
Big Data Technologies and Cloud Computing for
Data Science Analytics

Shubneet 1, Anushka Raj Yadav 2, Navjot Singh Talwandi 3

1,2,3*Department of Computer Science, Chandigarh University,
Gharuan, Mohali, 140413, Punjab, India.

Contributing authors: jeetshubneet27@gmail.com;
ay462744@gmail.com; navjot.e17908@cumail.in;

Abstract
Big Data refers to extremely large, complex datasets that challenge traditional
data processing systems, characterized by the four Vs: Volume (sheer data
size), Velocity (rapid data generation/ingestion), Variety (diverse formats like
structured, unstructured, and semi-structured data), and Veracity (data quality
and reliability). Managing these datasets poses significant challenges in stor-
age, distributed processing, and scalability, necessitating specialized tools such
as Hadoop’s HDFS for distributed storage, MapReduce for batch process-
ing, and Spark for in-memory analytics. Modern solutions leverage distributed
computing frameworks and NoSQL databases (e.g., MongoDB, Cassandra) to
handle heterogeneity and scale. Cloud platforms like AWS and Azure further
address these challenges through elastic resources and managed services (e.g.,
AWS EMR, Azure HDInsight), enabling efficient data pipeline orchestration.
However, organizations must still navigate trade-offs between consistency, avail-
ability, and partition tolerance (CAP theorem) in distributed systems. Emerging
advancements in real-time stream processing (e.g., Apache Flink) and hybrid
cloud architectures continue to reshape Big Data ecosystems, driving innovation
in sectors from healthcare to finance. [1, 2]

Keywords: big data, cloud computing, distributed systems, data pipelines, NoSQL

1 Introduction
The exponential growth of data generation from IoT devices, social media plat-
forms, and AI-driven applications has necessitated a paradigm shift from traditional

1

relational databases to modern Big Data ecosystems. Early relational database man-
agement systems (RDBMS), such as Oracle and MySQL, excelled at structured data
storage and transactional consistency but struggled to scale with the volume, velocity,
and variety of data produced in the digital age. The rise of distributed systems, cloud
computing, and real-time analytics has redefined how organizations store, process, and
derive value from data, giving birth to technologies like Hadoop, Spark, and NoSQL
databases [3]. These tools address the limitations of traditional systems through
horizontal scalability, fault tolerance, and support for unstructured data, enabling
applications ranging from real-time fraud detection to personalized recommendation
engines.

Three key drivers underpin this evolution:

• IoT and Sensor Data: Billions of connected devices generate continuous
streams of telemetry data, demanding scalable storage and low-latency process-
ing.

• Social Media: Platforms like Facebook and Twitter produce petabytes of
unstructured text, images, and video, requiring distributed processing frame-
works.

• AI/ML Workloads: Training deep learning models on massive datasets
necessitates parallelized computation and efficient resource orchestration.

Central to this transformation are two foundational concepts: the CAP theorem
and Lambda architecture. The CAP theorem posits that distributed systems can
only simultaneously guarantee two of three properties: consistency, availability, and
partition tolerance [4]. This trade-off has shaped the design of NoSQL databases
like Cassandra (prioritizing availability) and MongoDB (emphasizing consistency).
Meanwhile, the Lambda architecture reconciles batch and stream processing by main-
taining separate "cold" (batch) and "hot" (real-time) data paths, ensuring both
comprehensive analytics and low-latency insights.

Chapter Outline
This chapter explores the technological and conceptual pillars of Big Data ecosystems:

• Fundamentals of Big Data: Characteristics (4Vs) and challenges
• Core technologies: Hadoop, Spark, Hive, and NoSQL databases
• Distributed storage (HDFS) and computing paradigms (MapReduce)
• Cloud platforms (AWS, Azure, GCP) and managed services
• Data pipeline design principles and orchestration tools
• Real-world case study: Retail analytics at scale
• Hands-on exercises and framework comparisons

As organizations increasingly adopt hybrid cloud architectures and decentralized
data meshes, understanding these components becomes critical for building scal-
able, resilient data infrastructure. The following sections provide both theoretical
frameworks and practical insights to navigate this complex landscape.

2

2 Hadoop, Spark, and Hive
The Hadoop ecosystem is foundational for Big Data analytics, providing robust tools
for distributed storage and processing. Its architecture comprises three core compo-
nents: HDFS for scalable storage, YARN for resource management, and MapReduce
for batch computation. HDFS splits large files into blocks distributed across DataN-
odes, managed by a central NameNode. YARN coordinates computational resources,
allowing multiple processing engines to share the cluster.

