
Software Engineering

Nilanjan Chatterjee 1, Monu Sharma 2, Navom Saxena 3,
Anushka Raj Yadav 4, Shubneet 5

1Advanced Micro Devices, Austin ,Texas, USA.
2 Valley Health, Winchester, Virginia, USA.

3Senior Machine Learning Engineer, Meta, New York, USA.
4,5Department of Computer Science, Chandigarh University, Gharuan,

Mohali, 140413, Punjab, India.

Contributing authors: nilanjan.9325@gmail.com; monufscm@gmail.com;
navom.saxena@gmail.com; ay462744@gmail.com;

jeetshubneet27@gmail.com;

Abstract
This chapter examines fundamental and contemporary methodologies in software
engineering, focusing on the systematic development of reliable and scalable soft-
ware systems. It analyzes the evolution from traditional Software Development
Life Cycle (SDLC) models like Waterfall to modern Agile practices, emphasiz-
ing iterative development and continuous feedback loops. The role of automated
testing frameworks in ensuring software quality is explored, alongside essential
collaboration tools such as Git for version control and JIRA for project tracking.
Core software design principles (e.g., SOLID, DRY) are discussed as founda-
tions for maintainable architectures, complemented by strategies for managing
technical debt during software maintenance. A case study of SpaceX’s CI/CD
pipeline demonstrates the application of these principles in mission-critical sys-
tems, highlighting how automated deployment and rigorous testing enable rapid
iteration for complex aerospace software. The chapter synthesizes theoretical con-
cepts with practical implementations, providing a comprehensive view of software
engineering’s role in addressing modern computational challenges [1, 2]

Keywords: SDLC, Waterfall, Agile, Unit Testing, CI/CD.

1

https://orcid.org/0009-0000-7901-3434
https://orcid.org/0009-0001-2958-4404 
https://orcid.org/0009-0005-2610-9287
https://orcid.org/0009-0004-3943-0646
https://orcid.org/0009-0004-9748-380X


1 Introduction

1.1 Software Engineering: Definition and Importance
Software engineering is the systematic application of engineering principles to the
design, development, testing, and maintenance of software systems. It ensures the
creation of robust, scalable solutions that meet user requirements while adhering to
quality standards [3]. In today’s digital age, software engineering underpins critical
infrastructure across industries-from healthcare systems managing patient data to
financial platforms processing billions of transactions daily. Its importance lies in:

• Building fault-tolerant systems that handle unexpected failures
• Enabling scalability to support growing user bases (e.g., social media platforms)
• Ensuring security against cyber threats through rigorous design practices

1.2 Evolution of SDLC Models
The software development lifecycle (SDLC) has evolved significantly since the 1970s:

• Waterfall Model (1970s): A linear, sequential approach with distinct phases
(requirements, design, implementation, testing, deployment). While structured,
its rigidity often led to delayed feedback and costly late-stage changes [4].

• Agile (2001): Introduced iterative development through sprints, enabling con-
tinuous customer feedback. The Agile Manifesto prioritized working software over
comprehensive documentation, revolutionizing time-to-market strategies.

• DevOps (2009): Bridged development and operations teams through
automation, continuous integration/continuous deployment (CI/CD), and
infrastructure-as-code. This reduced deployment cycles from months to hours in
organizations like SpaceX [5].

1.3 Chapter Structure and Critical Components
This chapter examines:

• SDLC models (Waterfall vs. Agile vs. DevOps)
• Automated testing frameworks and their role in CI/CD
• Essential tools (Git, JIRA) for collaboration and traceability
• Software design principles (SOLID, DRY) and maintenance strategies
• Real-world case studies (e.g., SpaceX’s Starship CI/CD pipeline)

Processes, testing, and tooling form the backbone of modern software engineering.
Automated testing prevents 40% of post-deployment defects, while version control
systems like Git enable collaborative development across global teams. As systems
grow increasingly complex-with the average enterprise application now containing over
10 million lines of code-these practices ensure maintainability, security, and business
continuity [3].

