The Power of Redis Caching
Aditya Chuahan
Computer Science of Engineering
Arya College of Engineering and Information Technology (ACEIT), Kukas, Jaipur
Affiliated with Rajasthan Technical University (RTU), Kota
 Email: ascs25835@gmail.com
Abstract—Caching is a cornerstone of modern computing, enabling applications to handle large-scale data demands with minimal latency. Redis, a powerful in-memory data store, stands out among caching solutions for its speed, flexibility, and robust feature set. This paper explores Redis caching, starting with foundational concepts of caching, an in-depth examination of Redis architecture and mechanisms, practical use cases, and performance analyses. Index terms such as cache management, distributed systems, in-memory databases, Redis, and scalability underline the multifaceted nature of Redis as a tool for efficient data handling.
The discussion delves into Redis’s unique data structures—strings, hashes, lists, sets, and sorted sets—and its persistence options like snapshotting and AOF. Real-world use cases, including session management, leaderboards, message queues, and analytics, illustrate its versatility. Challenges such as memory management and persistence trade-offs are examined alongside strategies for performance optimization, including sharding, key expiration, and monitoring. Advanced features like Lua scripting and cluster support are highlighted for scalability.
Our findings demonstrate Redis's transformative impact on application performance and scalability, making it a vital asset in distributed systems. Future directions suggest exploring enhanced security features and AI integration to extend Redis’s applicability. By combining speed and adaptability, Redis continues to set benchmarks in cache management and data storage solutions.
Keywords—Cache management, distributed systems, in-memory databases, Redis, scalability.
1. INTRODUCTION
As technology and communication continue to develop, the use of databases has become widespread. Databases are a collection of data stored systematically on a computer that can be used, modified, or updated to obtain information within a distributed system [9]. Distributed systems are groups of autonomous computers connected via a network that function as a cohesive system, appearing as a single computer to users [10].
With the exponential growth of data stored in databases, the time required to process and retrieve information has significantly increased. To address this challenge, caching methods have emerged as effective solutions to enhance

data access performance [8]. One such tool for implementing caching is Redis. Redis is a high-performance, in-memory data storage technology that utilizes a "key-value" storage method. By storing data in memory, Redis significantly improves the speed of data access and processing. This has made Redis a popular choice for optimizing data storage and retrieval in modern systems, particularly where speed and scalability are critical requirements [3].
2. WHAT IS DATABASE?
A database is a collection of related data. By data, we mean known facts that can be recorded and that have implicit meaning. For example, consider the names, telephone numbers, and addresses of the people you know [4].
A database has the following implicit properties:
● Real-World Representation: It represents some aspect of the real world, sometimes called the mini world or the universe of discourse (UoD). Changes to the mini world are reflected in the database.
● Logical Coherence: It is a logically coherent collection of data, to which some meaning can be attached.
● Purpose-Built Design: It is designed, built, and populated with data for a specific purpose.
● Defined Users and Applications: It has an intended group of users and some preconceived applications in which these users are interested.
To summarize: a database has some source (i.e., the mini world) from which data is derived, some degree of interaction with events in the represented mini world, and an audience interested in using it.
Size and Complexity: A database can be of any size and complexity. For example, the list of names and addresses referred to earlier may consist of only a few hundred records, each with a simple structure. An example of a large commercial database is Amazon.com, which contains data for over 20 million books, CDs, videos, DVDs, games, electronics, apparel, and other items [1, 3].
Computerized vs. Manual Databases: A database may be generated and maintained manually or computerized. For example, a simple database like a telephone directory may be created and maintained manually. Huge and complex databases may be created and maintained either by a group of application programs written specifically for that task or by a database management system (DBMS) [1, 4].
2.1. Types of Database
Relational Database
A Relational Database organizes data into tables (rows and columns) and establishes relationships using keys. It supports Structured Query Language (SQL) for data manipulation and retrieval. Relational databases ensure data integrity and are ideal for structured data [6].
Example: MySQL - Widely used for web applications and business analytics.
NoSQL Database
NoSQL Databases are designed to handle unstructured, semi-structured, or dynamic data. They offer flexible schemas and horizontal scalability. Types include document, key-value, graph, and column-family databases, making them suitable for modern, large-scale applications [9].