Hadoop vs. Spark Processing
Hadoop’s MapReduce framework processes data in batch mode, writing intermediate
results to disk. This disk-based approach is reliable but incurs high latency, making
it less suitable for iterative or interactive workloads. Apache Spark addresses these
limitations with in-memory processing using Resilient Distributed Datasets (RDDs),
enabling up to 100x faster execution for many analytics and machine learning tasks.
Spark supports both batch and real-time streaming, making it versatile for modern
data pipelines.

Hive: SQL on Hadoop
Hive brings SQL-like querying to Hadoop through HiveQL, translating queries into
MapReduce or Tez jobs. Its Metastore manages schema and metadata, while its
optimizer improves query execution. Hive is ideal for ETL, reporting, and data
warehousing, allowing analysts to leverage familiar SQL syntax on massive datasets.

Spark Word Count Example

from pyspark.sql import SparkSession

spark = SparkSession.builder.appName("WordCount").getOrCreate ()
text_rdd = spark.sparkContext.textFile("hdfs :/// input.txt")
word_counts = (text_rdd

.flatMap(lambda line: line.split ())

.map(lambda word: (word , 1))

.reduceByKey(lambda a, b: a + b))
word_counts.saveAsTextFile("hdfs :/// output")
spark.stop()

3

Hadoop Ecosystem Architecture

HDFS
(Storage)

YARN
(Resource Mgmt)

Spark
(In-Memory)

MapReduce
(Batch Processing)

Hive
(SQL Interface)

Fig. 1: Hadoop ecosystem architecture with core components

Technology Comparison

Table 1: Comparison of Hadoop, Spark, and Hive

Feature Hadoop Spark Hive

Processing Model Batch (MapReduce) In-Memory SQL-to-MapReduce
Latency High (minutes+) Low (seconds) High (minutes+)
Data Types Structured/Unstructured All Structured/Semi-structured
Real-Time Support No Yes (Streaming) No
ML Support Limited (Mahout) MLlib None
Storage Dependency HDFS Any HDFS
Use Cases ETL, batch analytics ML, streaming, graph Data warehousing, ETL

Hadoop, Spark, and Hive together form a flexible and scalable foundation for Big
Data analytics, supporting a wide range of business and scientific applications [5, 6].

3 HDFS and NoSQL Databases

HDFS Replication and Fault Tolerance
Hadoop Distributed File System (HDFS) ensures data durability through block
replication and erasure coding. By default, HDFS stores 3 replicas of each data
block across multiple DataNodes, providing fault tolerance against node failures. For
example, if a file is split into blocks A, B, and C, replicas are distributed such that
losing one DataNode does not compromise data accessibility [7].

4

Hadoop 3 introduced erasure coding, which splits data into fragments with parity
information, reducing storage overhead by 50% while maintaining fault tolerance.
This contrasts with replication, which triples storage usage. HDFS also automatically
re-replicates blocks if nodes fail, maintaining the replication factor dynamically.

NoSQL Database Types
• Document (MongoDB): Stores JSON-like documents with dynamic schemas.

Ideal for content management and real-time analytics. Supports rich queries and
aggregation pipelines.

• Columnar (Cassandra): Organizes data into column families for high write
throughput. Used in IoT and time-series data. Provides linear scalability and
multi-datacenter support.

• Key-Value (Redis): In-memory store for low-latency caching. Handles session
management and leaderboards. Supports TTL (time-to-live) for automatic data
expiration.

HDFS Architecture

NameNode
(Metadata)

Secondary NameNode
(Checkpointing)

DataNode 1 DataNode 2 DataNode 3

A B B C A C

Replication Factor = 2: Each block is stored on two DataNodes

Fig. 2: HDFS architecture: DataNodes store replicated blocks and report to the
NameNode, which manages metadata. The Secondary NameNode provides check-
pointing.

HDFS vs. NoSQL Comparison

MongoDB Aggregation Example

5

Table 2: HDFS vs. NoSQL Databases

Feature HDFS NoSQL

Consistency Strong (via replication) Eventual (Cassandra), Strong (MongoDB)
Scalability Horizontal (add nodes) Horizontal (sharding)
Query Support MapReduce jobs Domain-specific (CQL, HiveQL)
Data Model File blocks Document/Column/Key-Value
Use Case Batch analytics Real-time apps, caching

from pymongo import MongoClient

client = MongoClient("mongodb :// localhost :27017/")
db = client["sales_db"]
pipeline = [

{"$match": {"region": "North␣America"}},
{"$group": {"_id": "$product", "total_sales": {"$sum": "

$revenue"}}},
{"$sort": {"total_sales": -1}}

]
results = db.sales.aggregate(pipeline)
for doc in results:

print(doc)

HDFS and NoSQL databases address complementary needs in modern data
architectures-HDFS for scalable storage and NoSQL for flexible data modeling [8].

