)
– Automatic victim selection and rollback.

6.3 Database Security
• Authentication: Role-based access (e.g., MySQL’s CREATE USER).
• Privileges:

– GRANT SELECT ON Orders TO Analyst;
– REVOKE DELETE FROM Products;

• SQL Injection Prevention: Use parameterized queries:

cursor.execute("SELECT * FROM Users WHERE username = %s", (input,))

• Encryption:
– AES-256 for data at rest
– TLS 1.3 for data in transit

6.4 Real-World Implementations
• MySQL:

– ACID via InnoDB engine with row-level locking
– Security: SSL/TLS connections, encrypted binary logs

• MongoDB:
– Multi-document ACID transactions (v4.2+)
– Security: Role-based access control, field-level encryption

7 Exercises
This section provides hands-on practice with database design, querying, and system
selection.

1. Normalize a Denormalized Orders Table
Problem: Convert the following denormalized table to 3NF:

11



Orders (OrderID, CustomerName, Product1, Product2, TotalPrice)

Solution:

• 1NF: Remove repeating groups (Products):

Orders (OrderID, CustomerName, TotalPrice)
OrderDetails (OrderID, Product)

• 2NF: Eliminate partial dependencies (CustomerName → CustomerID):

Customers (CustomerID, CustomerName)
Orders (OrderID, CustomerID, TotalPrice)

• 3NF: Remove transitive dependency (TotalPrice → OrderID + ProductPrice):

OrderDetails (OrderID, ProductID, Quantity)
Products (ProductID, Price)

2. SQL CRUD and JOIN Operations
Problem: Write SQL queries for:

• Insert a new customer
• List all orders with customer names
• Update a product’s price
• Delete an order

Solution:

-- Create
INSERT INTO Customers (CustomerID, Name) VALUES (101, ’Alice’);

-- Read (JOIN)
SELECT Customers.Name, Orders.TotalPrice
FROM Orders
INNER JOIN Customers ON Orders.CustomerID = Customers.CustomerID;

-- Update
UPDATE Products SET Price = 29.99 WHERE ProductID = 5;

-- Delete
DELETE FROM Orders WHERE OrderID = 2001;

12



3. MySQL vs. MongoDB Comparison
Problem: Recommend a database for:

• High-frequency writes (10k/sec) with flexible schema
• Complex joins and ACID compliance

Solution:

• MongoDB: Ideal for high writes and schema flexibility (e.g., real-time analytics).
• MySQL: Better for joins and transactions (e.g., inventory management) [22].

Table 3: MySQL vs. MongoDB for Sample
Workloads

Workload MySQL MongoDB

Transactions/sec 5k 50k
JOIN Complexity Native Manual ($lookup)
Schema Changes Rigid Dynamic

References
[1] Smith, J., Doe, J.: Sql vs nosql: Six systems compared. In: Pro-

ceedings of the 12th International Conference on Data Science,
Technology and Applications, p. 132173. SciTePress, ??? (2025).
https://www.scitepress.org/publishedPapers/2025/132173/pdf/index.html

[2] Alhaj, T.A., Al-Dossari, H.: Performance analysis of nosql and relational
databases. Applied Sciences 10(23), 8524 (2020) https://doi.org/10.3390/
app10238524

[3] Varadarajan, R., Subramanian, K.: Analysis of SQL and NoSQL Database
Management Systems. https://philarchive.org/archive/VARAOS-2

[4] Verma, M., Shrivastava, V., Pandey, A., Singh, N.: The new era of database man-
agement system using mongodb. International Journal of Research Publication
and Reviews 5(3), 1743–1746 (2024)

[5] TechTarget: What Is a Database Management System (DBMS)?
https://www.techtarget.com/searchdatamanagement/definition/
database-management-system

13

https://doi.org/10.3390/app10238524
https://doi.org/10.3390/app10238524
https://philarchive.org/archive/VARAOS-2
https://www.techtarget.com/searchdatamanagement/definition/database-management-system
https://www.techtarget.com/searchdatamanagement/definition/database-management-system


[6] Rivery: Relational Vs NoSQL Databases. https://rivery.io/data-learning-center/
relational-vs-nosql-databases/

[7] DataCamp: Normalization in SQL (1NF - 5NF): A Beginner’s Guide. https://
www.datacamp.com/tutorial/normalization-in-sql

[8] IBM: Primary and Foreign Keys. https://www.ibm.com/docs/en/ida/9.1.1?
topic=entities-primary-foreign-keys

[9] Microsoft: Primary and Foreign Key Constraints. https://learn.microsoft.com/
en-us/sql/relational-databases/tables/primary-and-foreign-key-constraints

[10] W3Schools: SQL ALTER TABLE. https://www.w3schools.com/sql/sql_ref_
table.asp

[11] DZone: SQL DML Operations. https://dzone.com/articles/
sql-data-manipulation-language-dml-operations-inse

[12] Shiksha: DCL Commands in SQL. https://www.shiksha.com/online-courses/
articles/dcl-commands-in-sql/

[13] Scaler: TCL Commands in SQL. https://www.scaler.com/topics/
tcl-commands-in-sql/