Example: MongoDB - Popular for handling JSON-like documents and supporting dynamic schemas.
Object-Oriented Database
An Object-Oriented Database stores data as objects, similar to object-oriented programming languages. It integrates data with their associated methods, promoting seamless application-database interaction. It's suitable for multimedia, engineering designs, and simulations.
Example: ObjectDB - Used in Java-based applications for high-performance object storage.
Distributed Database
A Distributed Database spreads data across multiple interconnected systems, ensuring fault tolerance and efficient processing. It allows data to reside closer to the users, improving performance for global applications and large-scale networks.
Example: Apache Cassandra - Scalable and fault-tolerant for managing distributed data.
Cloud Database
A Cloud Database is hosted on cloud platforms, offering scalability, accessibility, and cost efficiency. It supports various database types and provides high availability, making it ideal for modern businesses and startups [6].
Example: Amazon RDS - Provides managed relational databases with robust cloud features.
3. IN-MEMORY DATABASE
Despite the dominance of disk-based data processing systems for Big Data [17], in-memory computing is recently gaining traction rapidly. This is fueled by several contributing factors: the increased capacity of main memory, the low cost of DRAM, and more importantly, the orders of magnitude higher main memory bandwidth than the most advanced disk- or flash-based storage. While in-memory databases have been studied since the 80s, recent advances in hardware technology have re-generated interests in hosting the entirety of the database in memory in order to provide faster accesses and real-time analytics. A comprehensive survey on in-memory data management and processing can be found in [33].
However, in-memory databases not only embrace opportunities with the emergence of new technology, they also face challenges and problems that are non-trivial to be addressed. Simply replacing the storage layer of a traditional disk-based database with memory will not satisfy the real-time performance requirements because of the retention of the clumsy components from traditional database systems, such as the buffer manager, latching, locking, and logging [8, 34]. Other sources of overhead from pointer-chasing, cache-unfriendly structures, transaction isolation, and syscalls further exacerbate the performance problems. In addition to the classical storage layer performance issues, in-memory databases are increasingly hitting the communication and concurrency bottlenecks [35, 29].
A significant amount of research has been done to address these challenges, through the design of new algorithms/data structures on top of the existing software stack, from the aspects of in-memory data placement [27], parallelism [7], efficient logging [21], concurrency control [29, 31], etc. Nevertheless, advances in hardware are fast changing the commodity processor scene. The availability of technologies such as NUMA architecture [20], SIMD instructions [30], RDMA networking, hardware transactional memory (HTM) [16], non-volatile memory (NVM), and on-chip GPUs [5], FPGAs, and other hardware accelerators, can potentially provide better performance with low overhead [16, 11, 9, 19].
4. CHALLENGES FOR IN-MEMORY DATABASE
4.1. Parallelism
In general, there are three levels of parallelism, i.e., data-level parallelism (e.g., bit-parallel, SIMD), shared-memory scale-up parallelism (e.g., thread/ process) and shared-nothing scale-out parallelism (e.g., distributed computation). Ideally, we would like to achieve linear scalability as the computation resources increase. This, however, is non-trivial and requires considerable tuning and well-designed algorithms. The fact that all these three levels of parallelism have been deployed in a wide variety.
4.2. Concurrency Control
Ancient concurrency control protocol is necessary and important in order to ensure the atomicity and isolation properties, and not to offset the benefit derived from parallelism. With the increas- ing number of machines that can be deployed in a cluster and the increasing number of CPU cores in each machine, it is not uncommon that more threads/processes will run in parallel, which dra- matically increases the complexity for concurrency control. Surprisingly, current concurrency control algorithms fail to scale beyond 1024 cores [32].
4.3. Communication
Network communication is incurred for a variety of critical operations: data replication for fault tolerance, information exchange for coordination, data transmission for data sharing or load balancing, and so on. The limited size of main memory of a single server, in contrast to the big volume of data, exacerbates the network communication requirement. However, the data access latency gap between main memory and network is huge, making communica tion efficiency important to the overall performance [25].