4 Parallel and Distributed Processing
Modern Big Data ecosystems rely on parallel and distributed processing frame-
works to handle large-scale computations efficiently across clusters. Two founda-
tional paradigms-MapReduce and Spark’s Resilient Distributed Datasets (RDDs)-
demonstrate contrasting approaches to distributed computation.

MapReduce Workflow
The MapReduce framework processes data in three phases:

• Map: Processes input key-value pairs and emits intermediate pairs
• Shuffle: Transfers and groups intermediate data by key across nodes
• Reduce: Aggregates values for each key to produce final results

The shuffle phase sorts intermediate keys and redistributes data to reducers,
enabling grouping by key. This disk-based approach ensures reliability but introduces
latency [9].

6

Spark RDDs and DAG Execution
Spark improves on MapReduce through in-memory RDDs and Directed Acyclic Graph
(DAG) execution:

• RDDs: Immutable distributed datasets partitioned across nodes
• DAG Scheduler: Optimizes execution by pipelining narrow transformations

(map, filter) into stages
• Wide Transformations: Require shuffling (e.g., reduceByKey) and create stage

boundaries

Spark’s DAG-driven execution avoids unnecessary disk I/O, achieving up to 100x
faster performance for iterative algorithms compared to Hadoop [10].

Word Frequency Algorithm in MapReduce

Algorithm 1 Word Count in MapReduce
1: Map Phase:
2: for each line in input do
3: for each word in line.split() do
4: Emit ⟨word, 1⟩
5: end for
6: end for
7: Reduce Phase:
8: for each word in grouped keys do
9: Sum =

∑
values

10: Emit ⟨word, Sum⟩
11: end for

After presenting the MapReduce algorithm for word frequency counting, it is
important to recognize how such parallel workflows are executed in practice. In a
distributed environment, large datasets are partitioned and processed simultaneously
across multiple nodes, significantly reducing computation time compared to serial exe-
cution. The efficiency of this approach depends on effective data partitioning, load
balancing, and minimizing data transfer during the shuffle phase. Modern frameworks
like Hadoop and Spark automate much of this orchestration, allowing developers to
focus on defining transformation logic rather than managing low-level parallelism. As
a result, organizations can scale their data processing pipelines to handle terabytes or
petabytes of information, enabling timely insights and supporting advanced analytics
tasks.

7

Parallel Processing Across Nodes
The following diagram illustrates how a typical parallel processing workflow is struc-
tured across nodes in a cluster, highlighting the flow of data from initial partitioning
through mapping, shuffling, and final reduction.

Input Data (Partitioned)

Mapper 1 Mapper 2 Mapper 3

Shuffle Shuffle Shuffle

Reducer

Output

Fig. 3: Parallel processing flow: Mappers process partitions independently, shuffle
phase groups data, reducer aggregates results

5 Building Scalable Data Pipelines
Modern data pipelines require robust orchestration and processing frameworks to
handle diverse workloads. This section explores key tools and patterns for constructing
production-grade data workflows.

ETL/ELT Orchestration
• Apache Airflow: Python-based DAGs with rich operator ecosystem [11]
• Luigi: Spotify’s simpler alternative for dependency resolution
• Prefect: Modern workflow system with hybrid execution

Batch vs. Stream Processing
• Spark: Micro-batch processing (RDDs) with mature ML support
• Flink: True streaming with sub-second latency and stateful computations

8

Pipeline Architecture

Ingest Batch Stream Store Analyze

Fig. 4: Minimal data pipeline architecture

Airflow DAG Example

from airflow import DAG
from airflow.operators.python import PythonOperator
from datetime import datetime

def extract (): pass
def transform (): pass
def load(): pass

with DAG(
dag_id=’etl_pipeline ’,
start_date=datetime (2025 , 1, 1),
schedule=’@daily ’

) as dag:
extract_task = PythonOperator(task_id=’extract ’,

python_callable=extract)
transform_task = PythonOperator(task_id=’transform ’,

python_callable=transform)
load_task = PythonOperator(task_id=’load’, python_callable=

load)

extract_task >> transform_task >> load_task

Orchestration Tool Comparison

Table 3: Data Orchestration Tools

Feature Airflow Prefect Dagster

Workflow Type Static DAGs Dynamic Flows Asset-Centric
Error Handling Retries Auto-recovery Declarative
UI Mature Modern Developer-Focused
Best For ETL/ELT Cloud-Native Data Contracts

6 Big Data Analytics in Retail
Modern retailers leverage big data technologies to optimize operations and enhance
customer experiences. This section explores two critical applications: real-time inven-
tory management and customer segmentation, enabled by distributed processing
frameworks.