2



2 SDLC Models: Waterfall vs. Agile
Software Development Life Cycle (SDLC) models provide structured approaches to
software creation, balancing predictability, adaptability, and stakeholder needs. Two
of the most widely adopted paradigms are the Waterfall and Agile models, each with
distinct philosophies, strengths, and trade-offs.

2.1 Waterfall Model: Sequential Structure, Pros, and Cons
The Waterfall model is a classical, linear SDLC methodology where development
proceeds through distinct phases in sequence: requirements, design, implementation,
testing, deployment, and maintenance [6]. Each phase must be completed before the
next begins, and revisiting previous phases is discouraged.

Pros:

• Clarity and Documentation: Extensive documentation and upfront require-
ments definition ensure all stakeholders understand the project scope and
objectives.

• Predictable Timelines and Costs: Clearly defined phases and milestones
enable accurate scheduling and budgeting.

• Ease of Onboarding: New team members can quickly get up to speed using
detailed documentation.

• Testing Simplicity: Test scenarios are planned during the requirements phase,
streamlining the verification process.

Cons:

• Rigidity: Accommodating changes after requirements are set is difficult and
costly.

• Delayed Feedback: Users see the product only after full development, increas-
ing the risk of unmet needs.

• Longer Delivery Times: Sequential phases can slow down release cycles
compared to iterative approaches.

• Limited Flexibility: The model struggles to adapt to evolving requirements or
market shifts.

2.2 Agile Model: Iterative Sprints, Adaptability, and Feedback
Agile SDLC is an iterative, flexible approach emphasizing collaboration, continuous
feedback, and incremental delivery [7]. Work is divided into short cycles called sprints
(typically 1–4 weeks), with each sprint producing a potentially shippable product
increment.

Key Features:

• Continuous Feedback: Regular reviews and retrospectives allow teams to
adapt quickly to changing requirements.

3



• Customer Collaboration: Ongoing stakeholder involvement ensures the prod-
uct aligns with user needs.

• Incremental Delivery: Frequent releases enable faster value delivery and early
defect detection.

• Team Empowerment: Cross-functional teams self-organize and innovate freely.

Challenges:

• Scope Management: Frequent changes can lead to scope creep if not managed
carefully.

• Planning Uncertainty: Less upfront planning may make long-term scheduling
and budgeting harder.

• Stakeholder Engagement: Agile requires active, ongoing participation from
users and sponsors.

2.3 Comparison Table: Waterfall vs. Agile

Table 1: Comparison of Waterfall and Agile SDLC Models
Aspect Waterfall Agile
Process Structure Linear, sequential phases Iterative, incremental sprints
Flexibility Low; changes are difficult High; changes welcomed

throughout
Documentation Extensive, upfront Lightweight, as needed
Customer Involve-
ment

Minimal after requirements Continuous, throughout
project

Delivery Single release at end Frequent, incremental releases
Risk Management Issues found late Early detection and adapta-

tion

2.4 Industry Context
Modern software projects increasingly favor Agile for its adaptability and rapid feed-
back, especially in dynamic markets and innovative domains. However, Waterfall
remains valuable for projects with well-defined requirements, regulatory constraints,
or where predictability is paramount. The choice of SDLC model should align with
project complexity, stakeholder needs, and organizational culture [6, 7].

3 Software Testing: Unit and Integration

3.1 Unit Testing: Purpose and JUnit Example
Unit testing verifies individual code components in isolation to ensure they function
as intended. Its primary goals include early bug detection, code quality assurance,
and enabling safe refactoring [8].

4



// Calculator.java
public class Calculator {

public int add(int a, int b) {
return a + b;

}
}

// CalculatorTest.java
import org.junit.jupiter.api.Test;
import static org.junit.jupiter.api.Assertions.assertEquals;

class CalculatorTest {
@Test
void testAdd() {

Calculator calc = new Calculator();
assertEquals(4, calc.add(2, 2));

}
}

Key JUnit features:

• @Test annotation marks test methods
• Assertion methods like assertEquals()
• Lifecycle methods (@BeforeEach, @AfterEach)

3.2 Integration Testing: Verifying Module Interactions
Integration testing validates interactions between system components, focusing on
data flow and interface compatibility [9].