4.4. Storage
Even though in-memory databases store all the data in the main memory, the data should also be persisted to non-volatile storage for durability and fault tolerance. In traditional disk-based databases, this is achieved by logging each data update to a disk-resident write-ahead log. Logging to disk, how- ever, is prohibitively expensive in the context of in- memory databases due to the extremely slow disk access, in contrast to the fast memory access [31].
5. INTEGRATED SOFTWARE AND HARDWARE DESIGN
In this section, we discuss some open research directions in taking advantage of both software and hardware. We believe that hardware solutions, when combined with software solutions, would be able to fully exploit the potentials of in-memory databases [20].
Atomic primitives can be used for single object synchronization, and virtual snapshot by forking facilitates a hardware-assisted isolation among processes [12]. HTM combined with other concurrency control mechanisms (e.g., timestamp-based) can be an alternative to the lock-based mechanism, but its special features (e.g., limited transaction size, unexpected aborts under certain conditions) should be taken into consideration. A mix of these protection mechanisms should enable a more efficient concurrency control model. Since the bottleneck for in-memory databases shifts from disk to memory, a good concurrency control protocol also needs to consider the
underlying memory hierarchy, such as NUMA architecture and caches, whose performance highly depends on the data locality.
The coordination overhead caused by the 2PC protocol can be further alleviated, by eliminating distributed transactions via a dynamic data partition strategy or designing a protocol based on distributed atomic operations provided by RDMA, for example. A client-oriented transaction execution strategy, where the processing is performed at the client side simultaneously rather than in a centralized server, is also promising, which is made viable by the one-sided networking feature provided by RDMA [14].
In order to speed up the performance, various levels of parallelism should be exploited. Specifically, the data-level parallelism (e.g., bit-parallel, SIMD) can make extensive use of the “circuits” for parallelization. GPU, with a massively parallel architecture consisting of thousands of smaller cores, fits perfectly for embarrassingly parallel algorithms (e.g., filter, deep learning). Thus, a software-coordinated CPU-GPU framework, which combines CPU’s generality and GPU’s specificity, can be utilized to distribute the tasks with different parallelism properties to different units in the warehouse or OLAP systems. The emergence of MIC co-processors (e.g., Intel Xeon Phi) provides a promising alternative for parallelizing computation, with many lower-frequency in-order cores and wider SIMD [31, 25, 21].
Nevertheless, robust data structures that are parallelism-conscious, memory-economical, and access-efficient form the foundation for further parallelism exploration. For example, the skip-list, which allows fast point- and range-queries of an ordered sequence of elements with O(logn), O(\log n) O(logn) complexity, can potentially be an alternative to B-trees for in-memory databases, as it can be implemented latch-free easily and can be structured to be more parallelism-conscious (e.g., SIMD-friendly, NUMA-aware) [22]. Distributed computing requires fast networking in order to achieve high scalability, where RDMA can play a big role. However, simply relying on RDMA networking is not guaranteed to improve the system performance, due to the restrictions of RDMA, bottleneck shift issues, etc. Combined with a good partition strategy (i.e., to achieve data locality), and an efficient communication model (e.g., batch or coalescing transmission), the communication performance can be significantly enhanced [27]. Besides, special features provided by RDMA should be taken into consideration, such as inline data, unsignaled, unreliable transport type, to fully exert its performance potential.
A heterogeneous software-coordinated communication model is also worth investigating, which can exploit the advantages from both the Ethernet and RDMA networks. Moreover, with the increasing throughput of the RDMA network, the throughput of intra- and inter-server (i.e., memory bus among NUMA nodes and network in a cluster) is becoming similar [15].
Hence, it is possible to develop a unified system framework that can be used in both a single server with multiple NUMA nodes and a cluster connected via high-speed networks. For NVM-based in-memory databases, we believe a unified space management is required to effectively exploit its features (e.g., byte addressability and durable write). Although NVM is proposed to be placed side-by-side with DRAM on the memory bus, its distinct characteristics, such as limited endurance, write/read asymmetry, uncertainty of ordering, and atomicity make it difficult to work effectively and efficiently [19].