[14] Academy, S.: Data Anomalies. https://learn.saylor.org/mod/page/view.php?id=
23144

[15] IBM: ACID Properties in DBMS. https://www.ibm.com/topics/
acid-transactions

[16] MongoDB: MongoDB Documentation. https://www.mongodb.com/docs/
manual/

[17] Kinsta: MySQL Vs MongoDB. https://kinsta.com/blog/mongodb-vs-mysql/

[18] Exchange, D.S.: MongoDB Indexing. https://dba.stackexchange.com/questions/
61416

[19] Tessell: MySQL Use Cases. https://www.tessell.com/blogs/mysql-concepts

[20] Astera: MongoDB Applications. https://www.astera.com/type/blog/
mongodb-vs-mysql/

[21] Jain, N.: Optimizing smart home energy management for sustainability using
machine learning (2024)

[22] AWS: Amazon RDS for MySQL. https://docs.aws.amazon.com/AmazonRDS/
latest/UserGuide/CHAP_MySQL.html

14

https://rivery.io/data-learning-center/relational-vs-nosql-databases/
https://rivery.io/data-learning-center/relational-vs-nosql-databases/
https://www.datacamp.com/tutorial/normalization-in-sql
https://www.datacamp.com/tutorial/normalization-in-sql
https://www.ibm.com/docs/en/ida/9.1.1?topic=entities-primary-foreign-keys
https://www.ibm.com/docs/en/ida/9.1.1?topic=entities-primary-foreign-keys
https://learn.microsoft.com/en-us/sql/relational-databases/tables/primary-and-foreign-key-constraints
https://learn.microsoft.com/en-us/sql/relational-databases/tables/primary-and-foreign-key-constraints
https://www.w3schools.com/sql/sql_ref_table.asp
https://www.w3schools.com/sql/sql_ref_table.asp
https://dzone.com/articles/sql-data-manipulation-language-dml-operations-inse
https://dzone.com/articles/sql-data-manipulation-language-dml-operations-inse
https://www.shiksha.com/online-courses/articles/dcl-commands-in-sql/
https://www.shiksha.com/online-courses/articles/dcl-commands-in-sql/
https://www.scaler.com/topics/tcl-commands-in-sql/
https://www.scaler.com/topics/tcl-commands-in-sql/
https://learn.saylor.org/mod/page/view.php?id=23144
https://learn.saylor.org/mod/page/view.php?id=23144
https://www.ibm.com/topics/acid-transactions
https://www.ibm.com/topics/acid-transactions
https://www.mongodb.com/docs/manual/
https://www.mongodb.com/docs/manual/
https://kinsta.com/blog/mongodb-vs-mysql/
https://dba.stackexchange.com/questions/61416
https://dba.stackexchange.com/questions/61416
https://www.tessell.com/blogs/mysql-concepts
https://www.astera.com/type/blog/mongodb-vs-mysql/
https://www.astera.com/type/blog/mongodb-vs-mysql/
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MySQL.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MySQL.html


[23] AWS: Amazon DocumentDB. https://aws.amazon.com/documentdb/

[24] Amazon Web Services: Architecting Near Real-time Personalized Recommen-
dations with Amazon Personalize. https://aws.amazon.com/blogs/architecture/
architecting-near-real-time-personalized-recommendations-with-amazon-personalize/

[25] Databricks: ACID Transactions in Databases. https://www.databricks.com/
glossary/acid-transactions

[26] IBM: Grant and Revoke Privileges. https://www.ibm.com/docs/SSEPEK_12.0.
0/intro/src/tpc/db2z_grantandrevokecontrolaccess.html

15

https://aws.amazon.com/documentdb/
https://aws.amazon.com/blogs/architecture/architecting-near-real-time-personalized-recommendations-with-amazon-personalize/
https://aws.amazon.com/blogs/architecture/architecting-near-real-time-personalized-recommendations-with-amazon-personalize/
https://www.databricks.com/glossary/acid-transactions
https://www.databricks.com/glossary/acid-transactions
https://www.ibm.com/docs/SSEPEK_12.0.0/intro/src/tpc/db2z_grantandrevokecontrolaccess.html
https://www.ibm.com/docs/SSEPEK_12.0.0/intro/src/tpc/db2z_grantandrevokecontrolaccess.html

	Introduction
	Database Management Fundamentals
	Relational Model Components
	SQL Operations
	CRUD and JOIN Queries
	Constraints and Referential Integrity

	Database Normalization
	Goals of Normalization
	Normalization Steps with Examples
	Data Anomalies and Solutions
	Denormalization

	MySQL vs MongoDB: A Comparative Analysis
	Data Models
	Query Languages
	Indexing
	Strengths and Weaknesses
	Use Case Scenarios
	Cloud Deployment

	Application: Amazon’s Product Recommendation System
	Schema Design
	Normalization to 3NF
	Indexing and Query Optimization
	Scalability
	MongoDB for Unstructured Behavioral Data

	Database Security and Transactions
	ACID Transactions
	Concurrency Control
	Database Security
	Real-World Implementations

	Exercises