Table 2: Unit vs Integration Testing Comparison
Aspect Unit Testing Integration Testing
Scope Single class/method Multiple components
Focus Internal logic Interfaces and data flow
Tools JUnit, TestNG Postman, RestAssured
Execution Time Milliseconds Seconds/Minutes

Common integration test scenarios:

• API communication between microservices
• Database transactions with application logic
• Third-party service integrations

5



3.3 Automated Testing in CI/CD
Continuous Integration pipelines leverage automated testing to:

• Run 100+ test cases per code commit
• Provide feedback within 5-10 minutes
• Enable deployment-ready builds

# Sample GitHub Actions CI Configuration
name: CI Pipeline
on: [push]
jobs:

build:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: Run Unit Tests

run: mvn test
- name: Integration Tests

run: mvn verify -Pintegration

3.4 Benefits of Automated Testing
• Early Bug Detection: 40% fewer post-deployment defects
• Regression Prevention: 85% test case reuse across versions
• Faster Releases: 70% reduction in manual testing time
• Improved Coverage: 200+ test scenarios/hour execution

4 Tools for Modern Software Development

4.1 Git: Version Control, Branching, Merging
Git is a distributed version control system enabling collaborative development through
branching and merging. Key features include:

• Branching: Create isolated environments for features/bug fixes:

git checkout -b feature/login

• Merging: Combine branches while resolving conflicts:

git checkout main
git merge feature/login

6



• Rebasing: Maintain linear history by rewriting commits

Git’s branching model allows teams to work simultaneously without disrupting the
main codebase [10].

4.2 JIRA: Agile Project Tracking
JIRA supports Agile methodologies through:

• User Stories: Break requirements into actionable tasks
• Sprints: Time-boxed iterations (2-4 weeks)
• Boards: Visualize workflow (Scrum/Kanban)

Table 3: Scrum vs Kanban in JIRA
Aspect Scrum Kanban
Workflow Sprint-based Continuous flow
Release Cycle End of sprint On-demand
Planning Detailed sprint planning Minimal upfront planning
Backlog Prioritized sprint backlog Dynamic active queue

JIRA’s advanced reporting helps teams track velocity and burn-down charts [11].

4.3 CI/CD Tools: Jenkins & GitHub Actions
• Jenkins: Open-source automation server

pipeline {
agent any
stages {

stage(’Build’) { steps { sh ’mvn package’ } }
stage(’Test’) { steps { sh ’mvn test’ } }

}
}

• GitHub Actions: Cloud-native CI/CD

name: CI
on: [push]
jobs:

build:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4

7



- run: npm install && npm test

These tools automate build, test, and deployment pipelines [12]. Recent research
demonstrates that integrating machine learning and predictive analytics into CI/CD
pipelines can further optimize resource allocation, reduce operational costs, and
enhance the reliability of automated software delivery[13].

4.4 Workflow Example: Code Commit to Deployment
1. Developer creates feature branch: git checkout -b feature/payment
2. Commits changes: git commit -m "Add stripe integration"
3. Pushes to remote: git push origin feature/payment
4. Opens pull request (GitHub/GitLab)
5. CI pipeline triggers (GitHub Actions/Jenkins):

• Runs unit/integration tests
• Builds Docker image
• Deploys to staging

6. After approval, code merges to main
7. CD pipeline deploys to production
8. JIRA ticket moves to "Done" column

5 Software Design Principles

5.1 SOLID Principles
The SOLID principles provide a foundation for building maintainable, scalable object-
oriented systems [14]:

• Single Responsibility (SRP): A class should have only one reason to change.
• Open/Closed (OCP): Classes open for extension but closed for modification.
• Liskov Substitution (LSP): Subtypes must be substitutable for base types.
• Interface Segregation (ISP): Clients shouldn’t depend on unused interfaces.
• Dependency Inversion (DIP): Depend on abstractions, not concretions.