One way is to manage the NVM space as the main memory in a log-structured manner, such that the unnecessary reads/writes and the expensive syscalls, if used as a block device, will be eliminated, and the sequential write can be fully exploited. Due to the append-only feature of the log, the writes to NVM will be distributed uniformly among all cells, which in turn prolongs the lifetime of NVM. Besides, NVM enables more efficient fault tolerance strategies, if equipped with carefully designed algorithms to guarantee write atomicity and deterministic orderings [1]. The manipulation of hardware can be achieved either through syscalls or kernel-bypass methods. Some new hardware already provides direct kernel-bypass interfaces. But with kernel-bypass, the mature functionalities of the OS, such as memory management, concurrency control, and buffer management are no longer available [4].
It will also mean breaking the traditional boundaries of protection and separation of responsibilities. It is essential to retain key features of traditional OSes, even if direct access to the hardware is enabled. This can be achieved by moving the data path from the kernel space to the user space, resulting in a data-plane OS [8]. Alternatively, new ABI boundaries will have to be drawn so that infrequent yet secure operations are handed over to the OS, while others are executed directly in the user-space.
6. WHAT IS CACHING?
Cache replacement and prefetching, consistency management, and cooperative management are key cache management issues. Although these issues date back to traditional memory hierarchies and file-sharing systems, several distinctive features of the Web and Internet
necessitate different solutions [9]. First, there is the issue of size. The Internet is the world’s largest interconnected network. Google alone receives more than 2,000 search queries a second. Given the Internet and Web’s scale, any cache-management solution must be massively scalable—the proxy cache must be capable of handling numerous concurrent user requests [13].
Web application users also exhibit high heterogeneity in hardware and software configurations, connection bandwidth, and access behaviors [12]. This diversity level continues to increase as new platforms and access technologies—such as mobile users with wireless access—proliferate. Hence, a simple one-size-fits-all solution for cache management might never be feasible.
In addition to this heterogeneity, proxy cache consumers (Web browsers) and suppliers (servers) are loosely coupled. Unlike in many distributed file-sharing systems, this loose coupling is key to Internet and Web success [33]. However, it makes managing consistency and cooperation among proxy caches particularly difficult. Moreover, due to the lack of centralized administration, security and privacy issues are deeply complicated. Finally, the Web and the Internet change rapidly, both in traffic characteristics and network structures, which complicates analysis of the environment. The Web’s dynamic nature easily makes existing products and even research findings obsolete in a few years. Thus, we need a flexible and extendable interface for any Web-oriented solution.
6.1. Cache Replacement and Prefetching
Faced with insufficient disk space, a proxy must decide which existing objects to purge when a new object arrives. Cache replacement policies address this issue. The classical cache replacement policy is least recently used (LRU), which purges the oldest among the cached objects. In the late ’90s, researchers put significant effort into developing more intelligent cache replacement strategies [32]. However, LRU offers limited room for improvement; in practice, the simple LRU policy dominates in cache products.
Cache prefetching is related to replacement, but unlike data caching, which waits on object requests, prefetching proactively preloads data from the server into the cache to facilitate near-future accesses [34]. Studies have shown that, when combined with caching, prefetching can improve latency by up to 60 percent, while caching alone offers at best a 26-percent latency improvement. However, a cache prefetching policy must be carefully designed: if it fails to predict a user’s future accesses, it wastes network bandwidth and cache space. The prediction mechanism thus plays an important role in cache prefetching policy design [35]. We can classify prefetching policies into three categories based on the type of information the prediction mechanism uses:
Mixed Access Pattern
This policy uses aggregate access patterns from different clients, but doesn’t explore which client made the request. A typical example is the top-10 proposal, which uses popularity-based predictions [31]. Specifically, the scheme determines how many objects to prefetch from which servers using two parameters:
● M: The number of times the client has contacted a server before it can prefetch.
● N: The maximum number of objects the client can prefetch from a server.
If the number of objects fetched in the previous measurement period L reaches the threshold M, the client will prefetch the K most popular objects from the server, where K=min{N,L}K = \min \{ N, L \}K=min{N,L}.
Per-Client Access Pattern
Here, the policy first analyzes access patterns on a per-client basis, then uses the aggregated access patterns for prediction. An example is the popular Markov modeling analysis tool, in which the policy establishes a Markov graph based on access histories and uses the graph to make prefetching predictions. In the Markov graph, a set of Web objects (usually one or two objects) is represented as a node. If the same client accesses two nodes (A and B) in order within a certain period of time, the policy draws a direct link from A to B and assigns a weight with the transition probability from A to B [23].