9

Real-Time Inventory Management with Kafka and Spark
Apache Kafka serves as the central nervous system for real-time inventory track-
ing, ingesting data from POS systems, RFID sensors, and e-commerce platforms.
Walmart’s implementation processes 4+ billion messages in 3 hours to generate
replenishment orders across 4,700+ stores [12]. The architecture combines:

• Kafka Streams: Processes 150K+ events/sec for stock updates
• Spark Structured Streaming: Calculates inventory positions using micro-

batches
• KSQL DB: Maintains real-time materialized views of stock levels

This pipeline reduces stockouts by 23% and improves inventory turnover by 17%
compared to batch systems [13].

Customer Segmentation with Spark MLlib
Retailers use Hadoop/Spark MLlib to cluster customers based on:

• Purchase history (RFM analysis)
• Demographic attributes
• Real-time browsing behavior

from pyspark.ml.clustering import KMeans
from pyspark.ml.feature import VectorAssembler

Feature engineering
assembler = VectorAssembler(

inputCols =["annual_spend", "visit_frequency", "basket_size"],
outputCol="features")

df = assembler.transform(customer_data)

K-means clustering
kmeans = KMeans(k=5, seed =42)
model = kmeans.fit(df)

Migros Switzerland achieved 35% higher campaign conversion rates using
this approach [14].

Analytics Pipeline Architecture

KafkaEvents Spark
Process HDFSStore MLlib

Cluster BIDash

Fig. 5: Compact retail analytics pipeline

10

Performance Metrics

Table 4: Retail Analytics Performance Benchmarks

Metric Kafka/Spark Batch System Improvement

Throughput (msgs/sec) 150,000 5,000 30x
Latency (95th %ile) 1.2s 45min 2250x
Inventory Accuracy 99.8% 92.4% +7.4pp
Segmentation Speed 15min 6hr 24x

Exercises

Python Tasks
1. Spark DataFrame Analysis (Walmart Stock Data)

Load Walmart stock data (2012 -2017)
from pyspark.sql import SparkSession
spark = SparkSession.builder.getOrCreate ()
df = spark.read.csv("walmart_stock.csv", header=True ,

inferSchema=True)

1. Calculate monthly average closing price
from pyspark.sql.functions import month , avg
monthly_avg = df.withColumn("Month", month("Date")) \

.groupBy("Month") \

.agg(avg("Close").alias("AvgClose")) \

.orderBy("Month")

2. NoSQL Query Optimization (MongoDB)

Create optimized index and projection
db.transactions.create_index ([("amount", 1), ("timestamp",

-1)])
optimized_query = db.transactions.find(

{"amount": {"$gt": 1000}} ,
{"_id":0, "card_number":1, "timestamp":1}

).limit (100).sort("timestamp", -1)

Cloud Comparison Task
Implement cluster deployment for both platforms:

AWS CLI:

aws emr create -cluster --name "FraudCluster" --release -label emr
-6.10.0

11

Service AWS GCP

Managed Spark EMR Dataproc
Object Storage S3 Cloud Storage
ML Service SageMaker Vertex AI
CLI Tool AWS CLI gcloud

GCP CLI:

gcloud dataproc clusters create "fraud -detection" --region us-
central1

Mini-Project: Fraud Detection Pipeline
Build a real-time fraud detection system with:

• Kafka topic for transaction streaming (1M msg/sec)
• Spark Structured Streaming for anomaly detection
• Redis for blacklist IP caching (5ms latency SLA)
• Dashboard using Streamlit/Plotly

Discussion Question
Compare MongoDB and Cassandra in the context of CAP theorem tradeoffs for
financial transactions. Which would you choose for:

• Credit card fraud detection (AP vs CP)?
• Transaction ledger system (CA vs CP)?