5.2 DRY, KISS, and YAGNI
Complementary principles for lean development:

• DRY (Don’t Repeat Yourself): Eliminate code duplication through abstrac-
tion.

• KISS (Keep It Simple): Avoid unnecessary complexity in design.
• YAGNI (You Aren’t Gonna Need It): Implement features only when

required [15].

8



5.3 Example: Refactoring for Single Responsibility
Original class violating SRP:

class Employee {
void calculateSalary() { /* ... */ }
void generateReport() { /* ... */ }
void saveToDatabase() { /* ... */ }

}

Refactored classes adhering to SRP:

class Employee { /* Core data structure */ }
class SalaryCalculator {

void calculateSalary(Employee e) { /* ... */ }
}
class ReportGenerator {

void generateReport(Employee e) { /* ... */ }
}
class EmployeeRepository {

void saveToDatabase(Employee e) { /* ... */ }
}

5.4 Impact of Design Principles
• Maintainability: Changes affect isolated components (e.g., modifying reports

doesn’t impact salary logic).
• Scalability: New features added via extension (OCP) rather than modification.
• Testability: Single-responsibility classes enable focused unit tests.
• Reduced Technical Debt: YAGNI prevents over-engineering; DRY minimizes

redundant code.

Adhering to these principles reduces bug density by 40% and accelerates feature
delivery by 30% in enterprise systems [15].

6 Software Maintenance and Evolution

6.1 Types of Software Maintenance
Software maintenance ensures systems remain functional, secure, and aligned with
user needs. It is categorized into four types [16]:

6.2 Legacy Code Challenges and Refactoring
Legacy systems often face:

• Documentation Gaps: Obsolete or missing specs

9



Table 4: Software Maintenance Types
Type Purpose
Corrective Fix defects and errors (e.g., patching security vulnerabilities)
Adaptive Adjust to environmental changes (e.g., OS upgrades, regula-

tory compliance)
Perfective Enhance functionality/performance (e.g., UI improvements,

feature additions)
Preventive Reduce future risks (e.g., code refactoring, documentation

updates)

• Technical Debt: Accumulated shortcuts hinder progress
• Dependency Risks: Outdated libraries with unpatched vulnerabilities

Refactoring strategies include:

• Incremental Refactoring: Small, iterative code improvements
• Strangler Pattern: Gradually replace legacy components with microservices
• Reverse Engineering: Rebuild documentation from code

6.3 Technical Debt: Causes and Management
Technical debt arises from:

• Business Pressures: Rushed releases bypassing best practices
• Skill Gaps: Developers lacking domain knowledge
• Process Issues: Delayed refactoring, poor testing

Management techniques:

• Debt Tracking: Log issues in JIRA/Asana with priority labels
• Automated Testing: Prevent new debt via CI/CD pipelines
• Refactoring Sprints: Allocate 20% of dev time to debt reduction

6.4 Example: Monolith to Microservices Migration
Migrating monolithic apps to microservices involves:

1. Identify decoupled functionalities (e.g., payment processing)
2. Extract modules into independent services
3. Implement API gateways for communication
4. Phase out legacy components incrementally

// Monolithic architecture
class ECommerceApp {

processOrder() { /* Handles payment, inventory, shipping */ }
}

10



// Microservices architecture
class PaymentService { processPayment() {} }
class InventoryService { updateStock() {} }
class ShippingService { scheduleDelivery() {} }

6.5 Importance for Mission-Critical Systems
Long-lived systems (e.g., aerospace, healthcare) require maintenance to:

• Ensure 99.999% uptime (5 minutes/year downtime)
• Meet evolving compliance standards (e.g., HIPAA, GDPR)
• Integrate with modern infrastructure (e.g., cloud, IoT)

Neglecting maintenance increases outage risks by 70% and triples recovery
costs [17].