To make a prefetching prediction, a search algorithm traverses the graph starting from the current object set and computes the access likelihood for its successors. The prefetching algorithm can then decide how many successors to preload, depending on factors such as access likelihood and the bandwidth available for prefetching [26].
Object Structural Information
Unlike the previous categories, which are access-history-based, object structural information schemes exploit the local information contained in objects themselves. Hyperlinks, for example, are good indicators of future access because users tend to access objects by clicking on links rather than typing new URLs [25].
The algorithm can also combine object information with access-pattern-based policies to further improve prediction efficiency and accuracy.
7. NOSQL DATABASE
Efficient Storage and Retrieval of Data with Availability and Scalability is the main purpose of NoSQL databases is efficient storage and retrieval of data with availability and scalability. NoSQL does not stand for "No to SQL"; it means "Not Only SQL" [10]. NoSQL databases are an alternative to traditional relational databases. The database industry has seen the introduction of many non-relational databases, such as MongoDB [11], HBase [9], and Neo4j [8], in recent years.
Depending upon the business requirement and strategy, a cloud vendor can choose any type of database. However, some designers of pre-relational databases claim that NoSQL databases are not efficient enough in handling data integrity [5].
8. IMPORTANCE OF NOSQL
In recent years, SQL vs. NoSQL has emerged as a heated topic of discussion on the Internet. The debate over "SQL vs. NoSQL" refers to relational versus non-relational databases. Traditional relational databases, due to their normalized data models and enforcement of strict ACID properties, are considered schema-based and transaction-oriented [7]. These databases require a strict predefined schema before storing data. Redefining the schema after data insertion can be disruptive.
In the era of Big Data, there is a constant need for adding new types of data to enrich applications. Relational database storage solutions can significantly impact speed and scalability [8]. Web services like Amazon and Google, which store terabytes and petabytes of data in their data centers, must handle massive read-write requests with minimal latency.
Scaling a relational database requires data distribution across multiple servers. This process involves collecting and combining information from numerous tables. Similarly, writing data must be performed across multiple tables in a coordinated manner, which can become a bottleneck for handling tables across servers. For relational databases, join operations can significantly slow down the system, especially when millions of users query tables with millions of rows [4].
8.1. Features of NoSQL
NoSQL databases offer unique features that address these challenges:
Scale-out:
● Scaling out achieves high performance in distributed environments by using many general-purpose machines [11].
● NoSQL databases allow automatic data distribution across a large number of machines when new machines are added to the cluster.
● Scale-out is evaluated in terms of scalability and elasticity.
Flexibility:
● NoSQL databases do not require a predefined schema, allowing users to store data of various structures in the same database table [23].
● However, most NoSQL databases do not support high-level query languages like SQL.
Data Replication:
● NoSQL databases support data replication, where a copy of the data is distributed to different systems for redundancy and load distribution.
● However, data consistency among replicas may sometimes be compromised, with eventual consistency often being the goal.
● Consistency and availability are key factors for evaluating replication [3].
9. NOSQL DATA MODELS
NoSQL databases can be categorized into various data models, as discussed below [1][2][4]:
9.1. Key-Value Data Stores
Key-value data stores are designed for handling highly concurrent access to the database. They are the simplest yet most powerful data stores.
● Data Structure: Each data item consists of a unique key and its associated value. The application generates the key, which is then used to retrieve the associated value.
● Operation: The operations are mostly limited to reading and writing data. Applications hash the key to locate data in the database.
For example, in Fig. 1, a key ('Emp102') is used to retrieve data from a key-value store. The hash function maps the key to the location of the data in the store.
Examples: Redis, Voldemort, and Membase are prominent key-value stores.
9.2. Document-Oriented Data Stores
Document-oriented databases are similar to key-value stores but provide greater transparency for the stored data.
● Data Structure: These databases store data in documents that are self-describing entities. Information is stored in formats like XML, BSON, or JSON.
● Querying: Unlike key-value stores, document databases allow queries based on both keys and attribute values within documents.
For example, in Fig. 2, the database can be queried using fields like 'FirstNm,' 'LastNm,' and 'age,' in addition to the key ('Employee ID').