References
[1] Quantzig: Exploring the four vs of big data (2024)

[2] Elevondata: The Top Challenges of Big Data. https://www.linkedin.com/pulse/
top-challenges-big-data-volume-velocity-variety-veracity-elevondata

[3] Academy, F.: Evolution of Big Data: History, Tools, Future Trends. https://www.
fynd.academy/blog/evolution-of-big-data

[4] Software, B.: CAP Theorem Explained: Consistency, Availability & Partition
Tolerance. https://www.bmc.com/blogs/cap-theorem/

[5] Databricks: Hadoop Ecosystem: Components & Architecture. https://www.
databricks.com/glossary/hadoop-ecosystem

[6] upGrad: Hive Vs Spark: Key Differences and Comparison Guide. https://www.
upgrad.com/blog/hive-vs-spark/

12

https://www.linkedin.com/pulse/top-challenges-big-data-volume-velocity-variety-veracity-elevondata
https://www.linkedin.com/pulse/top-challenges-big-data-volume-velocity-variety-veracity-elevondata
https://www.fynd.academy/blog/evolution-of-big-data
https://www.fynd.academy/blog/evolution-of-big-data
https://www.bmc.com/blogs/cap-theorem/
https://www.databricks.com/glossary/hadoop-ecosystem
https://www.databricks.com/glossary/hadoop-ecosystem
https://www.upgrad.com/blog/hive-vs-spark/
https://www.upgrad.com/blog/hive-vs-spark/

[7] DataFlair: How HDFS Achieves Fault Tolerance? https://data-flair.training/
blogs/learn-hadoop-hdfs-fault-tolerance/

[8] Studio3T: MongoDB Aggregation Example. https://studio3t.com/
knowledge-base/articles/build-mongodb-aggregation-queries/

[9] DataFlair: Shuffling and Sorting in Hadoop MapReduce. https://data-flair.
training/blogs/shuffling-and-sorting-in-hadoop/

[10] SparkByExamples: What Is DAG in Spark. https://sparkbyexamples.com/
spark/what-is-dag-in-spark/

[11] Astronomer: Introduction to Apache Airflow DAGs. https://www.astronomer.
io/docs/learn/dags/

[12] Waehner, K.: Real-Time Supply Chain with Apache
Kafka. https://www.kai-waehner.de/blog/2022/02/25/
real-time-supply-chain-with-apache-kafka-in-food-retail-industry/

[13] Confluent: Real-Time Inventory in Retail. https://www.confluent.io/blog/
real-time-inventory-in-retail/

[14] N-iX: Real-Time Big Data Analytics Use Cases. https://www.n-ix.com/
real-time-big-data-analytics/

[15] Pluralsight: Storage Showdown: AWS Vs Azure Vs
GCP. https://www.pluralsight.com/resources/blog/cloud/
storage-showdown-aws-vs-azure-vs-gcp-cloud-comparison

[16] Cloud, G.: Google Cloud Service Comparison. https://cloud.google.com/docs/
get-started/aws-azure-gcp-service-comparison

[17] RisingWave: Airflow Vs Dagster Vs Prefect Comparison. https://risingwave.com/
blog/airflow-vs-dagster-vs-prefect

13

https://data-flair.training/blogs/learn-hadoop-hdfs-fault-tolerance/
https://data-flair.training/blogs/learn-hadoop-hdfs-fault-tolerance/
https://studio3t.com/knowledge-base/articles/build-mongodb-aggregation-queries/
https://studio3t.com/knowledge-base/articles/build-mongodb-aggregation-queries/
https://data-flair.training/blogs/shuffling-and-sorting-in-hadoop/
https://data-flair.training/blogs/shuffling-and-sorting-in-hadoop/
https://sparkbyexamples.com/spark/what-is-dag-in-spark/
https://sparkbyexamples.com/spark/what-is-dag-in-spark/
https://www.astronomer.io/docs/learn/dags/
https://www.astronomer.io/docs/learn/dags/
https://www.kai-waehner.de/blog/2022/02/25/real-time-supply-chain-with-apache-kafka-in-food-retail-industry/
https://www.kai-waehner.de/blog/2022/02/25/real-time-supply-chain-with-apache-kafka-in-food-retail-industry/
https://www.confluent.io/blog/real-time-inventory-in-retail/
https://www.confluent.io/blog/real-time-inventory-in-retail/
https://www.n-ix.com/real-time-big-data-analytics/
https://www.n-ix.com/real-time-big-data-analytics/
https://www.pluralsight.com/resources/blog/cloud/storage-showdown-aws-vs-azure-vs-gcp-cloud-comparison
https://www.pluralsight.com/resources/blog/cloud/storage-showdown-aws-vs-azure-vs-gcp-cloud-comparison
https://cloud.google.com/docs/get-started/aws-azure-gcp-service-comparison
https://cloud.google.com/docs/get-started/aws-azure-gcp-service-comparison
https://risingwave.com/blog/airflow-vs-dagster-vs-prefect
https://risingwave.com/blog/airflow-vs-dagster-vs-prefect

	Introduction
	Hadoop, Spark, and Hive
	HDFS and NoSQL Databases
	Parallel and Distributed Processing
	Building Scalable Data Pipelines
	Big Data Analytics in Retail