7 Case Study: SpaceX’s CI/CD Pipeline for Starship
Software

7.1 Overview: Mission-Critical Software Delivery
SpaceX’s Starship program requires unprecedented software reliability to handle com-
plex orbital maneuvers, in-flight abort systems, and multi-planetary mission profiles.
With human lives and billion-dollar payloads at stake, software updates must be deliv-
ered rapidly while maintaining 99.9999% reliability. Traditional aerospace software
cycles (12-18 months) were incompatible with SpaceX’s iterative rocket development,
necessitating a CI/CD approach that now handles 17,000 daily deployments [18].

7.2 CI/CD Pipeline Architecture

Code Commit Build Test Deploy

Hardware-in-Loop Canary Releases

Fig. 1: SpaceX’s CI/CD pipeline with hardware simulation

Key pipeline components:

• Automated Builds: Cross-compiled for radiation-hardened flight computers
• Feature Toggles: Enable experimental algorithms without redeployment
• Canary Releases: Test updates on single engine controllers first

11



Table 5: SpaceX Testing Matrix
Test Type Environment Frequency
Unit Tests Isolated Linux Containers Per Commit
Integration Table Rocket (HW-in-loop) Hourly
Flight Simulation 6-DOF Physics Engine Continuous
Destructive "Cutting the Strings" Failures Weekly

7.3 Testing and Safety Mechanisms
Rollback strategies include:

• Triple redundancy with 3x flight computers
• 50ms failover to backup control algorithms
• Ground-based override capabilities

7.4 DevOps Culture and Outcomes
SpaceX’s software team structure:

• Cross-Functional Teams: 60% developers, 30% test engineers, 10% flight ops
• Continuous Feedback: Post-launch telemetry directly informs sprint planning
• Automation First: 98% test coverage before human review

Results:

• 3.4x faster iteration than legacy aerospace systems
• 78% reduction in post-launch anomalies
• 12-hour emergency patch deployment capability

"Failure is not an option, but rapid failure recovery is mandatory" - SpaceX
Software Lead [19].

8 Exercises

8.1 Write JUnit Unit Test for Calculator Function
// Calculator.java
public class Calculator {

public int add(int a, int b) {
return a + b;

}
}

// CalculatorTest.java
import org.junit.jupiter.api.Test;
import static org.junit.jupiter.api.Assertions.assertEquals;

12



class CalculatorTest {
@Test
void testAdd() {

Calculator calc = new Calculator();
assertEquals(4, calc.add(2, 2));

}
}

8.2 Simulate Agile Sprint with Git/JIRA
1. Create feature branch: git checkout -b feature/login
2. Commit changes: git commit -m "Implement OAuth2 integration"
3. Push to remote: git push origin feature/login
4. Create JIRA ticket:

• Project: Starship Navigation
• Type: Story
• Sprint: Sprint 15
• Status: In Progress

8.3 Set Up CI Pipeline
Jenkinsfile Example:

pipeline {
agent any
stages {

stage(’Build’) { steps { sh ’mvn package’ } }
stage(’Test’) { steps { sh ’mvn test’ } }

}
}

GitHub Actions Example:

name: CI
on: [push]
jobs:

build:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- run: mvn test

13



Table 6: Waterfall vs Agile Characteristics
Aspect Waterfall Agile
Requirements Fixed upfront Evolving
Change Management Difficult Embraced
Testing Phase Final stage Continuous
Documentation Extensive Minimal

8.4 Waterfall vs Agile Comparison

8.5 Automated Testing in Mission-Critical Systems
SpaceX’s Starship software employs:

• 100% branch coverage via automated unit tests
• Hardware-in-loop (HIL) simulation testing
• Triple redundancy with automated failover
• Static code analysis in CI pipelines

This reduces critical failures by 92% compared to manual testing [20].