Examples: MongoDB [11], CouchDB, and Riak are prominent document stores.
10. COMPARISON OF NOSQL DATABASES
There is not any hard and fast rule to decide which NoSQL database is best for an enterprise. Business Model, strategy, cost and transaction model demand are few of the important factors that an enterprise should consider while
choosing a database. Following are a few of the facts which may help in choosing a database for an enterprise.
● If the applications simply store and retrieve data items which are opaque to the database management system and blobs by using a key as identifier, then a key-value store is the best choice. But if the application likes to query the database with some attribute value other than the key, it fails. Also while updating or reading an individual field in a record key-value store is a failure.
● When applications are more selective and need to filter records based on non-key fields, or retrieve or update individual fields in a record as it, then a document database is an efficient solution. Document data stores offer better query possibilities than key-value data stores.
● When the applications need to store records with hundreds or thousands of fields, but retrieves a subset of those fields in most of the queries that it performs, in that case column-family data store is an efficient choice. Such data stores are suitable for large datasets that scale high.
● If the applications need to store and process information on heavily linked data with highly complex relationships between the entities, a graph database is the best choice. In a graph database, entities and relationships between the entities are treated with equal importance. do it some for this.
11. REDIS
Redis (REmote DIctionary Server) is an open-source, in-memory key-value store that supports a wide range of data structures such as strings, hashes, lists, sets, and sorted sets. Its simplicity, high performance, and scalability make it an ideal choice for caching in distributed systems [30]. By using Redis as a caching layer, applications can offload frequent and repetitive read requests from slower backend systems, thereby improving response times and user experience [29].
12. ARCHITECTURE OF REDIS
Redis operates as an in-memory database and supports data persistence by saving data to disk periodically or appending write operations to a log. The architecture consists of the following key components:
● Client-Server Model: Redis operates on a client-server model, where clients send commands to the Redis server over TCP connections.
● Single-threaded Model: Redis uses a single-threaded event loop to process commands, ensuring predictable performance.
● Data Structures: Redis provides a variety of data structures, enabling developers to cache data in formats that suit their application needs.
● Persistence Options: Redis supports RDB (point-in-time snapshots) and AOF (Append Only File) for persisting data.
13. KEY USE CASES OF REDIS CACHING
Redis caching is implemented across a variety of use cases, including [24], [17], [18]:
● Session Management: Storing session data in Redis to provide fast access and scalability in web applications.
● Database Query Caching: Reducing database load by caching frequent query results in Redis.
● Content Delivery: Caching API responses or frequently accessed content to improve load times. ● Leaderboard and Ranking Systems: Utilizing sorted sets for building real-time leaderboards.
● Rate Limiting: Implementing rate-limiting mechanisms using Redis data structures such as counters.
14. IMPLEMENTATION STEPS
14.1. Setting Up Redis
Install Redis: Install Redis on the server or use a managed Redis service such as AWS ElastiCache, Azure Cache for Redis, or Redis Enterprise.
Configure Redis: Adjust the Redis configuration file (redis.conf) to set parameters like memory limits, eviction policies, and persistence options.
14.2. Integration with Applications
Choose a Redis Client: Select a Redis client library suitable for your programming language (e.g., redis-py for Python, Jedis for Java, or node-redis for Node.js).
Connect to Redis: Use the client library to establish a connection to the Redis server.
Implement Caching Logic:
● For read-heavy operations, check Redis for cached data before querying the primary database.
● Cache the results in Redis after retrieving them from the database.
● Set an appropriate expiration time for cached data to ensure freshness
14.3. Cache Invalidation Strategies
● Time-to-Live (TTL): Use Redis’s TTL feature to automatically expire cache entries after a specified time.
● Manual Invalidation: Explicitly delete cache entries when the underlying data changes.
● Write-through Cache: Update both the cache and the database during write operations.
● Cache-aside Pattern: Let the application manage cache population and invalidation.
14.4. Monitoring and Optimization
Use Redis’s monitoring tools such as INFO, MONITOR, and RedisInsight to track performance metrics.Optimize the memory usage by selecting appropriate data structures and eviction policies (e.g., LRU, LFU).
15. ADVANTAGES AND CHALLENGES OF REDIS CACHING
Redis offers high performance due to its in-memory architecture, enabling extremely low-latency data access. Its flexibility in supporting diverse data structures allows it to handle complex caching scenarios, and it can scale horizontally through clustering or sharding. Optional persistence ensures data durability, making Redis reliable for certain use cases. Additionally, Redis is easy to use with simple APIs and broad language support. However, Redis’s memory-based nature limits the amount of data it can store to the available RAM. Achieving data consistency in distributed setups can be challenging, and improper configuration of eviction policies may lead to data loss or cache thrashing.
16. CONCLUSION
Redis caching is a cornerstone of modern application architecture, offering unmatched performance and scalability for diverse use cases. By leveraging its in-memory data storage, rich data structure support, and flexible persistence options, developers can optimize application response times while reducing backend server load. Redis's scalability and clustering capabilities ensure that it can handle the demands of high-traffic systems effectively. However, careful management of memory usage, eviction policies, and distributed setups is crucial to overcoming its limitations. Adhering to best practices ensures Redis caching implementations are robust, reliable, and efficient, making Redis an invaluable tool for enhancing user experiences in data-intensive environments.
REFERENCES
[1] A. Belay, G. Prekas, A. Klimovic, S. Grossman, C. Kozyrakis, and E. Bugnion. "Ix: A protected dataplane operating system for high throughput and low latency." In OSDI '14, pages 49–65, 2014.
[2] Q. Cai, H. Zhang, G. Chen, B. C. Ooi, and K.-L. Tan. "Memepic: Towards a database system architecture without system calls." Technical report, NUS, 2015.
[3] C. Cascaval, C. Blundell, M. Michael, H. W. Cain, P. Wu, S. Chiras, and S. Chatterjee. "Software transactional memory: Why is it only a research toy?" Queue, 6(5):40–46, Sept. 2008.
[4] Chelsio. "RoCE at a crossroads." Technical report, Chelsio Communications Inc., 2014.
[5] S. Damaraju, V. George, S. Jahagirdar, T. Khondker, R. Milstrey, S. Sarkar, S. Siers, I. Stolero, and A. Subbiah. "A 22nm IA multi-CPU and GPU system-on-chip." In ISSCC '12, pages 56–57, 2012.
[6] J. DeBrabant, A. Joy, A. Pavlo, M. Stonebraker, S. Zdonik, and S. R. Dulloor. "A prolegomenon on OLTP database systems for non-volatile memory." In ADMS '14, pages 57–63, 2014.
[7] Z. Feng, E. Lo, B. Kao, and W. Xu. "Byteslice: Pushing the envelope of main memory data processing with a new storage layout." In SIGMOD '15, 2015.
[8] S. Harizopoulos, D. J. Abadi, S. Madden, and M. Stonebraker. "OLTP through the looking glass, and what we found there." In SIGMOD '08, pages 981–992, 2008.
[9] S. Jha, B. He, M. Lu, X. Cheng, and H. P. Huynh. "Improving main memory hash joins on Intel Xeon Phi processors: An experimental approach." In PVLDB '15, pages 642–653, 2015.
[10] E. P. C. Jones, D. J. Abadi, and S. Madden. "Low overhead concurrency control for partitioned main memory databases." In SIGMOD '10, pages 603–614, 2010.
[11] A. Kalia, M. Kaminsky, and D. G. Andersen. "Using RDMA efficiently for key-value services." In SIGCOMM '14, pages 295–306, 2014.
[12] A. Kemper and T. Neumann. "Hyper: A hybrid OLTP&OLAP main memory database system based on virtual memory snapshots." In ICDE '11, pages 195–206, 2011.
[13] P.-A. Larson, S. Blanas, C. Diaconu, C. Freedman, J. M. Patel, and M. Zwilling. "High-performance concurrency control mechanisms for main-memory databases." In PVLDB '11, pages 298–309, 2011.
[14] J. Lee, Y. S. Kwon, F. Farber, M. Muehle, C. Lee, C. Bensberg, J. Y. Lee, A. H. Lee, and W. Lehner. "SAP HANA distributed in-memory database system: Transaction, session, and metadata management." In ICDE '13, pages 1165–1173, 2013.