References
[1] Wehrheim, H., Cabot, J.: Fundamental approaches to software engineering. In:

European Joint Conferences on Theory and Practice of Software (ETAPS 2020).
Lecture Notes in Computer Science, vol. 12076, pp. 3–24. Springer, ??? (2020).
https://doi.org/10.1007/978-3-030-45234-6_1

[2] Wehrheim, H., Cabot, J. (eds.): Fundamental Approaches to Software Engi-
neering: 23rd International Conference Proceedings. Springer, ??? (2020). https:
//doi.org/10.1007/978-3-030-45234-6 . Open Access

[3] Data, I.: Why Is Software Engineering Important? https://www.institutedata.
com/blog/why-is-software-engineering-important/

[4] Reddy, A.: Waterfall Vs Agile Vs DevOps SDLC Models. https://www.linkedin.
com/pulse/waterfall-vs-agile-devops-sdlc-models-abhay-reddy

[5] Rai, M.K.: The Evolution of Deployment: From
Waterfall to Agile to DevOps. https://mohitkr.com/
the-evolution-of-deployment-from-waterfall-to-agile-to-devops-f840fa53848e

[6] Beyond, O.: Pros and Cons of Waterfall Software Development. https://
one-beyond.com/pros-cons-waterfall-software-development/

[7] Software, B.: Agile Vs. Waterfall: What’s The Difference? https://www.bmc.
com/blogs/agile-vs-waterfall/

14

https://doi.org/10.1007/978-3-030-45234-6_1
https://doi.org/10.1007/978-3-030-45234-6
https://doi.org/10.1007/978-3-030-45234-6
https://www.institutedata.com/blog/why-is-software-engineering-important/
https://www.institutedata.com/blog/why-is-software-engineering-important/
https://www.linkedin.com/pulse/waterfall-vs-agile-devops-sdlc-models-abhay-reddy
https://www.linkedin.com/pulse/waterfall-vs-agile-devops-sdlc-models-abhay-reddy
https://mohitkr.com/the-evolution-of-deployment-from-waterfall-to-agile-to-devops-f840fa53848e
https://mohitkr.com/the-evolution-of-deployment-from-waterfall-to-agile-to-devops-f840fa53848e
https://one-beyond.com/pros-cons-waterfall-software-development/
https://one-beyond.com/pros-cons-waterfall-software-development/
https://www.bmc.com/blogs/agile-vs-waterfall/
https://www.bmc.com/blogs/agile-vs-waterfall/


[8] BrowserStack: Unit Testing in Java with JUnit. https://www.browserstack.com/
guide/unit-testing-java

[9] QATouch: Functional Test Vs Integration Test. https://www.qatouch.com/blog/
functional-test-vs-integration-test/

[10] Atlassian: Git Merge Tutorial. https://www.atlassian.com/git/tutorials/
using-branches/git-merge

[11] Data, H.: Master JIRA Agile: Boards, Sprints & Reports. https://hevodata.com/
learn/jira-agile/

[12] Everhour: GitHub Actions Tutorial: CI/CD Automation. https://everhour.com/
blog/github-actions-tutorial/

[13] Jain, N., Bej, S.R.: Ai-powered cost optimization in iot: A systematic review of
machine learning and predictive analytics in tco reduction. Journal Homepage:
http://www. ijesm. co. in 13(12) (2024)

[14] DigitalOcean: SOLID: The First Five Principles of Object-Oriented
Design. https://www.digitalocean.com/community/conceptual-articles/
s-o-l-i-d-the-first-five-principles-of-object-oriented-design

[15] Boldare: DRY, KISS & YAGNI Principles: Guide & Benefits. https://www.
boldare.com/blog/kiss-yagni-dry-principles/

[16] Finoit: Software Maintenance: Importance, Types, Process, Models. https://
www.finoit.com/articles/software-maintenance-benefits-phases-objectives/

[17] Wikipedia: Technical Debt. https://en.wikipedia.org/wiki/Technical_debt

[18] Kitchen, C.: How SpaceX Develops Software. https://www.coderskitchen.com/
spacex-software-development-and-testing/

[19] Reddit/r/SpaceX: SpaceX Software AMA Summary. https://www.reddit.com/
r/spacex/comments/nd9ipw/summary_of_spacex_software_ama/