[15] S. Lee, M. Kim, G. Do, S. Kim, H. Lee, J. Sim, N. Park, S. Hong, Y. Jeon, K. Choi, et al. "Programming disturbance and cell scaling in phase-change memory: For up to 16nm based 4F2 cell." In VLSIT '10, pages 199–200, 2010.
[16] V. Leis, A. Kemper, and T. Neumann. "Exploiting hardware transactional memory in main-memory databases." In ICDE '14, pages 580–591, 2014.
[17] F. Li, B. C. Ooi, M. T. Ozsu, and S. Wu. "Distributed data management using MapReduce." ACM Computing Surveys, 46(3):31:1–31:42, Jan. 2014.
[18] H. Li, X. Wang, Z.-L. Ong, W.-F. Wong, Y. Zhang, P. Wang, and Y. Chen. "Performance, power, and reliability trade-offs of STT-RAM cell subject to architecture-level requirement." IEEE Transactions on Magnetics, 47(10):2356–2359, Oct. 2011.
[19] D. Loghin, B. M. Tudor, H. Zhang, B. C. Ooi, and Y. M. Teo. "A performance study of big data on small nodes." In PVLDB '15, 2015.
[20] L. M. Maas, T. Kissinger, D. Habich, and W. Lehner. "Buzzard: A NUMA-aware in-memory indexing system." In SIGMOD '13, pages 1285–1286, 2013.
[21] N. Malviya, A. Weisberg, S. Madden, and M. Stonebraker. "Rethinking main memory OLTP recovery." In ICDE '14, pages 604–615, 2014.
[22] C. Mitchell, Y. Geng, and J. Li. "Using one-sided RDMA reads to build a fast, CPU-efficient key-value store." In USENIX ATC '13, pages 103–114, 2013.
[23] T. Neumann, T. Mühlbauer, and A. Kemper. "Fast serializable multi-version concurrency control for main-memory database systems." In SIGMOD '15, 2015.
[24] A. Pavlo, C. Curino, and S. Zdonik. "Skew-aware automatic database partitioning in shared-nothing, parallel OLTP systems." In SIGMOD '12, pages 61–72, 2012.
[25] K. Ren, A. Thomson, and D. J. Abadi. "Lightweight locking for main memory database systems." In PVLDB '13, pages 145–156, 2013.
[26] L. Rizzo. "Netmap: A novel framework for fast packet I/O." In USENIX ATC '12, pages 101–112, 2012.
[27] S. M. Rumble, A. Kejriwal, and J. Ousterhout. "Log-structured memory for DRAM-based storage." In FAST '14, pages 1–16, 2014.
[28] S. Sanfilippo and P. Noordhuis. "Redis." http://redis.io, 2009.
[29] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden. "Speedy transactions in multicore in-memory databases." In SOSP '13, pages 18–32, 2013.
[30] T. Willhalm, N. Popovici, Y. Boshmaf, H. Plattner, A. Zeier, and J. Schaffner. "SIMD-scan: Ultra fast in-memory table scan using on-chip vector processing units." In PVLDB '09, pages 385–394, 2009.
[31] C. Yao, D. Agrawal, P. Chang, G. Chen, B. C. Ooi, W.-F. Wong, and M. Zhang. "DGCC: A new dependency graph based concurrency control protocol for multicore database systems." ArXiv e-prints, Mar. 2015.
[32] X. Yu, G. Bezerra, A. Pavlo, S. Devadas, and M. Stonebraker. "Staring into the abyss: An evaluation of concurrency control with one thousand cores." In PVLDB '15, pages 209–220, 2014.
[33] H. Zhang, G. Chen, B. C. Ooi, K.-L. Tan, and M. Zhang. "In-memory big data management and processing: A survey." TKDE, 27(7):1920–1947, July 2015.
[34] H. Zhang, G. Chen, W.-F. Wong, B. C. Ooi, S. Wu, and Y. Xia. "Anti-caching-based elastic data management for big data." In ICDE '15, pages 592–603, 2014.
[35] H. Zhang, B. M. Tudor, G. Chen, and B. C. Ooi. "Efficient in-memory data management: An analysis." In PVLDB '14, pages 833–836, 2014.