[20] Brown, M., Wilson, L.: Automated testing frameworks for safety-critical systems.
In: 2024 IEEE International Conference on Software Testing, pp. 456–462 (2024).
https://doi.org/10.1109/ICST.2024.789012

[21] DevOps.com: Learning from SpaceX’s DevOps Practices. https://devops.com/
learning-from-spacex-how-the-space-industrys-transformation-can-inspire-devops-in-software-development/

15

https://www.browserstack.com/guide/unit-testing-java
https://www.browserstack.com/guide/unit-testing-java
https://www.qatouch.com/blog/functional-test-vs-integration-test/
https://www.qatouch.com/blog/functional-test-vs-integration-test/
https://www.atlassian.com/git/tutorials/using-branches/git-merge
https://www.atlassian.com/git/tutorials/using-branches/git-merge
https://hevodata.com/learn/jira-agile/
https://hevodata.com/learn/jira-agile/
https://everhour.com/blog/github-actions-tutorial/
https://everhour.com/blog/github-actions-tutorial/
https://www.digitalocean.com/community/conceptual-articles/s-o-l-i-d-the-first-five-principles-of-object-oriented-design
https://www.digitalocean.com/community/conceptual-articles/s-o-l-i-d-the-first-five-principles-of-object-oriented-design
https://www.boldare.com/blog/kiss-yagni-dry-principles/
https://www.boldare.com/blog/kiss-yagni-dry-principles/
https://www.finoit.com/articles/software-maintenance-benefits-phases-objectives/
https://www.finoit.com/articles/software-maintenance-benefits-phases-objectives/
https://en.wikipedia.org/wiki/Technical_debt
https://www.coderskitchen.com/spacex-software-development-and-testing/
https://www.coderskitchen.com/spacex-software-development-and-testing/
https://www.reddit.com/r/spacex/comments/nd9ipw/summary_of_spacex_software_ama/
https://www.reddit.com/r/spacex/comments/nd9ipw/summary_of_spacex_software_ama/
https://doi.org/10.1109/ICST.2024.789012
https://devops.com/learning-from-spacex-how-the-space-industrys-transformation-can-inspire-devops-in-software-development/
https://devops.com/learning-from-spacex-how-the-space-industrys-transformation-can-inspire-devops-in-software-development/

	Introduction
	Software Engineering: Definition and Importance
	Evolution of SDLC Models
	Chapter Structure and Critical Components

	SDLC Models: Waterfall vs. Agile
	Waterfall Model: Sequential Structure, Pros, and Cons
	Agile Model: Iterative Sprints, Adaptability, and Feedback
	Comparison Table: Waterfall vs. Agile
	Industry Context

	Software Testing: Unit and Integration
	Unit Testing: Purpose and JUnit Example
	Integration Testing: Verifying Module Interactions
	Automated Testing in CI/CD
	Benefits of Automated Testing

	Tools for Modern Software Development
	Git: Version Control, Branching, Merging
	JIRA: Agile Project Tracking
	CI/CD Tools: Jenkins & GitHub Actions
	Workflow Example: Code Commit to Deployment

	Software Design Principles
	SOLID Principles
	DRY, KISS, and YAGNI
	Example: Refactoring for Single Responsibility
	Impact of Design Principles

	Software Maintenance and Evolution
	Types of Software Maintenance
	Legacy Code Challenges and Refactoring
	Technical Debt: Causes and Management
	Example: Monolith to Microservices Migration
	Importance for Mission-Critical Systems

	Case Study: SpaceX’s CI/CD Pipeline for Starship Software
	Overview: Mission-Critical Software Delivery
	CI/CD Pipeline Architecture
	Testing and Safety Mechanisms
	DevOps Culture and Outcomes

	Exercises
	Write JUnit Unit Test for Calculator Function
	Simulate Agile Sprint with Git/JIRA
	Set Up CI Pipeline
	Waterfall vs Agile Comparison
	Automated Testing in Mission-Critical Systems


